88
Views
1
CrossRef citations to date
0
Altmetric
Review

Role of corticosteroids in the antidepressant response

, , , &
Pages 87-98 | Published online: 04 Nov 2014

References

  • Murray CJL, Vos T, Lozano R, et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2197–2223.
  • National Institute for Health and Clinical Excellence. Depression in adults: the treatment and management of depression in adults. National Clinical Practice Guideline 90. National Collaborating Centre for Mental Health; 2010. Available from: https://www.google.co.nz/?gfe_rd=cr&ei=-Y6iU8LFIObC8geQ1oDQAg&gws_rd=ssl. Accessed August 7, 2014.
  • Rush AJ, Trivedi MH, Wisniewski SR, et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am J Psychiatry. 2006;163:1905–1917.
  • Pasqualini CD, Pasqualini RQ. [Hans Selye: the stress of his life]. Medicina (B Aires). 1983;43:109–111. Spanish.
  • McEwen BS. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev. 2007;87:873–904.
  • McEwen BS. Stress, adaptation, and disease. Allostasis and allostatic load. Ann N Y Acad Sci. 1998;840:33–44.
  • Ben-Zvi A, Vernon SD, Broderick G. Model-based therapeutic correction of hypothalamic-pituitary-adrenal axis dysfunction. PLoS Comput Biol. 2009;5:e1000273.
  • Colasanti A, Owen DR, Grozeva D, et al. Bipolar disorder is associated with the rs6971 polymorphism in the gene encoding 18 kDa translocator protein (TSPO). Psychoneuroendocrinology. 2013;38:2826–2829.
  • Itoi S, Terao M, Murota H, Katayama I. 11beta-Hydroxysteroid dehydrogenase 1 contributes to the pro-inflammatory response of keratinocytes. Biochem Biophys Res Commun. 2013;440:265–270.
  • Silverman MN, Sternberg EM. Glucocorticoid regulation of inflammation and its behavioral and metabolic correlates: from HPA axis to glucocorticoid receptor dysfunction. Ann N Y Acad Sci. 2012;1261:55–63.
  • Thiebaut F, Tsuruo T, Hamada H, Gottesman MM, Pastan I, Willingham MC. Cellular localization of the multidrug-resistance gene product P-glycoprotein In normal human tissues. Proc Natl Acad Sci U S A. 1987;84:7735–7738.
  • Tomlinson JW, Walker EA, Bujalska IJ, et al. 11beta-hydroxysteroid dehydrogenase type 1: a tissue-specific regulator of glucocorticoid response. Endocr Rev. 2004;25:831–866.
  • Pariante CM, Miller AH. Glucocorticoid receptors in major depression: relevance to pathophysiology and treatment. Biol Psychiatry. 2001;49:391–404.
  • MacLachlan L, Watson S. Evidence for the role of hypothalamic-pituitary-adrenal axis dysfunction in the pathogenesis of mood disorders. European Psychiatric Review. 2010;3(1):54–57.
  • Herman JP, Spencer R. Regulation of hippocampal glucocorticoid receptor gene transcription and protein expression in vivo. J Neurosci. 1998;18:7462–7473.
  • Silverman MN, Pearce BD, Miller AH. . Cytokines and HPA axis regulation. In: Kronfol Z, editor. Cytokines and Mental Health. Norwell, MA, USA: Kluwer Academic Publishers; 2003.
  • Nicolaides NC, Galata Z, Kino T, Chrousos GP, Charmandari E. The human glucocorticoid receptor: molecular basis of biologic function. Steroids. 2010;75:1–12.
  • Brasier AR. The NF-κB regulatory network. Cardiovasc Toxicol. 2006;6:111–130.
  • O’Riordan KJ, Huang I-C, Pizzi M, et al. Regulation of nuclear factor kB in the hippocampus by group I metabotropic glutamate receptors. J Neurosci. 2006;26:4870–4887.
  • Albensi BC, Mattson MP. Evidence for the involvement of TNF and NF-κB in hippocampal synaptic plasticity. Synapse. 2000;35:151–159.
  • Ameyar M, Wisniewska M, Weitzman JB. A role for AP-1 in apoptosis: the case for and against. Biochimie. 2003;85:747–752.
  • Binder EB. The role of FKBP5, a co-chaperone of the glucocorticoid receptor in the pathogenesis and therapy of affective and anxiety disorders. Psychoneuroendocrinology. 2009;34 Suppl 1:S186–S195.
  • Pariante CM. The glucocorticoid receptor: part of the solution or part of the problem? J Psychopharmacol. 2006;20(Suppl 4):79–84.
  • Binder EB, Bradley RG, Liu W, et al. Association of FKBP5 polymorphisms and childhood abuse with risk of posttraumatic stress disorder symptoms in adults. JAMA. 2008;299:1291–1305.
  • Porter RJ, Gallagher P, Watson S, Young AH. Corticosteroid-serotonin interactions in depression: a review of the human evidence. Psychopharmacology (Berl). 2004;173:1–17.
  • Palacios J, Waeber C, Hoyer D, Mengod G. Distribution of serotonin receptors. Ann N Y Acad Sci. 1990;600:36–52.
  • de Kloet ER. Brain corticosteroid receptor balance and homeostatic control. Front Neuroendocrinol. 1991;12:95–164.
  • Wright D, Seroogy K, Lundgren K, Davis B, Jennes L. Comparative localization of serotonin1A,1C and 2 receptor subtype mRNAs in rat brain. J Comp Neurol. 1995;351:357–373.
  • Holmes MC, French KL, Sekl JR. Dysregulation of diurnal rhythms of serotonin 5-HT2C and corticosteroid receptor gene expression in the hippocampus with food restriction and glucocorticoids. J Neurosci. 1997;17:4056–4065.
  • Mengod G, Pompeiano M, Martinez-Mir M, Palacios J. Localization of the mRNA for the 5-HT2 receptor by in situ hybridization histochemistry: correlation with the distribution of receptor sites. Brain Res. 1990;524:139–143.
  • Chalmers D, Watson S. Comparative anatomical distribution of 5-HT1A receptor mRNA and 5-HT1A binding in rat brain: a combined in situ hybridization/in vitro receptor autoradiographic study. Brain Res. 1991;561:51–60.
  • Fuller R. The involvement of serotonin in regulation of pituitary adrenocortical function. Front Neuroendocrinol. 1992;13:250–270.
  • Chalmers D, Kwak S, Mansour A, Akil H, Watson S. Corticosteroids regulate brain hippocampal 5-HT1A receptor mRNA expression. J Neurosci. 1993;13:914–923.
  • Zhong P, Ciaranello RD. Transcriptional regulation of hippocampal 5-HT1A receptors by corticosteroid hormones. Mol Brain Res. 1995;29:23–34.
  • Holmes MC, Yau JLW, French KL, Seckl JR. The effect of adrenalectomy on 5HT and corticosteroid receptor subtype mRNA expression in rat hippocampus. Neuroscience. 1995;64:327–337.
  • Neumaier JF, Sexton TJ, Hamblin MW, Beck SG. Corticosteroids regulate 5-HT1A but not 5-HT1B receptor mRNA in rat hippocampus. Brain Res Mol Brain Res. 2000;20:65–73.
  • Erdeljan P, Andrews MH, MacDonald JF, Matthews SG. Glucocorticoids and serotonin alter glucocorticoid receptor mRNA levels in fetal guinea-pig hippocampal neurons, in vitro. Reprod Fertil Dev. 2005;17:743–749.
  • McQuade R, Young AH. Future therapeutic targets in mood disorders: the glucocorticoid receptor. Br J Psychiatry. 2000;177:390–395.
  • Guilliams T, Edwards L. Chronic stress and the HPA axis: clinical assessment and therapeutic considerations. Standard. 2010;9:1–12.
  • Lauren BO, Charles BN. . HPA axis modulation in the treatment of mood disorders. In: Schoepf D, editor. Psychiatric Disorders – New Frontiers in Affective Disorders. 2013. Available from: http://www.intechopen.com/books/psychiatric-disorders-new-frontiers-in-affective-disorders. Accessed August 7, 2014.
  • Gold PW, Gabry KE, Yasuda M, Chrousos GP. Divergent endocrine abnormalities in melancholic and atypical depression: clinical and pathophysiological implications. Endocrinol Metab Clin North Am. 2002;31:37–62.
  • Starkman MN, Giordani B, Berent S, Schork MA, Schteingart DE. Elevated cortisol levels in Cushing’s disease are associated with cognitive decrements. Psychosom Med. 2001;63:985–993.
  • O’Keane V. Evolving model of depression as an expression of multiple interacting risk factors. Br J Psychiatry. 2000;177:482–483.
  • Anglin RE, Rosebush PI, Mazurek MF. The neuropsychiatric profile of Addison’s disease: revisiting a forgotten phenomenon. J Neuropsychiatry Clin Neurosci. 2006;18:450–459.
  • Klok MD, Alt SR, Irurzun Lafitte AJ, et al. Decreased expression of mineralocorticoid receptor mRNA and its splice variants in postmortem brain regions of patients with major depressive disorder. J Psychiatr Res. 2011;45:871–878.
  • Lopez JF, Chalmers DT, Little KY, Watson SJ. AE Bennett Research Award. Regulation of serotonin1A, glucocorticoid, and mineralocorticoid receptor in rat and human hippocampus: implications for the neurobiology of depression. Biol Psychiatry. 1998;43:547–573.
  • Wang SS, Kamphuis W, Huttinga I, Zhou JN, Swaab DF. Gene expression analysis in the human hypothalamus in depression by laser microdissection and real-time PCR: the presence of multiple receptor imbalances. Mol Psychiatry. 2008;13:786–799.
  • Webster MJ, Knable MB, O’Grady J, Orthmann J, Weickert CS. Regional specificity of brain glucocorticoid receptor mRNA alterations in subjects with schizophrenia and mood disorders. Mol Psychiatry. 2002;7:985–994.
  • Sapolsky RM, McEwen BS. Down-regulation of neural corticosterone receptors by corticosterone and dexamethasone. Brain Res. 1985;339:161–165.
  • Sinclair D, Webster MJ, Fullerton JM, Weickert CS. Glucocorticoid receptor mRNA and protein isoform alterations in the orbitofrontal cortex in schizophrenia and bipolar disorder. BMC Psychiatry. 2012;12:84.
  • Watson S, Gallagher P, Ritchie JC, Ferrier IN, Young AH. Hypothalamic-pituitary-adrenal axis function in patients with bipolar disorder. Br J Psychiatry. 2004;184:496–502.
  • McGuffin P, Katz R. The genetics of depression and manic-depressive disorder. Br J Psychiatry. 1989;155:294–304.
  • Bartels M, Van den Berg M, Sluyter F, Boomsma DI, de Geus EJ. Heritability of cortisol levels: review and simultaneous analysis of twin studies. Psychoneuroendocrinology. 2003;28:121–137.
  • Holsboer F, Lauer CJ, Schreiber W, Krieg JC. Altered hypothalamic-pituitary-adrenocortical regulation in healthy subjects at high familial risk for affective disorders. Neuroendocrinology. 1995;62:340–347.
  • Hek K, Demirkan A, Lahti J, et al. A genome-wide association study of depressive symptoms. Biol Psychiatry. 2013;73:667–678.
  • Zimmermann P, Bruckl T, Nocon A, et al. Interaction of FKBP5 gene variants and adverse life events in predicting depression onset: results from a 10-year prospective community study. Am J Psychiatry. 2011;168:1107–1116.
  • Willour VL, Chen H, Toolan J, et al. Family-based association of FKBP5 in bipolar disorder. Mol Psychiatry. 2009;14:261–268.
  • Mehta D, Binder EB. Gene x environment vulnerability factors for PTSD: the HPA-axis. Neuropharmacology. 2012;62:654–662.
  • Roy A, Hodgkinson CA, Deluca V, Goldman D, Enoch MA. Two HPA axis genes, CRHBP and FKBP5, interact with childhood trauma to increase the risk for suicidal behavior. J Psychiatr Res. 2012;46:72–79.
  • Manenschijn L, van den Akker EL, Lamberts SW, van Rossum EF. Clinical features associated with glucocorticoid receptor polymorphisms. An overview. Ann N Y Acad Sci. 2009;1179:179–198.
  • van Rossum EF, Binder EB, Majer M, et al. Polymorphisms of the glucocorticoid receptor gene and major depression. Biol Psychiatry. 2006;59:681–688.
  • Leszczynska-Rodziewicz A, Szczepankiewicz A, Dmitrzak-Weglarz M, Skibinska M, Hauser J. Association between functional polymorphism of the AVPR1b gene and polymorphism rs1293651 of the CRHR1 gene and bipolar disorder with psychotic features. J Affect Disord. 2012;138:490–493.
  • Dekker MJ, Tiemeier H, Luijendijk HJ, et al. The effect of common genetic variation in 11beta-hydroxysteroid dehydrogenase type 1 on hypothalamic-pituitary-adrenal axis activity and incident depression. J Clin Endocrinol Metab. 2012;97:E233–E237.
  • Santos M, Carvalho S, Lima L, et al. Common genetic polymorphisms in the ABCB1 gene are associated with risk of major depressive disorder in male Portuguese individuals. Genet Test Mol Biomarkers. 2014;18:12–19.
  • Velders FP, Kuningas M, Kumari M, et al. Genetics of cortisol secretion and depressive symptoms: a candidate gene and genome wide association approach. Psychoneuroendocrinology. 2011;36:1053–1061.
  • Weaver IC, Cervoni N, Champagne FA, et al. Epigenetic programming by maternal behavior. Nat Neurosci. 2004;7:847–885.
  • Murgatroyd C, Patchev AV, Wu Y, et al. Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nat Neurosci. 2009;12:1559–1566.
  • McGowan PO, Sasaki A, D’Alessio AC, et al. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci. 2009;12:342–338.
  • Keller PA, McCluskey A, Morgan J, O’Connor SM. The role of the HPA axis in psychiatric disorders and CRF antagonists as potential treatments. Arch Pharm (Weinheim). 2006;339:346–355.
  • Scott LV, Dinan TG. Vasopressin and the regulation of hypothalamic-pituitary-adrenal axis function: implications for the pathophysiology of depression. Life Sci. 1998;62:1985–1998.
  • De Kloet ER, Vreugdenhil E, Oitzl MS, Joels M. Brain corticosteroid receptor balance in health and disease. Endocr Rev. 1998;19:269–301.
  • Cotter P, Mulligan O, Landau S, Papadopoulos A, Lightman S, Checkley S. Vasoconstrictor response to topical beclomethasone in major depression. Psychoneuroendocrinology. 2002;27:475–487.
  • Maguire TM, Thakore J, Dinan TG, Hopwood S, Breen KC. Plasma sialyltransferase levels in psychiatric disorders as a possible indicator of HPA axis function. Biol Psychiatry. 1997;41:1131–1136.
  • Bauer M, Vedhara K, Perks P, Wilcock G, Lightman S, Shanks N. Chronic stress in caregivers of dementia patients is associated with reduced lymphocyte sensitivity to glucocorticoids. J Neuroimmunol. 2000;103:84–92.
  • Miller GE, Cohen S, Ritchey AK. Chronic psychological stress and the regulation of proinflammatory cytokines: a glucocorticoid-resistance model. Health Psychol. 2002;21:531–541.
  • Miller GE, Chen E, Sze J, et al. A functional genomic fingerprint of chronic stress in humans: blunted glucocorticoid and increased NF-kappa B signaling. Biol Psychiatry. 2008;64:266–272.
  • Avissar S, Nechamkin Y, Roitman G, Schreiber G. Reduced G protein functions and immunoreactive levels in mononuclear leukocytes of patients with depression. Am J Psychiatry. 1997;154:211–217.
  • O’Malley BW, Schrader WT, Mani S, et al. An alternative ligand independent pathway for activation of steroid receptors. Recent Prog Horm Res. 1995;50:333–347.
  • Rangarajan PN, Umesono K, Evans RM. Modulation of glucocorticoid receptor function by protein kinase A. Mol Endocrinol. 1992;6:1451–1457.
  • Miller AH, Pariente CM, Pearce BD. Effects of cytokines on glucocorticoid receptor expression and function: glucocorticoid resistance and relevance to depression. Adv Exp Med Biol. 1999;461:107–116.
  • Pariante CM, Pearce BD, Pisell TL, et al. The proinflammatory cytokine, interleukin-1 alpha, reduces glucocorticoid receptor translocation and function. Endocrinology. 1999;140:4359–4366.
  • Lehmann ML, Brachman RA, Martinowich K, Schloesse RJ, Herkenham M. Glucocorticoids orchestrate divergent effects on mood through adult neurogenesis. J Neurosci. 2013;33:2961–2972.
  • Feder A, Nestler EJ, Charney DS. Psychobiology and molecular genetics of resilience. Nat Rev Neurosci. 2009;10:446–457.
  • Castren E, Rantamaki T. The role of BDNF and its receptors in depression and antidepressant drug action: reactivation of developmental plasticity. Dev Neurobiol. 2010;70:289–297.
  • Castren E. Is mood chemistry? Nat Rev Neurosci. 2005;6:241–246.
  • Karege F, Bondolfi G, Gervasoni N, Schwald M, Aubry JM, Bertschy G. Low brain-derived neurotrophic factor (BDNF) levels in serum of depressed patients probably results from lowered platelet BDNF release unrelated to platelet reactivity. Biol Psychiatry. 2005;57:1068–1072.
  • Tuomisto J, Tukiainen E. Decreased uptake of 5-hydroxytryptamine in blood platelets from depressed patients. Nature. 1976;262:596–598.
  • Siuciak JA, Boylan C, Fritsche M, Altar CA, Lindsay RM. BDNF increases monoaminergic activity in rat brain following intracerebroventricular or intraparenchymal administration. Brain Res. 1996;710:11–20.
  • Koponen E, Rantamaki T, Voikar V, Saarelainen T, MacDonald E, Castren E. Enhanced BDNF signaling is associated with an antidepressant-like behavioral response and changes in brain monoamines. Cell Mol Neurobiol. 2005;25:973–980.
  • Saarelainen T, Hendolin P, Lucas G, et al. Activation of the TrkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavioral effects. J Neurosci. 2003;23:349–357.
  • Monteggia LM, Barrot M, Powell CM, et al. Essential role of brain-derived neurotrophic factor in adult hippocampal function. Proc Natl Acad Sci U S A. 2004;101:10827–10832.
  • Schatzberg AF. Pharmacological principles of antidepressant efficacy. Hum Psychopharmacol. 2002;17:S17–S22.
  • Delgado PL, Moreno FA. Role of norepinephrine in depression. J Clin Psychiatry. 2000;61 Suppl 1:5–12.
  • Appelhof BC, Huyser J, Verweii M, et al. Glucocorticoids and relapse of major depression (dexamethasone/corticotropin-releasing hormone test in relation to relapse of major depression). Biol Psychiatry. 2006;59:696–701.
  • Leitch MM, Ingram CD, Young AH, McQuade R, Gartside SE. Flattening the corticosterone rhythm attenuates 5HT1A autoreceptor function in the rat: relevance for depression. Neuropsychopharmacology. 2003;28:119–125.
  • Gartside SE, Leitch MM, Young AH. Altered glucocorticoid rhythm attenuates the ability of a chronic SSRI to elevate forebrain 5-HT: implications for the treatment of depression. Neuropsychopharmacology. 2003;28:1572–1578.
  • Johnson DA, Grant EJ, Ingram CD, Gartside SE. Glucocorticoid receptor antagonists hasten and augment neurochemical responses to a selective serotonin reuptake inhibitor antidepressant. Biol Psychiatry. 2007;62:1228–1235.
  • Johnson DA, Ingram CD, Grant EJ, Craighead M, Gartside SE. Glucocorticoid receptor antagonism augments fluoxetine-induced downregulation of the 5-HT transporter. Neuropsychopharmacology. 2009;34:399–409.
  • Heydendael W, Jacobson L. Differential effects of imipramine and phenelzine on corticosteroid receptor gene expression in mouse brain: potential relevance to antidepressant response. Brain Res. 2008;1238:93–107.
  • Heydendael W, Jacobson L. Glucocorticoid status affects antidepressant regulation of locus coeruleus tyrosine hydroxylase and dorsal raphe tryptophan hydroxylase gene expression. Brain Res. 2009;1288:69–78.
  • Buckley TM, Schatzberg AF. On the interactions of the hypothalamic-pituitary-adrenal (HPA) axis and sleep: normal HPA axis activity and circadian rhythm, exemplary sleep disorders. J Clin Endocrinol Metab. 2005;90:3106–3114.
  • Carotenuto M, Esposito M, Parisi L, et al. Depressive symptoms and childhood sleep apnea syndrome. Neuropsychiatr Dis Treat. 2012;8:369–373.
  • Novati A, Roman V, Cetin T, et al. Chronically restricted sleep leads to depression-like changes in neurotransmitter receptor sensitivity and neuroendocrine stress reactivity in rats. Sleep. 2008;31:1579–1585.
  • Starkman MN, Schteingart DE, Schork MA. Depressed mood and other psychiatric manifestations of Cushing’s syndrome: relationship to hormone levels. Psychosom Med. 1981;43:3–18.
  • Nehra R, Grover S, Bhansali ADM, Khehra N. Effect of corrective surgery on neurocognitive functions in endogenous cushing syndrome. Endocrinologist. 2009;19:205–207.
  • Lupien SJ, Maheu F, Tu M, Fiocco A, Schramek TE. The effects of stress and stress hormones on human cognition: implications for the field of brain and cognition. Brain and Cogn. 2007;65:209–237.
  • Austin MP, Ross M, Murray C, O’Carroll RE, Ebneier KP, Goodwin GM. Cognitive function in major depression. J Affect Disord. 1992;25:21–29.
  • Robinson LJ, Thompson JM, Gallagher P, et al. A meta-analysis of cognitive deficits in euthymic patients with bipolar disorder. J Affect Disord. 2006;93:105–115.
  • Martinez-Aran A, Vieta E, Reinares M, et al. Cognitive function across manic or hypomanic, depressed, and euthymic states in bipolar disorder. Am J Psychiatry. 2004;16:262–270.
  • Ferrier IN, Chowdhury R, Thompson JM, Watson S, Young AH. Neurocognitive function in unaffected first-degree relatives of patients with bipolar disorder: a preliminary report. Bipolar Disord. 2004;6:319–322.
  • Hinkelmann K, Moritz S, Muhtz C, et al. Cognitive deficits and salivary cortisol in major depression: effects of treatment. Eur Neuropsychopharmacol. 2010;20:S356–S357.
  • Watson S, Gallagher P, Ferrier IN, Young AH. Post-dexamethasone arginine vasopressin levels in patients with severe mood disorders. J Psychiatr Res. 2006;40:353–359.
  • van der Werf-Eldering MJ, Riemersma-van der Lek RF, Burger H, Holfhausen EA, Aleman A, Nolen WA. Can variation in hypothalamic-pituitary-adrenal (HPA)-axis activity explain the relationship between depression and cognition in bipolar patients? PLoS One. 2012;7:e37119.
  • Gomez RG, Posener JA, Keller J, DeBattista C, Solvason B, Schatzberg AF. Effects of major depression diagnosis and cortisol levels on indices of neurocognitive function. Psychoneuroendocrinology. 2009;34:1012–1018.
  • Murphy BE. Antiglucocorticoid therapies in major depression: a review. Psychoneuroendocrinology. 1997;22 Suppl 1:S125–S132.
  • Murphy BE, Ghadirian AM, Dhar V. Neuroendocrine responses to inhibitors of steroid biosynthesis in patients with major depression resistant to antidepressant therapy. Can J Psychiatry. 1998;43:279–286.
  • Ghadirian AM, Engelsmann F, Dhar V, et al. The psychotropic effects of inhibitors of steroid biosynthesis in depressed patients refractory to treatment. Biol Psychiatry. 1995;37:369–375.
  • Murphy BE, Dhar V, Ghadirian AM, Chaouinard G, Keller R. Response to steroid suppression in major depression resistant to antidepressant therapy. J Clin Psychopharmacol. 1991;11:121–126.
  • Loose DS, Kan PB, Hirst MA, Marcus RA, Feldman D. Ketoconazole blocks adrenal steroidogenesis by inhibiting cytochrome P450-dependent enzymes. J Clin Invest. 1983;71:1495–1499.
  • Anand A, Malison R, McDougle CJ, Price LH. Antiglucocorticoid treatment of refractory depression with ketoconazole: a case report. Biol Psychiatry. 1995;37:338–340.
  • Sonino N, Fava GA. Tolerance to antidepressant treatment may be overcome by ketoconazole. Report of two cases. J Psychiatr Res. 2003;37:171–173.
  • Thakore JH, Dinan TG. Cortisol synthesis inhibition – a new treatment strategy for the clinical and endocrine manifestations of depression. Biol Psychiatry. 1995;37:364–368.
  • Wolkowitz OM, Reus VI, Manfredi F, Ingbar J, Brizendine L, Weingartner H. Ketoconazole administration in hypercortisolemic depression. Am J Psychiatry. 1993;150:810–812.
  • Malison RT, Anand A, Pelton GH, et al. Limited efficacy of ketoconazole in treatment-refractory major depression. J Clin Psychopharmacol. 1999;19:466–470.
  • Wolkowitz OM, Reus VI, Chan T, et al. Antiglucocorticoid treatment of depression: double-blind ketoconazole. Biol Psychiatry. 1999;45:1070–1074.
  • Odwyer AM, Lightman SL, Marks MN, Checkley SA. Treatment of major-depression with metyrapone and hydrocortisone. J Affect Disord. 1995;33:123–128.
  • Rogoz Z, Skuza G, Wójcikowski J, et al. Effect of metyrapone supplementation on imipramine therapy in patients with treatment-resistant unipolar depression. Pol J Pharmacol. 2004;56:849–855.
  • Jahn H, Schick M, Kiefer F, Kellner M, Yassouridis A, Wiedemann K. Metyrapone as additive treatment in major depression – a double-blind and placebo-controlled trial. Arch Gen Psychiatry. 2004;61:1235–1244.
  • McAllister-Williams RH, Smith E, Anderson I, et al. Study protocol for the randomised controlled trial: Antiglucocorticoid augmentation of anti-Depressants in Depression (The ADD Study). BMC Psychiatry. 2013;13:205.
  • Belanoff JK, Rothschild AJ, Cassidy F, et al. An open label trial of C-1073 (mifepristone) for psychotic major depression. Biol Psychiatry. 2002;52:386–392.
  • Belanoff JK, Flores BH, Kalezhan M, et al. Rapid reversal of psychotic depression using mifepristone. J Clin Psychopharmacol. 2001;21:516–521.
  • DeBattista C, Belanoff J, Glass S, et al. Mifepristone versus placebo in the treatment of psychosis in patients with psychotic major depression. Biol Psychiatry. 2006;60:1343–1349.
  • Blasey CM, Debattista C, Roe R, Block T, Belanoff JK. A multisite trial of mifepristone for the treatment of psychotic depression: a site-by-treatment interaction. Contemp Clin Trials. 2009;30:284–288.
  • Blasey CM, Block TS, Belanoff JK, Roe RL. Efficacy and safety of mifepristone for the treatment of psychotic depression. J Clin Psychopharmacol. 2011;31:436–440.
  • ClinicalTrials.gov. A study of mifepristone vs placebo in the treatment of patients with major depression with psychotic features. Trial identifier NCT00637494. Available from: http://clinicaltrials.gov/ct2/show/NCT00637494. Accessed August 7, 2014.
  • Young AH, Gallagher P, Watson S, Del-Estal D, Owen BM, Ferrier IN. Improvements in neurocognitive function and mood following adjunctive treatment with mifepristone (RU-486) in bipolar disorder. Neuropsychopharmacology. 2004;29:1538–1545.
  • Watson S, Gallagher P, Porter RJ, et al. A randomized trial to examine the effect of mifepristone on neuropsychological performance and mood in patients with bipolar depression. Biol Psychiatry. 2012;72:943–949.
  • ClinicalTrials.gov. A randomized clinical trial of mifepristone in PTSD. Trial identifier NCT01946685. Available from: http://clinicaltrials.gov/ct2/show/NCT01946685. Accessed August 7, 2014.
  • ClinicalTrials.gov. Medication development in alcoholism: investigating glucocorticoid antagonists. Trial identifier NCT01548417. Available from: http://clinicaltrials.gov/show/NCT01946685. Accessed August 7, 2014.
  • King’s College London. Double-blind, 36 month, placebo-controlled trial of mifepristone on cognition in alcoholics. London: King’s College London; 2014. Available from: http://www.kcl.ac.uk/ioppn/depts/addictions/research/alcohol/MIFCOG.aspx. Accessed October 15, 2014.
  • ClinicalTrials.gov. A controlled trial of mifepristone in Gulf war veterans with chronic multisymptom illness. Trial identifier NCT00691067. Available from: http://clinicaltrials.gov/ct2/show/NCT00691067. Accessed August 7, 2014.
  • ClinicalTrials.gov. Preliminary trial of the effect of glucocorticoid receptor antagonist on borderline personality disorder (BPD). Trial identifier NCT01212588. Available from: http://clinicaltrials.gov/ct2/show/NCT01212588. Accessed August 7, 2014.
  • Wolkowitz OM, Reus VI, Roberts E, et al. Dehydroepiandrosterone (DHEA) treatment of depression. Biol Psychiatry. 1997;41:311–318.
  • Wolkowitz OM, Reus VI, Keebler A, et al. Double-blind treatment of major depression with dehydroepiandrosterone. Am J Psychiatry. 1999;156:646–649.
  • Bloch M, Schmidt PJ, Danaceau MA, Adams LF, Rubinow DR. Dehydroepiandrosterone treatment of midlife dysthymia. Biol Psychiatry. 1999;45:1533–1541.
  • Rabkin JG, McElhiney MC, Rabkin R, McGrath PJ, Ferrando SJ. Placebo-controlled trial of dehydroepiandrosterone (DHEA) for treatment of nonmajor depression in patients with HIV/AIDS. Am J Psychiatry. 2006;163:59–66.
  • Arana GW, Forbes RA. Dexamethasone for the treatment of depression: a preliminary report. J Clin Psychiatry. 1991;52:304–306.
  • Bodani M, Sheehan B, Philpot M. The use of dexamethasone in elderly patients with antidepressant-resistant depressive illness. J Psychopharmacol. 1999;13:196–197.
  • Arana GW, Santos AB, Laraia MT, et al. Dexamethasone for the treatment of depression: a randomized, placebo-controlled, double-blind trial. Am J Psychiatry. 1995;152:265–267.
  • Dinan TG, Lavelle E, Cooney J, et al. Dexamethasone augmentation in treatment-resistant depression. Acta Psychiatr Scand. 1997;95:58–61.
  • Gutman DA, Owens MJ, Skelton KH, Thrivikraman KV, Nemeroff CB. The corticotropin-releasing factor 1 receptor antagonist R121919 attenuates the behavioral and endocrine responses to stress. J Pharmacol Exp Ther. 2003;304:874–880.
  • Zobel AW, Nickel T, Kunzel HE, et al. Effects of the high-affinity corticotropin-releasing hormone receptor 1 antagonist R121919 in major depression: the first 20 patients treated. J Psychiatr Res. 2000;34:171–181.
  • Kunzel HE, Ising M, Zobel AW, et al. Treatment with a CRH-1-receptor antagonist (R121919) does not affect weight or plasma leptin concentration in patients with major depression. J Psychiatr Res. 2005;39:173–177.
  • Kunzel HE, Zobel AW, Nickel T, et al. Treatment of depression with the CRH-1-receptor antagonist R121919: endocrine changes and side effects. J Psychiatr Res. 2003;37:525–533.
  • EvaluateTM [homepage on the Internet]. Available from: http://www.evaluategroup.com/default.aspx. Accessed September 10, 2014.
  • [No authors listed]. Should Neurocrine get stressed over CRF1 failure? Available from: http://www.epvantage.com/Universal/View.aspx?type=Story&id=224081&isEPVantage=yes. Accessed August 7, 2014.
  • Binneman B, Feltner D, Kolluri S, Shi Y, Qiu R, Stiger T. A 6-week randomized, placebo-controlled trial of CP-316,311 (a selective CRH1 antagonist) in the treatment of major depression. Am J Psychiatry. 2008;165:617–620.
  • Coric V, Feldman HH, Oren DA, et al. Multicenter, randomized, double-blind, active comparator and placebo-controlled trial of a corticotropin-releasing factor receptor-1 antagonist in generalized anxiety disorder. Depress Anxiety. 2010;27:417–425.
  • [No authors listed]. NBI-77860. Neurocrine Biosciences. Available from: http://www.neurocrine.com/index.cfm?navId=24. Accessed August 7, 2014.
  • ClinicalTrials.gov. A trial evaluating the efficacy and tolerability of SSR125543 in outpatients with major depressive disorder (AGATE). Trial identifier NCT01034995. Available from: http://clinicaltrials.gov/ct2/show/NCT01034995. Accessed August 7, 2014.
  • ClinicalTrials.gov. Corticotropin-releasing hormone receptor 1 (CRH1) antagonism in anxious alcoholics. Trial identifier NCT01227980. Available from: http://clinicaltrials.gov/ct2/show/NCT01227980. Accessed August 7, 2014.
  • ClinicalTrials.gov. Effects of a CRF1 receptor antagonist on human startle in normal female volunteers. Trial identifier NCT01059227. Available from: http://clinicaltrials.gov/ct2/show/NCT01059227. Accessed August 7, 2014.
  • ClinicalTrials.gov. Evaluation of GSK561679 in women with post-traumatic stress disorder. Trial identifier NCT01018992. Available from: http://clinicaltrials.gov/ct2/show/NCT01018992. Accessed August 7, 2014.
  • ClinicalTrials.gov. A study to compare the putative anxiolytic effect of 2 new drugs in subjects with social anxiety disorder. Trial identifier NCT00555139. Available from: http://clinicaltrials.gov/show/NCT00555139. Accessed August 7, 2014.
  • Kishimoto T, Radulovic J, Radulovic M, et al. Deletion of CRHR2 reveals an anxiolytic role for corticotropin-releasing hormone receptor-2. Nat Genet. 2000;24:415–419.
  • Hollenstein K, Kean J, Bortolato A, et al. Structure of class B GPCR corticotropin-releasing factor receptor 1. Nature. 2013;499:438–443.
  • Aguilera G, Rabadan-Diehl C. Vasopressinergic regulation of the hypothalamic-pituitary-adrenal axis: implications for stress adaptation. Regul Pept. 2000;96:23–29.
  • Raggenbass M. Vasopressin- and oxytocin-induced activity in the central nervous system: electrophysiological studies using in-vitro systems. Prog Neurobiol. 2001;64:307–326.
  • Hernando F, Schoots O, Lolait SJ, Burbach JP. Immunohistochemical localization of the vasopressin V1b receptor in the rat brain and pituitary gland: anatomical support for its involvement in the central effects of vasopressin. Endocrinology. 2001;142:1659–1668.
  • Simon NG, Guillon C, Fabio K, et al. Vasopressin antagonists as anxiolytics and antidepressants: recent developments. Recent Pat CNS Drug Discov. 2008;3:77–93.
  • Griebel G, Beeske S, Stahl SM. The vasopressin V(1b) receptor antagonist SSR149415 in the treatment of major depressive and generalized anxiety disorders: results from 4 randomized, double-blind, placebo-controlled studies. J Clin Psychiatry. 2012;73:1403–1411.
  • Sanofi Aventis. Press release. Available from: http://en.sanofi.com/Images/14212_08-07-31_T2_Results_EN.pdf. Accessed August 7, 2014.
  • ClinicalTrials.gov. Study of EVP-6124 (alpha-7 nAChR) as an adjunctive pro-cognitive treatment in schizophrenia subjects on chronic stable atypical antipsychotic therapy. Trial identifier NCT01716975. Available from: http://clinicaltrials.gov/ct2/show/NCT01716975. Accessed August 7, 2014.
  • Sullivan RM, Dufresne MM. Mesocortical dopamine and HPA axis regulation: role of laterality and early environment. Brain Res. 2006;1076:49–59.
  • Felt BT, Peirano P, Algarín C, et al. Long-term neuroendocrine effects of iron-deficiency anemia in infancy. Pediatr Res. 2012;71:707–712.