130
Views
3
CrossRef citations to date
0
Altmetric
Original Research

Developmental Pharmacogenetics of SLCO2B1 on Montelukast Pharmacokinetics in Chinese Children

, , , , , , , , , , , , , & ORCID Icon show all
Pages 4405-4411 | Published online: 27 Dec 2019

References

  • Reiss TF, Chervinsky P, Dockhorn RJ, et al. Montelukast, a once-daily leukotriene receptor antagonist, in the treatment of chronic asthma: a multicenter, randomized, double-blind trial. Montelukast Clinical Research Study Group. Arch Intern Med. 1998;158:1213–1220. doi:10.1001/archinte.158.11.12139625400
  • Knorr B, Larson P, Nguyen HH, et al. Montelukast dose selection in 6- to 14-year-olds: comparison of single-dose pharmacokinetics in children and adults. J Clin Pharmacol. 1999;39:786–793. doi:10.1177/0091270992200843410434229
  • Knorr B, Nguyen HH, Kearns GL, et al. Montelukast dose selection in children ages 2 to 5 years: comparison of population pharmacokinetics between children and adults. J Clin Pharmacol. 2001;41:612–619. doi:10.1177/0091270012201049211402629
  • Migoya E, Kearns GL, Hartford A, et al. Pharmacokinetics of montelukast in asthmatic patients 6 to 24 months old. J Clin Pharmacol. 2004;44:487–494. doi:10.1177/009127000426497015102869
  • Knorr B, Maganti L, Ramakrishnan R, et al. Pharmacokinetics and safety of montelukast in children aged 3 to 6 months. J Clin Pharmacol. 2006;46:620–627. doi:10.1177/009127000628832416707408
  • Muijsers RB, Noble S. Montelukast: a review of its therapeutic potential in asthma in children 2 to 14 years of age. Paediatr Drugs. 2002;4:123–139. doi:10.2165/00128072-200204020-0000511888359
  • Knorr B, Holland J, Schwartz J. Clinical pharmacology of montelukast. Clin Exp Allergy Rev. 2001;1:254–260. doi:10.1046/j.1472-9725.2001.t01-1-00011.x
  • Filppula AM, Laitila J, Neuvonen PJ, et al. Reevaluation of the microsomal metabolism of montelukast: major contribution by CYP2C8 at clinically relevant concentrations. Drug Metab Dispos. 2011;39:904–911. doi:10.1124/dmd.110.03768921289076
  • Karonen T, Neuvonen PJ, Backman JT. CYP2C8 but not CYP3A4 is important in the pharmacokinetics of montelukast. Br J Clin Pharmacol. 2012;73:257–267. doi:10.1111/j.1365-2125.2011.04086.x21838784
  • Cardoso Jde O, Oliveira RV, Lu JB, et al. In vitro metabolism of montelukast by cytochrome P450s and UDP-glucuronosyltransferases. Drug Metab Dispos. 2015;43:1905–1916. doi:10.1124/dmd.115.06576326374173
  • Chiba M, Xu X, Nishime JA, et al. Hepatic microsomal metabolism of montelukast, a potent leukotriene D4 receptor antagonist, in humans. Drug Metab Dispos. 1997;25:1022–1031.9311616
  • Hirvensalo P, Tornio A, Neuvonen M, et al. Comprehensive pharmacogenomic study reveals an important role of UGT1A3 in montelukast pharmacokinetics. Clin Pharmacol Ther. 2018;104:158–168. doi:10.1002/cpt.v104.128940478
  • Mougey EB, Feng H, Castro M, et al. Absorption of montelukast is transporter mediated: a common variant of OATP2B1 is associated with reduced plasma concentrations and poor response. Pharmacogenet Genomics. 2009;19:129–138. doi:10.1097/FPC.0b013e32831bd98c19151602
  • Varma MV, Kimoto E, Scialis R, et al. Transporter-mediated hepatic uptake plays an important role in the pharmacokinetics and drug-drug interactions of montelukast. Clin Pharmacol Ther. 2017;101:406–415. doi:10.1002/cpt.v101.327648490
  • Lima JJ. Treatment heterogeneity in asthma: genetics of response to leukotriene modifiers. Mol Diagn Ther. 2007;11:97–104. doi:10.1007/BF0325622817397245
  • Weiss ST, Litonjua AA, Lange C, et al. Overview of the pharmacogenetics of asthma treatment. Pharmacogenomics J. 2006;6:311–326. doi:10.1038/sj.tpj.650038716568148
  • Mougey EB, Lang JE, Wen X, et al. Effect of citrus juice and SLCO2B1 genotype on the pharmacokinetics of montelukast. J Clin Pharmacol. 2011;51:751–760. doi:10.1177/009127001037447220974993
  • Telleria JJ, Blanco-Quiros A, Varillas D, et al. ALOX5 promoter genotype and response to montelukast in moderate persistent asthma. Respir Med. 2008;102:857–861. doi:10.1016/j.rmed.2008.01.01118339529
  • Tantisira KG, Lima J, Sylvia J, et al. 5-lipoxygenase pharmacogenetics in asthma: overlap with Cys-leukotriene receptor antagonist loci. Pharmacogenet Genomics. 2009;19:244–247. doi:10.1097/FPC.0b013e328326e0b119214143
  • Kearns GL, Abdel-Rahman SM, Alander SW, et al. Developmental pharmacology–drug disposition, action, and therapy in infants and children. N Engl J Med. 2003;349:1157–1167. doi:10.1056/NEJMra03509213679531
  • Kearns GL, Lu S, Maganti L, et al. Pharmacokinetics and safety of montelukast oral granules in children 1 to 3 months of age with bronchiolitis. J Clin Pharmacol. 2008;48:502–511. doi:10.1177/009127000831425118296556
  • Leroux S, Turner MA, Guellec CB, et al. Pharmacokinetic studies in neonates: the utility of an opportunistic sampling design. Clin Pharmacokinet. 2015;54:1273–1285. doi:10.1007/s40262-015-0291-126063050
  • Ramakrishnan R, Migoya E, Knorr B. A population pharmacokinetic model for montelukast disposition in adults and children. Pharm Res. 2005;22:532–540. doi:10.1007/s11095-005-2493-y15846460
  • Zhou W, Johnson TN, Bui KH, et al. Predictive Performance of Physiologically Based Pharmacokinetic (PBPK) modeling of drugs extensively metabolized by major cytochrome P450s in children. Clin Pharmacol Ther. 2018;104:188–200. doi:10.1002/cpt.v104.129027194
  • Aquilante CL, Niemi M, Gong L, et al. PharmGKB summary: very important pharmacogene information for cytochrome P450, family 2, subfamily C, polypeptide 8. Pharmacogenet Genomics. 2013;23:721–728. doi:10.1097/FPC.0b013e3283653b2723962911
  • Tapaninen T, Karonen T, Backman JT, et al. SLCO2B1 c.935G>A single nucleotide polymorphism has no effect on the pharmacokinetics of montelukast and aliskiren. Pharmacogenet Genomics. 2013;23:19–24. doi:10.1097/FPC.0b013e32835bac9023151832
  • Kim KA, Lee HM, Joo HJ, et al. Effects of polymorphisms of the SLCO2B1 transporter gene on the pharmacokinetics of montelukast in humans. J Clin Pharmacol. 2013;53:1186–1193. doi:10.1002/jcph.14423970434
  • Bahadur N, Leathart JB, Mutch E, et al. CYP2C8 polymorphisms in Caucasians and their relationship with paclitaxel 6alpha-hydroxylase activity in human liver microsomes. Biochem Pharmacol. 2002;64:1579–1589. doi:10.1016/S0006-2952(02)01354-012429347
  • Tornio A, Niemi M, Neuvonen PJ, et al. Trimethoprim and the CYP2C8*3 allele have opposite effects on the pharmacokinetics of pioglitazone. Drug Metab Dispos. 2008;36:73–80. doi:10.1124/dmd.107.01801017913794
  • Rodriguez-Antona C, Niemi M, Backman JT, et al. Characterization of novel CYP2C8 haplotypes and their contribution to paclitaxel and repaglinide metabolism. Pharmacogenomics J. 2008;8:268–277. doi:10.1038/sj.tpj.650048217923851