256
Views
3
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Sichen Formula Ameliorates Lipopolysaccharide-Induced Acute Lung Injury via Blocking the TLR4 Signaling Pathways

, , ORCID Icon, , , , , ORCID Icon & show all
Pages 297-312 | Received 01 May 2022, Accepted 21 Dec 2022, Published online: 02 Feb 2023

References

  • Matthay MA, Zemans RL, Zimmerman GA, et al. Acute respiratory distress syndrome. Nat Rev Dis Primers. 2019;5(1):18. doi:10.1038/s41572-019-0069-0
  • Ashbaugh D, Bigelow DB, Petty T, Levine B. Acute respiratory distress in adults. Lancet. 1967;290(7511):319–323. doi:10.1016/S0140-6736(67)90168-7
  • Butt Y, Kurdowska A, Allen TC. Acute lung injury: a clinical and molecular review. Arch Pathol Lab Med. 2016;140(4):345–350. doi:10.5858/arpa.2015-0519-RA
  • Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315(8):788–800. doi:10.1001/jama.2016.0291
  • Sevransky JE, Levy MM, Marini JJ. Mechanical ventilation in sepsis-induced acute lung injury/acute respiratory distress syndrome: an evidence-based review. Crit Care Med. 2004;32(11 Suppl):S548–53. doi:10.1097/01.CCM.0000145947.19077.25
  • Villar J, Ferrando C, Martínez D, et al. Dexamethasone treatment for the acute respiratory distress syndrome: a multicentre, randomised controlled trial. Lancet Respir Med. 2020;8(3):267–276. doi:10.1016/S2213-2600(19)30417-5
  • Levy BD, Serhan CN. Resolution of acute inflammation in the lung. Annu Rev Physiol. 2014;76:467–492. doi:10.1146/annurev-physiol-021113-170408
  • Lee JW, Chun W, Lee HJ, et al. The role of macrophages in the development of acute and chronic inflammatory lung diseases. Cells. 2021;10(4):897. doi:10.3390/cells10040897
  • Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol. 2009;1(6):a001651. doi:10.1101/cshperspect.a001651
  • Carter AB, Monick MM, Hunninghake GW. Both Erk and p38 kinases are necessary for cytokine gene transcription. Am J Respir Cell Mol Biol. 1999;20(4):751–758. doi:10.1165/ajrcmb.20.4.3420
  • Kumar V. Pulmonary innate immune response determines the outcome of inflammation during pneumonia and sepsis-associated acute lung injury. Front Immunol. 2020;11:1722. doi:10.3389/fimmu.2020.01722
  • Ge-Sang CR, Yu RY. Acute toxicity study of Tibetan medicine Sichen formula. J Med Pharm Chins Minor. 2014;20(10):48. doi:10.16041/j.cnki.cn15-1175.2014.10.029 [in Chinese]
  • Qin LY, Cai MR, Yao Y, et al. HPLC fingerprints of Tibetan medicine Sichen Zhike granules. Central South Pharm. 2021;19(03):507–512. doi:10.7539/j.issn.1672-2981.2021.03.023 [in Chinese]
  • Wang JL, Zhou HY, Dun, Z, Pan, D. Pharmacodynamic research on antitussive effect of Tibet medicine Si Chen Zhi Ke Granule. Chin J Tradit Chin Med Pharm. 2007;22(12):895–898. [in Chinese]
  • Seeliger D, de Groot BL. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J Comput Aided Mol Des. 2010;24(5):417–422. doi:10.1007/s10822-010-9352-6
  • Mirzapoiazova T, Kolosova IA, Moreno L, Sammani S, Garcia JG, Verin AD. Suppression of endotoxin-induced inflammation by taxol. Eur Respir J. 2007;30(3):429–435. doi:10.1183/09031936.00154206
  • Tsai CL, Lin YC, Wang HM, Chou TC. Baicalein, an active component of Scutellaria baicalensis, protects against lipopolysaccharide-induced acute lung injury in rats. J Ethnopharmacol. 2014;153(1):197–206. doi:10.1016/j.jep.2014.02.010
  • Luo G, Cheng BC, Zhao H, et al. Schisandra Chinensis Lignans suppresses the production of inflammatory mediators regulated by NF-κB, AP-1, and IRF3 in Lipopolysaccharide-stimulated RAW264.7 cells. Molecules. 2018;23(12):3319. doi:10.3390/molecules23123319
  • Zhang Y, Chi-Yan Cheng B, Xie R, Xu B, Gao XY, Luo G. Re-Du-Ning inhalation solution exerts suppressive effect on the secretion of inflammatory mediators via inhibiting IKKα/β/IκBα/NF-κB, MAPKs/AP-1, and TBK1/IRF3 signaling pathways in lipopolysaccharide stimulated RAW 264.7 macrophages. RSC Adv. 2019;9(16):8912–8925. doi:10.1039/C9RA00060G
  • Malik K, Ahmad M, Zhang G, et al. Traditional plant based medicines used to treat musculoskeletal disorders in Northern Pakistan. Eur J Intergr Med. 2018;19:17–64. doi:10.1016/j.eujim.2018.02.003
  • Yue Y, Li Q, Fu Y, Chang J. Stability of chlorogenic acid from artemisiae scopariae herba enhanced by natural deep eutectic solvents as green and biodegradable extraction media. ACS Omega. 2021;6(50):34857–34865. doi:10.1021/acsomega.1c05541
  • Asl MN, Hosseinzadeh H. Review of pharmacological effects of Glycyrrhiza sp. and its bioactive compounds. Phytother Res. 2008;22(6):709–724. doi:10.1002/ptr.2362
  • Chen H, Jiang Z. The essential adaptors of innate immune signaling. Protein Cell. 2013;4(1):27–39. doi:10.1007/s13238-012-2063-0
  • Hu R, Xu H, Jiang H, Zhang Y, Sun Y. The role of TLR4 in the pathogenesis of indirect acute lung injury. Front Biosci. 2013;18(4):1244–1255. doi:10.2741/4176
  • Yan LS, Cheng BC, Zhang SF, et al. Tibetan medicine for diabetes mellitus: overview of pharmacological perspectives. Front Pharmacol. 2021;12:748500. doi:10.3389/fphar.2021.748500
  • Fu K, Xu M, Zhou Y, et al. The Status quo and way forwards on the development of Tibetan medicine and the pharmacological research of Tibetan materia Medica. Pharmacol Res. 2020;155:104688. doi:10.1016/j.phrs.2020.104688
  • Yang S, Yu Z, Wang L, et al. The natural product bergenin ameliorates lipopolysaccharide-induced acute lung injury by inhibiting NF-kappaB activation. J Ethnopharmacol. 2017;200:147–155. doi:10.1016/j.jep.2017.02.013
  • Zhang X, Huang H, Yang T, et al. Chlorogenic acid protects mice against lipopolysaccharide-induced acute lung injury. Injury. 2010;41(7):746–752. doi:10.1016/j.injury.2010.02.029
  • Shi JR, Mao LG, Jiang RA, Qian Y, Tang HF, Chen JQ. Monoammonium glycyrrhizinate inhibited the inflammation of LPS-induced acute lung injury in mice. Int Immunopharmacol. 2010;10(10):1235–1241. doi:10.1016/j.intimp.2010.07.004
  • Maus U, von Grote K, Kuziel WA, et al. The role of CC chemokine receptor 2 in alveolar monocyte and neutrophil immigration in intact mice. Am J Respir Crit Care Med. 2002;166(3):268–273. doi:10.1164/rccm.2112012
  • Holness CL, Simmons DL. Molecular cloning of CD68, a human macrophage marker related to lysosomal glycoproteins. Blood. 1993;81(6):1607–1613. doi:10.1182/blood.V81.6.1607.1607
  • Jeyaseelan S, Chu HW, Young SK, Freeman MW, Worthen GS. Distinct roles of pattern recognition receptors CD14 and Toll-like receptor 4 in acute lung injury. Infect Immun. 2005;73(3):1754–1763. doi:10.1128/IAI.73.3.1754-1763.2005
  • Murakami A, Ohigashi H. Targeting NOX, INOS and COX-2 in inflammatory cells: chemoprevention using food phytochemicals. Int J Cancer. 2007;121(11):2357–2363. doi:10.1002/ijc.23161
  • Oeckinghaus A, Hayden MS, Ghosh S. Crosstalk in NF-κB signaling pathways. Nat Immunol. 2011;12(8):695–708. doi:10.1038/ni.2065
  • Yang H, Young DW, Gusovsky F, Chow JC. Cellular events mediated by lipopolysaccharide-stimulated toll-like receptor 4. MD-2 is required for activation of mitogen-activated protein kinases and Elk-1. J Biol Chem. 2000;275(27):20861–20866. doi:10.1074/jbc.M002896200
  • Perry AK, Chow EK, Goodnough JB, Yeh WC, Cheng G. Differential requirement for TANK-binding kinase-1 in type I interferon responses to toll-like receptor activation and viral infection. J Exp Med. 2004;199(12):1651–1658. doi:10.1084/jem.20040528