1,249
Views
9
CrossRef citations to date
0
Altmetric
REVIEW

Review on the Diverse Biological Effects of Glabridin

, , , , , & show all
Pages 15-37 | Received 12 Aug 2022, Accepted 05 Jan 2023, Published online: 10 Jan 2023

References

  • Ding Y, Brand E, Wang W, Zhao Z. Licorice: resources, applications in ancient and modern times. J Ethnopharmacol. 2022;298:115594. doi:10.1016/j.jep.2022.115594
  • Deng TM, Peng C, Peng DY, Yu NJ, Chen WD, Wang L. 甘草化学成分和药理作用研究进展及质量标志物的探讨 [Research progress on chemical constituents and pharmacological effects of Glycyrrhizae Radix et Rhizoma and discussion of Q-markers]. Zhongguo Zhong yao za zhi. 2021;46(11):2660–2676. Chinese. doi:10.19540/j.cnki.cjcmm.20210304.201
  • Qin J, Chen J, Peng F, et al. Pharmacological activities and pharmacokinetics of liquiritin: a review. J Ethnopharmacol. 2022;293:115257. doi:10.1016/j.jep.2022.115257
  • Mohammed EAH, Peng Y, Wang Z, Qiang X, Zhao Q. Synthesis, antiviral, and antibacterial activity of the glycyrrhizic acid and glycyrrhetinic acid derivatives. Russ J Bioorg Chem. 2022;48(5):906–918. doi:10.1134/s1068162022050132
  • Ramalingam M, Kim H, Lee Y, Lee YI. Phytochemical and pharmacological role of liquiritigenin and isoliquiritigenin from radix glycyrrhizae in human health and disease models. Front Aging Neurosci. 2018;10:348. doi:10.3389/fnagi.2018.00348
  • Simmler C, Pauli GF, Chen SN. Phytochemistry and biological properties of glabridin. Fitoterapia. 2013;90:160–184. doi:10.1016/j.fitote.2013.07.003
  • Hayashi H, Hattori S, Inoue K, et al. Field survey of Glycyrrhiza plants in Central Asia (3). Chemical characterization of G. glabra collected in Uzbekistan. Chem Pharm Bull. 2003;51(11):1338–1340. doi:10.1248/cpb.51.1338
  • Ao M, Shi Y, Cui Y, Guo W, Wang J, Yu L. Factors influencing glabridin stability. Nat Prod Commun. 2010;5(12):1907–1912.
  • Guo B, Fang Z, Yang L, et al. Tissue and species differences in the glucuronidation of glabridin with UDP-glucuronosyltransferases. Chem Biol Interact. 2015;231:90–97. doi:10.1016/j.cbi.2015.03.001
  • Niemeyer ED, Brodbelt JS. Regiospecificity of human UDP-glucuronosyltransferase isoforms in chalcone and flavanone glucuronidation determined by metal complexation and tandem mass spectrometry. J Nat Prod. 2013;76(6):1121–1132. doi:10.1021/np400195z
  • Choi LS, Jo IG, Kang KS, et al. Discovery and preclinical efficacy of HSG4112, a synthetic structural analog of glabridin, for the treatment of obesity. Int J Obes. 2021;45(1):130–142. doi:10.1038/s41366-020-00686-1
  • Jirawattanapong W, Saifah E, Patarapanich C. Synthesis of glabridin derivatives as tyrosinase inhibitors. Arch Pharm Res. 2009;32(5):647–654. doi:10.1007/s12272-009-1501-x
  • Parlar A, Arslan SO, Çam SA. Glabridin alleviates inflammation and nociception in rodents by activating BK(Ca) channels and reducing NO levels. Biol Pharm Bull. 2020;43(5):884–897. doi:10.1248/bpb.b20-00038
  • Ye Q, Zhang Q, Yao H, et al. Active-ingredient screening and synergistic action mechanism of shegan mixture for anti-asthma effects based on network pharmacology in a mouse model of asthma. Drug Des Devel Ther. 2021;15:1765–1777. doi:10.2147/dddt.S288829
  • Belinky PA, Aviram M, Mahmood S, Vaya J. Structural aspects of the inhibitory effect of glabridin on LDL oxidation. Free Radic Biol Med. 1998;24(9):1419–1429. doi:10.1016/s0891-5849(98)00006-9
  • Belinky PA, Aviram M, Fuhrman B, Rosenblat M, Vaya J. The antioxidative effects of the isoflavan glabridin on endogenous constituents of LDL during its oxidation. Atherosclerosis. 1998;137(1):49–61. doi:10.1016/s0021-9150(97)00251-7
  • Goel B, Sharma A, Tripathi N, et al. In-vitro antitumor activity of compounds from Glycyrrhiza glabra against C6 glioma cancer cells: identification of natural lead for further evaluation. Nat Prod Res. 2021;35(23):5489–5492. doi:10.1080/14786419.2020.1786830
  • Modarresi M, Hajialyani M, Moasefi N, Ahmadi F, Hosseinzadeh L. Evaluation of the cytotoxic and apoptogenic effects of glabridin and its effect on cytotoxicity and apoptosis induced by doxorubicin toward cancerous cells. Adv Pharma Bull. 2019;9(3):481–489. doi:10.15171/apb.2019.057
  • Islam R, Parves MR, Paul AS, et al. A molecular modeling approach to identify effective antiviral phytochemicals against the main protease of SARS-CoV-2. J Biomol Struct Dyn. 2021;39(9):3213–3224. doi:10.1080/07391102.2020.1761883
  • Azizsoltani A, Piri K, Behzad S, et al. Ethyl acetate extract of licorice root (Glycyrrhiza glabra) enhances proliferation and osteogenic differentiation of human bone marrow mesenchymal stem cells. Iran J Pharmac Res. 2018;17(3):1057–1067.
  • Wang G, Sun G, Wang Y, et al. Glabridin attenuates endothelial dysfunction and permeability, possibly via the MLCK/p-MLC signaling pathway. Exp Ther Med. 2019;17(1):107–114. doi:10.3892/etm.2018.6903
  • Dogra A, Gupta D, Bag S, et al. Glabridin ameliorates methotrexate-induced liver injury via attenuation of oxidative stress, inflammation, and apoptosis. Life Sci. 2021;278:119583. doi:10.1016/j.lfs.2021.119583
  • Park SH, Kang JS, Yoon YD, et al. Glabridin inhibits lipopolysaccharide-induced activation of a microglial cell line, BV-2, by blocking NF-kappaB and AP-1. Phytother Res. 2010;24(Suppl 1):S29–34. doi:10.1002/ptr.2872
  • Ahn J, Lee H, Jang J, Kim S, Ha T. Anti-obesity effects of glabridin-rich supercritical carbon dioxide extract of licorice in high-fat-fed obese mice. Food Chem Toxicol. 2013;51:439–445. doi:10.1016/j.fct.2012.08.048
  • Wu F, Jin Z, Jin J. Hypoglycemic effects of glabridin, a polyphenolic flavonoid from licorice, in an animal model of diabetes mellitus. Mol Med Rep. 2013;7(4):1278–1282. doi:10.3892/mmr.2013.1330
  • Chandrasekaran CV, Deepak HB, Thiyagarajan P, et al. Dual inhibitory effect of Glycyrrhiza glabra (GutGard™) on COX and LOX products. Phytomedicine. 2011;18(4):278–284. doi:10.1016/j.phymed.2010.08.001
  • Thiyagarajan P, Chandrasekaran CV, Deepak HB, Agarwal A. Modulation of lipopolysaccharide-induced pro-inflammatory mediators by an extract of Glycyrrhiza glabra and its phytoconstituents. Inflammopharmacology. 2011;19(4):235–241. doi:10.1007/s10787-011-0080-x
  • Zhang LP, Zhao Y, Liu GJ, Yang DG, Dong YH, Zhou LH. Glabridin attenuates lipopolysaccharide-induced acute lung injury by inhibiting p38MAPK/ERK signaling pathway. Oncotarget. 2017;8(12):18935–18942. doi:10.18632/oncotarget.14277
  • Kang JS, Yoon YD, Cho IJ, et al. Glabridin, an isoflavan from licorice root, inhibits inducible nitric-oxide synthase expression and improves survival of mice in experimental model of septic shock. J Pharmacol Exp Ther. 2005;312(3):1187–1194. doi:10.1124/jpet.104.077107
  • Liu K, Pi F, Zhang H, et al. Metabolomics analysis to evaluate the anti-inflammatory effects of polyphenols: glabridin reversed metabolism change caused by LPS in RAW 264.7 cells. J Agric Food Chem. 2017;65(29):6070–6079. doi:10.1021/acs.jafc.7b01692
  • Yehuda I, Madar Z, Leikin-Frenkel A, Tamir S. Glabridin, an isoflavan from licorice root, downregulates iNOS expression and activity under high-glucose stress and inflammation. Mol Nutr Food Res. 2015;59(6):1041–1052. doi:10.1002/mnfr.201400876
  • Chang J, Wang L, Zhang M, Lai Z. Glabridin attenuates atopic dermatitis progression through downregulating the TLR4/MyD88/NF-κB signaling pathway. Genes Genomics. 2021;43(8):847–855. doi:10.1007/s13258-021-01081-4
  • Li P, Li Y, Jiang H, et al. Glabridin, an isoflavan from licorice root, ameliorates imiquimod-induced psoriasis-like inflammation of BALB/c mice. Int Immunopharmacol. 2018;59:243–251. doi:10.1016/j.intimp.2018.04.018
  • El-Ashmawy NE, Khedr NF, El-Bahrawy HA, El-Adawy SA. Downregulation of iNOS and elevation of cAMP mediate the anti-inflammatory effect of glabridin in rats with ulcerative colitis. Inflammopharmacology. 2018;26(2):551–559. doi:10.1007/s10787-017-0373-9
  • Kwon HS, Oh SM, Kim JK. Glabridin, a functional compound of liquorice, attenuates colonic inflammation in mice with dextran sulphate sodium-induced colitis. Clin Exp Immunol. 2008;151(1):165–173. doi:10.1111/j.1365-2249.2007.03539.x
  • Kim JY, Kang JS, Kim HM, et al. Inhibition of bone marrow-derived dendritic cell maturation by glabridin. Int Immunopharmacol. 2010;10(10):1185–1193. doi:10.1016/j.intimp.2010.06.025
  • Carmeli E, Fogelman Y. Antioxidant effect of polyphenolic glabridin on LDL oxidation. Toxicol Ind Health. 2009;25(4–5):321–324. doi:10.1177/0748233709103034
  • Kang MR, Park KH, Oh SJ, et al. Cardiovascular protective effect of glabridin: implications in LDL oxidation and inflammation. Int Immunopharmacol. 2015;29(2):914–918. doi:10.1016/j.intimp.2015.10.020
  • Rosenblat M, Belinky P, Vaya J, et al. Macrophage enrichment with the isoflavan glabridin inhibits NADPH oxidase-induced cell-mediated oxidation of low density lipoprotein. A possible role for protein kinase C. J Biol Chem. 1999;274(20):13790–13799. doi:10.1074/jbc.274.20.13790
  • Rosenblat M, Coleman R, Aviram M. Increased macrophage glutathione content reduces cell-mediated oxidation of LDL and atherosclerosis in apolipoprotein E-deficient mice. Atherosclerosis. 2002;163(1):17–28. doi:10.1016/s0021-9150(01)00744-4
  • Yehuda I, Madar Z, Szuchman-Sapir A, Tamir S. Glabridin, a phytoestrogen from licorice root, up-regulates manganese superoxide dismutase, catalase and paraoxonase 2 under glucose stress. Phytother Res. 2011;25(5):659–667. doi:10.1002/ptr.3318
  • Yehuda I, Madar Z, Leikin-Frenkel A, et al. Glabridin, an isoflavan from licorice root, upregulates paraoxonase 2 expression under hyperglycemia and protects it from oxidation. Mol Nutr Food Res. 2016;60(2):287–299. doi:10.1002/mnfr.201500441
  • Atrahimovich D, Vaya J, Tavori H, Khatib S. Glabridin protects paraoxonase 1 from linoleic acid hydroperoxide inhibition via specific interaction: a fluorescence-quenching study. J Agric Food Chem. 2012;60(14):3679–3685. doi:10.1021/jf2046009
  • Yu XQ, Xue CC, Zhou ZW, et al. In vitro and in vivo neuroprotective effect and mechanisms of glabridin, a major active isoflavan from Glycyrrhiza glabra (licorice). Life Sci. 2008;82(1–2):68–78. doi:10.1016/j.lfs.2007.10.019
  • Veratti E, Rossi T, Giudice S, et al. 18beta-glycyrrhetinic acid and glabridin prevent oxidative DNA fragmentation in UVB-irradiated human keratinocyte cultures. Anticancer Res. 2011;31(6):2209–2215.
  • Chen J, Yu X, Huang Y. Inhibitory mechanisms of glabridin on tyrosinase. Spectrochimica acta Part A. 2016;168:111–117. doi:10.1016/j.saa.2016.06.008
  • Jiang F, Li Y, Mu J, et al. Glabridin inhibits cancer stem cell-like properties of human breast cancer cells: an epigenetic regulation of miR-148a/SMAd2 signaling. Mol Carcinog. 2016;55(5):929–940. doi:10.1002/mc.22333
  • Jiang F, Mu J, Wang X, et al. The repressive effect of miR-148a on TGF beta-SMADs signal pathway is involved in the glabridin-induced inhibition of the cancer stem cells-like properties in hepatocellular carcinoma cells. PLoS One. 2014;9(5):e96698. doi:10.1371/journal.pone.0096698
  • Qian J, Xia M, Liu W, et al. Glabridin resensitizes p-glycoprotein-overexpressing multidrug-resistant cancer cells to conventional chemotherapeutic agents. Eur J Pharmacol. 2019;852:231–243. doi:10.1016/j.ejphar.2019.04.002
  • Mu J, Zhu D, Shen Z, et al. The repressive effect of miR-148a on Wnt/β-catenin signaling involved in Glabridin-induced anti-angiogenesis in human breast cancer cells. BMC Cancer. 2017;17(1):307. doi:10.1186/s12885-017-3298-1
  • Zhu K, Li K, Wang H, Kang L, Dang C, Zhang Y. Discovery of glabridin as potent inhibitor of epidermal growth factor receptor in SK-BR-3 cell. Pharmacology. 2019;104(3–4):113–125. doi:10.1159/000496798
  • Melissa PSW, Phelim YVC, Navaratnam V, Yoke Yin C. DNA microarray analysis of estrogen responsive genes in Ishikawa cells by glabridin. Biochem Insights. 2017;10:1178626417721676. doi:10.1177/1178626417721676
  • Su Wei Poh M, Voon Chen Yong P, Viseswaran N, Chia YY. Estrogenicity of glabridin in Ishikawa cells. PLoS One. 2015;10(3):e0121382. doi:10.1371/journal.pone.0121382
  • Jen SH, Wei MP, Yin AC. The combinatory effects of glabridin and tamoxifen on Ishikawa and MCF-7 cell lines. Nat Prod Commun. 2015;10(9):1573–1576.
  • Chen CT, Chen YT, Hsieh YH, et al. Glabridin induces apoptosis and cell cycle arrest in oral cancer cells through the JNK1/2 signaling pathway. Environ Toxicol. 2018;33(6):679–685. doi:10.1002/tox.22555
  • Zhang L, Chen H, Wang M, et al. Effects of glabridin combined with 5-fluorouracil on the proliferation and apoptosis of gastric cancer cells. Oncol Lett. 2018;15(5):7037–7045. doi:10.3892/ol.2018.8260
  • Tsai YM, Yang CJ, Hsu YL, et al. Glabridin inhibits migration, invasion, and angiogenesis of human non-small cell lung cancer A549 cells by inhibiting the FAK/rho signaling pathway. Integr Cancer Ther. 2011;10(4):341–349. doi:10.1177/1534735410384860
  • Hsu YL, Wu LY, Hou MF, et al. Glabridin, an isoflavan from licorice root, inhibits migration, invasion and angiogenesis of MDA-MB-231 human breast adenocarcinoma cells by inhibiting focal adhesion kinase/Rho signaling pathway. Mol Nutr Food Res. 2011;55(2):318–327. doi:10.1002/mnfr.201000148
  • Wang Z, Luo S, Wan Z, et al. Glabridin arrests cell cycle and inhibits proliferation of hepatocellular carcinoma by suppressing braf/MEK signaling pathway. Tumour Biol. 2016;37(5):5837–5846. doi:10.1007/s13277-015-4177-5
  • Hsieh MJ, Chen MK, Chen CJ, et al. Glabridin induces apoptosis and autophagy through JNK1/2 pathway in human hepatoma cells. Phytomedicine. 2016;23(4):359–366. doi:10.1016/j.phymed.2016.01.005
  • Hsieh MJ, Lin CW, Yang SF, Chen MK, Chiou HL. Glabridin inhibits migration and invasion by transcriptional inhibition of matrix metalloproteinase 9 through modulation of NF-κB and AP-1 activity in human liver cancer cells. Br J Pharmacol. 2014;171(12):3037–3050. doi:10.1111/bph.12626
  • Biswas P, Dey D, Rahman A, et al. Analysis of SYK gene as a prognostic biomarker and suggested potential bioactive phytochemicals as an alternative therapeutic option for colorectal cancer: an in-silico pharmaco-informatics investigation. J Personal Med. 2021;11(9):888. doi:10.3390/jpm11090888
  • Jie Z, Xie Z, Zhao X, et al. Glabridin inhibits osteosarcoma migration and invasion via blocking the p38- and JNK-mediated CREB-AP1 complexes formation. J Cell Physiol. 2019;234(4):4167–4178. doi:10.1002/jcp.27171
  • Huang HL, Hsieh MJ, Chien MH, Chen HY, Yang SF, Hsiao PC. Glabridin mediate caspases activation and induces apoptosis through JNK1/2 and p38 MAPK pathway in human promyelocytic leukemia cells. PLoS One. 2014;9(6):e98943. doi:10.1371/journal.pone.0098943
  • Jamali N, Soureshjani EH, Mobini GR, Samare-Najaf M, Clark CCT, Saffari-Chaleshtori J. Medicinal plant compounds as promising inhibitors of coronavirus (COVID-19) main protease: an in silico study. J Biomol Struct Dyn. 2021;1–12. doi:10.1080/07391102.2021.1906749
  • Srivastava V, Yadav A, Sarkar P. Molecular docking and ADMET study of bioactive compounds of Glycyrrhiza glabra against main protease of SARS-CoV2. Mater Today Proc. 2022;49:2999–3007. doi:10.1016/j.matpr.2020.10.055
  • Rahman MM, Biswas S, Islam KJ, et al. Antiviral phytochemicals as potent inhibitors against NS3 protease of dengue virus. Comput Biol Med. 2021;134:104492. doi:10.1016/j.compbiomed.2021.104492
  • Miyakawa K, Matsunaga S, Yamaoka Y, et al. Development of a cell-based assay to identify hepatitis B virus entry inhibitors targeting the sodium taurocholate cotransporting polypeptide. Oncotarget. 2018;9(34):23681–23694. doi:10.18632/oncotarget.25348
  • Singh V, Pal A, Darokar MP. A polyphenolic flavonoid glabridin: oxidative stress response in multidrug-resistant Staphylococcus aureus. Free Radic Biol Med. 2015;87:48–57. doi:10.1016/j.freeradbiomed.2015.06.016
  • Gangwar B, Kumar S, Darokar MP. Glabridin averts biofilms formation in methicillin-resistant Staphylococcus aureus by modulation of the surfaceome. Front Microbiol. 2020;11:1779. doi:10.3389/fmicb.2020.01779
  • Marcoux E, Lagha AB, Gauthier P, Grenier D. Antimicrobial activities of natural plant compounds against endodontic pathogens and biocompatibility with human gingival fibroblasts. Arch Oral Biol. 2020;116:104734. doi:10.1016/j.archoralbio.2020.104734
  • Grenier D, Marcoux E, Azelmat J, Ben Lagha A, Gauthier P. Biocompatible combinations of nisin and licorice polyphenols exert synergistic bactericidal effects against Enterococcus faecalis and inhibit NF-κB activation in monocytes. AMB Express. 2020;10(1):120. doi:10.1186/s13568-020-01056-w
  • Gupta VK, Fatima A, Faridi U, et al. Antimicrobial potential of Glycyrrhiza glabra roots. J Ethnopharmacol. 2008;116(2):377–380. doi:10.1016/j.jep.2007.11.037
  • Vaillancourt K, LeBel G, Pellerin G, Ben Lagha A, Grenier D. Effects of the licorice isoflavans licoricidin and glabridin on the growth, adherence properties, and acid production of streptococcus mutans, and assessment of their biocompatibility. Antibiotics. 2021;10(2):163. doi:10.3390/antibiotics10020163
  • Fatima A, Gupta VK, Luqman S, et al. Antifungal activity of Glycyrrhiza glabra extracts and its active constituent glabridin. Phytother Res. 2009;23(8):1190–1193. doi:10.1002/ptr.2726
  • Messier C, Grenier D. Effect of licorice compounds licochalcone A, glabridin and glycyrrhizic acid on growth and virulence properties of Candida albicans. Mycoses. 2011;54(6):e801–6. doi:10.1111/j.1439-0507.2011.02028.x
  • Nabili M, Moazeni M, Hedayati MT, et al. Glabridin induces overexpression of two major apoptotic genes, MCA1 and NUC1, in Candida albicans. J Glob Antimicrob Resist. 2017;11:52–56. doi:10.1016/j.jgar.2017.08.006
  • Moazeni M, Hedayati MT, Nabili M. Glabridin triggers over-expression of apoptosis inducing factor (AIF) gene in Candida albicans. Curr Med Mycol. 2018;4(3):19–22. doi:10.18502/cmm.4.3.172
  • Liu W, Li LP, Zhang JD, et al. Synergistic antifungal effect of glabridin and fluconazole. PLoS One. 2014;9(7):e103442. doi:10.1371/journal.pone.0103442
  • Moazeni M, Hedayati MT, Nabili M, Mousavi SJ, Abdollahi Gohar A, Gholami S. Glabridin triggers over-expression of MCA1 and NUC1 genes in Candida glabrata: is it an apoptosis inducer? J Mycol Med. 2017;27(3):369–375. doi:10.1016/j.mycmed.2017.05.002
  • Nabili M, Aslani N, Shokohi T, Hedayati MT, Hassanmoghadam F, Moazeni M. In vitro interaction between glabridin and voriconazole against Aspergillus fumigatus isolates. Rev Iberoam Micol. 2021;38(3):145–147. doi:10.1016/j.riam.2020.12.005
  • Gao H, Peng X, Zhan L, et al. The role of Glabridin in antifungal and anti-inflammation effects in Aspergillus fumigatus keratitis. Exp Eye Res. 2022;214:108883. doi:10.1016/j.exer.2021.108883
  • Li A, Zhao Z, Zhang S, Zhang Z, Shi Y. Fungicidal activity and mechanism of action of glabridin from Glycyrrhiza glabra L. Int J Mol Sci. 2021;22(20):10966. doi:10.3390/ijms222010966
  • Yang C, Xie L, Ma Y, et al. Study on the fungicidal mechanism of glabridin against Fusarium graminearum. Pestic Biochem Physiol. 2021;179:104963. doi:10.1016/j.pestbp.2021.104963
  • Cheema HS, Prakash O, Pal A, Khan F, Bawankule DU, Darokar MP. Glabridin induces oxidative stress mediated apoptosis like cell death of malaria parasite Plasmodium falciparum. Parasitol Int. 2014;63(2):349–358. doi:10.1016/j.parint.2013.12.005
  • Thabet A, Alzuheir I, Alnassan AA, Daugschies A, Bangoura B. In vitro activity of selected natural products against Eimeria tenella sporozoites using reproduction inhibition assay. Parasitol Res. 2022;121(1):335–344. doi:10.1007/s00436-021-07360-z
  • Kim HS, Suh KS, Sul D, Kim BJ, Lee SK, Jung WW. The inhibitory effect and the molecular mechanism of glabridin on RANKL-induced osteoclastogenesis in RAW264.7 cells. Int J Mol Med. 2012;29(2):169–177. doi:10.3892/ijmm.2011.822
  • Yoshioka Y, Kubota Y, Samukawa Y, Yamashita Y, Ashida H. Glabridin inhibits dexamethasone-induced muscle atrophy. Arch Biochem Biophys. 2019;664:157–166. doi:10.1016/j.abb.2019.02.006
  • Sawada K, Yamashita Y, Zhang T, Nakagawa K, Ashida H. Glabridin induces glucose uptake via the AMP-activated protein kinase pathway in muscle cells. Mol Cell Endocrinol. 2014;393(1–2):99–108. doi:10.1016/j.mce.2014.06.009
  • Choi EM, Suh KS, Kim YJ, Hong SM, Park SY, Chon S. Glabridin alleviates the toxic effects of methylglyoxal on osteoblastic MC3T3-E1 cells by increasing expression of the glyoxalase system and Nrf2/HO-1 signaling and protecting mitochondrial function. J Agric Food Chem. 2016;64(1):226–235. doi:10.1021/acs.jafc.5b05157
  • Kim HS, Suh KS, Ko A, et al. The flavonoid glabridin attenuates 2-deoxy-D-ribose-induced oxidative damage and cellular dysfunction in MC3T3-E1 osteoblastic cells. Int J Mol Med. 2013;31(1):243–251. doi:10.3892/ijmm.2012.1172
  • Choi EM. Glabridin protects osteoblastic MC3T3-E1 cells against antimycin A induced cytotoxicity. Chem Biol Interact. 2011;193(1):71–78. doi:10.1016/j.cbi.2011.05.007
  • Somjen D, Katzburg S, Vaya J, et al. Estrogenic activity of glabridin and glabrene from licorice roots on human osteoblasts and prepubertal rat skeletal tissues. J Steroid Biochem Mol Biol. 2004;91(4–5):241–246. doi:10.1016/j.jsbmb.2004.04.008
  • Simons R, Vincken JP, Mol LA, et al. Agonistic and antagonistic estrogens in licorice root (Glycyrrhiza glabra). Anal Bioanal Chem. 2011;401(1):305–313. doi:10.1007/s00216-011-5061-9
  • Heo JS, Lee SG, Kim HO. The flavonoid glabridin induces OCT4 to enhance osteogenetic potential in mesenchymal stem cells. Stem Cells Int. 2017;2017:6921703. doi:10.1155/2017/6921703
  • Choi EM. The licorice root derived isoflavan glabridin increases the function of osteoblastic MC3T3-E1 cells. Biochem Pharmacol. 2005;70(3):363–368. doi:10.1016/j.bcp.2005.04.019
  • Dai J, Zhang Y, Chen D, et al. Glabridin inhibits osteoarthritis development by protecting chondrocytes against oxidative stress, apoptosis and promoting mTOR mediated autophagy. Life Sci. 2021;268:118992. doi:10.1016/j.lfs.2020.118992
  • Chanda D, Prieto-Lloret J, Singh A, et al. Glabridin-induced vasorelaxation: evidence for a role of BK(Ca) channels and cyclic GMP. Life Sci. 2016;165:26–34. doi:10.1016/j.lfs.2016.09.018
  • Güven C, Parlar A. Glabridin relaxes vascular smooth muscles by activating BK(Ca) channels and inhibiting phosphodiesterase in human saphenous vein. Curr Med Sci. 2021;41(2):381–389. doi:10.1007/s11596-021-2358-6
  • Somjen D, Knoll E, Vaya J, Stern N, Tamir S. Estrogen-like activity of licorice root constituents: glabridin and glabrene, in vascular tissues in vitro and in vivo. J Steroid Biochem Mol Biol. 2004;91(3):147–155. doi:10.1016/j.jsbmb.2004.04.003
  • Huang K, Liu Y, Tang H, et al. Glabridin prevents doxorubicin-induced cardiotoxicity through gut microbiota modulation and colonic macrophage polarization in mice. Front Pharmacol. 2019;10:107. doi:10.3389/fphar.2019.00107
  • Yokoyama T, Kosaka Y, Mizuguchi M. Crystal structures of human transthyretin complexed with glabridin. J Med Chem. 2014;57(3):1090–1096. doi:10.1021/jm401832j
  • Komolkriengkrai M, Nopparat J, Vongvatcharanon U, Anupunpisit V, Khimmaktong W. Effect of glabridin on collagen deposition in liver and amelioration of hepatocyte destruction in diabetes rats. Exp Ther Med. 2019;18(2):1164–1174. doi:10.3892/etm.2019.7664
  • Rebhun JF, Glynn KM, Missler SR. Identification of glabridin as a bioactive compound in licorice (Glycyrrhiza glabra L.) extract that activates human peroxisome proliferator-activated receptor gamma (PPARγ). Fitoterapia. 2015;106:55–61. doi:10.1016/j.fitote.2015.08.004
  • Dogra A, Kour D, Bhardwaj M, et al. Glabridin plays dual action to augment the efficacy and attenuate the hepatotoxicity of methotrexate in arthritic rats. ACS Omega. 2022;7(38):34341–34351. doi:10.1021/acsomega.2c03948
  • Bhatt S, Kumar V, Dogra A, et al. Amalgamation of in-silico, in-vitro and in-vivo approach to establish glabridin as a potential CYP2E1 inhibitor. Xenobiotica. 2021;51(6):625–635. doi:10.1080/00498254.2021.1883769
  • Bhatt S, Sharma A, Dogra A, et al. Glabridin attenuates paracetamol-induced liver injury in mice via CYP2E1-mediated inhibition of oxidative stress. Drug Chem Toxicol. 2021;1–9. doi:10.1080/01480545.2021.1945004
  • Li G, Simmler C, Chen L, et al. Cytochrome P450 inhibition by three licorice species and fourteen licorice constituents. Eur J Pharma Sci. 2017;109:182–190. doi:10.1016/j.ejps.2017.07.034
  • Kent UM, Aviram M, Rosenblat M, Hollenberg PF. The licorice root derived isoflavan glabridin inhibits the activities of human cytochrome P450S 3A4, 2B6, and 2C9. Drug Metab Disposition. 2002;30(6):709–715. doi:10.1124/dmd.30.6.709
  • Cui YM, Ao MZ, Li W, Yu LJ. Effect of glabridin from Glycyrrhiza glabra on learning and memory in mice. Planta Med. 2008;74(4):377–380. doi:10.1055/s-2008-1034319
  • Hasanein P. Glabridin as a major active isoflavan from Glycyrrhiza glabra (licorice) reverses learning and memory deficits in diabetic rats. Acta Physiol Hung. 2011;98(2):221–230. doi:10.1556/APhysiol.98.2011.2.14
  • Jin Z, Kim S, Cho S, Kim IH, Han D, Jin YH. Potentiating effect of glabridin on GABAA receptor-mediated responses in dorsal raphe neurons. Planta Med. 2013;79(15):1408–1412. doi:10.1055/s-0033-1350698
  • Hoffmann KM, Beltrán L, Ziemba PM, Hatt H, Gisselmann G. Potentiating effect of glabridin from Glycyrrhiza glabra on GABA(A) receptors. Biochem Biophys Rep. 2016;6:197–202. doi:10.1016/j.bbrep.2016.04.007
  • Yu XY, Lin SG, Zhou ZW, et al. Role of P-glycoprotein in limiting the brain penetration of glabridin, an active isoflavan from the root of Glycyrrhiza glabra. Pharm Res. 2007;24(9):1668–1690. doi:10.1007/s11095-007-9297-1
  • Herbrechter R, Ziemba PM, Hoffmann KM, Hatt H, Werner M, Gisselmann G. Identification of Glycyrrhiza as the rikkunshito constituent with the highest antagonistic potential on heterologously expressed 5-HT3A receptors due to the action of flavonoids. Front Pharmacol. 2015;6:130. doi:10.3389/fphar.2015.00130
  • Seo MJ, Lee YJ, Hwang JH, Kim KJ, Lee BY. The inhibitory effects of quercetin on obesity and obesity-induced inflammation by regulation of MAPK signaling. J Nutr Biochem. 2015;26(11):1308–1316. doi:10.1016/j.jnutbio.2015.06.005
  • Mir SA, Shah MA, Ganai SA, Ahmad T, Gani M. Understanding the role of active components from plant sources in obesity management. J Saudi Soc Agric Sci. 2019;18(2):168–176. doi:10.1016/j.jssas.2017.04.003
  • Jafari F, Jafari M, Moghadam AT, et al. A review of Glycyrrhiza glabra (Licorice) effects on metabolic syndrome. Adv Exp Med Biol. 2021;1328:385–400. doi:10.1007/978-3-030-73234-9_25
  • Lee MH, Kim HM, Chung HC, Lee JH. Licorice extract suppresses adipogenesis through regulation of mitotic clonal expansion and adenosine monophosphate-activated protein kinase in 3T3-L1 cells. J Food Biochem. 2020;44(12):e13528. doi:10.1111/jfbc.13528
  • Zheng Y, Lee EH, Lee JH, et al. Preclinical research on a mixture of red ginseng and licorice extracts in the treatment and prevention of obesity. Nutrients. 2020;12(9):2744. doi:10.3390/nu12092744
  • Lee JW, Choe SS, Jang H, et al. AMPK activation with glabridin ameliorates adiposity and lipid dysregulation in obesity. J Lipid Res. 2012;53(7):1277–1286. doi:10.1194/jlr.M022897
  • Choi EM, Suh KS, Jung WW, et al. Glabridin attenuates antiadipogenic activity induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in murine 3T3-L1 adipocytes. J Appl Toxicol. 2018;38(11):1426–1436. doi:10.1002/jat.3664
  • Zhang Y, Xu Y, Zhang L, et al. Licorice extract ameliorates hyperglycemia through reshaping gut microbiota structure and inhibiting TLR4/NF-κB signaling pathway in type 2 diabetic mice. Food Res Int. 2022;153:110945. doi:10.1016/j.foodres.2022.110945
  • Lin HC, Paul CR, Kuo CH, et al. Glycyrrhiza uralensis root extract ameliorates high glucose-induced renal proximal tubular fibrosis by attenuating tubular epithelial-myofibroblast transdifferentiation by targeting TGF-β1/Smad/Stat3 pathway. J Food Biochem. 2022;46(5):e14041. doi:10.1111/jfbc.14041
  • Sen S, Singh R. Glycyrrhiza glabra alcoholic root extract ameliorates hyperglycemia, hyperlipidemia, and glycation-induced free iron-mediated oxidative reactions. J Food Biochem. 2021;45(12):e13970. doi:10.1111/jfbc.13970
  • Prabhahar M, K G, S P, et al. A study on Glycyrrhiza glabra-fortified bread: predicted glycemic index and bioactive component. Bioinorg Chem Appl. 2022;2022:4669723. doi:10.1155/2022/4669723
  • Tan H, Chen J, Li Y, et al. Glabridin, a bioactive component of licorice, ameliorates diabetic nephropathy by regulating ferroptosis and the VEGF/Akt/ERK pathways. Mol Med. 2022;28(1):58. doi:10.1186/s10020-022-00481-w
  • Aung KH, Liu H, Ke Z, Jiang S, Huang J. Glabridin attenuates the retinal degeneration induced by sodium iodate in vitro and in vivo. Front Pharmacol. 2020;11:566699. doi:10.3389/fphar.2020.566699
  • Dogan MF, Parlar A, Cam SA, Tosun EM, Uysal F, Arslan SO. Glabridin attenuates airway inflammation and hyperresponsiveness in a mice model of ovalbumin-induced asthma. Pulm Pharmacol Ther. 2020;63:101936. doi:10.1016/j.pupt.2020.101936
  • Shang H, Cao S, Wang J, Zheng H, Putheti R. Glabridin from Chinese herb licorice inhibits fatigue in mice. Afri J Trad Complement Altern Med. 2009;7(1):17–23. doi:10.4314/ajtcam.v7i1.57225
  • Lee PH, Chu PM, Hsieh PL, et al. Glabridin inhibits the activation of myofibroblasts in human fibrotic buccal mucosal fibroblasts through TGF-β/smad signaling. Environ Toxicol. 2018;33(2):248–255. doi:10.1002/tox.22512
  • Fukai T, Satoh K, Nomura T, Sakagami H. Preliminary evaluation of antinephritis and radical scavenging activities of glabridin from Glycyrrhiza glabra. Fitoterapia. 2003;74(7–8):624–629. doi:10.1016/s0367-326x(03)00164-3
  • Aoki F, Nakagawa K, Kitano M, et al. Clinical safety of licorice flavonoid oil (LFO) and pharmacokinetics of glabridin in healthy humans. J Am Coll Nutr. 2007;26(3):209–218. doi:10.1080/07315724.2007.10719603
  • Nakagawa K, Kishida H, Arai N, Nishiyama T, Mae T. Licorice flavonoids suppress abdominal fat accumulation and increase in blood glucose level in obese diabetic KK-A(y) mice. Biol Pharm Bull. 2004;27(11):1775–1778. doi:10.1248/bpb.27.1775
  • Aoki F, Honda S, Kishida H, et al. Suppression by licorice flavonoids of abdominal fat accumulation and body weight gain in high-fat diet-induced obese C57BL/6J mice. Biosci Biotechnol Biochem. 2007;71(1):206–214. doi:10.1271/bbb.60463
  • Niu W, Wu F, Cui H, et al. Network pharmacology analysis to identify phytochemicals in traditional Chinese medicines that may regulate ACE2 for the treatment of COVID-19. Evid Based Complement Altern Med. 2020;2020:7493281. doi:10.1155/2020/7493281
  • Ibrahim RS, Mahrous RSR, Abu El-Khair RM, Ross SA, Omar AA, Fathy HM. Biologically guided isolation and ADMET profile of new factor Xa inhibitors from Glycyrrhiza glabra roots using in vitro and in silico approaches. RSC Adv. 2021;11(17):9995–10001. doi:10.1039/d1ra00359c
  • Ngwe Tun MM, Toume K, Luvai E, et al. The discovery of herbal drugs and natural compounds as inhibitors of SARS-CoV-2 infection in vitro. J Nat Med. 2022;76(2):402–409. doi:10.1007/s11418-021-01596-w
  • Singh V, Pal A, Darokar MP. Glabridin synergy with norfloxacin induces ROS in multidrug resistant Staphylococcus aureus. J Gen Appl Microbiol. 2021;67(6):269–272. doi:10.2323/jgam.2021.06.002
  • Chakotiya AS, Tanwar A, Srivastava P, Narula A, Sharma RK. Effect of aquo-alcoholic extract of Glycyrrhiza glabra against Pseudomonas aeruginosa in Mice Lung Infection Model. Biomed Pharmacother. 2017;90:171–178. doi:10.1016/j.biopha.2017.03.055
  • Cantelli M, Ferrillo M, Donnarumma M, Emanuele E, Fabbrocini G. A new proprietary gel containing glabridin, andrographolide, and apolactoferrin improves the appearance of epidermal melasma in adult women: a 6-month pilot, uncontrolled open-label study. J Cosmet Dermatol. 2020;19(6):1395–1398. doi:10.1111/jocd.13161
  • Seino H, Arai Y, Nagao N, Ozawa N, Hamada K. Efficient percutaneous delivery of the antimelanogenic agent glabridin using cationic amphiphilic chitosan micelles. PLoS One. 2016;11(10):e0164061. doi:10.1371/journal.pone.0164061
  • Liu C, Hu J, Sui H, Zhao Q, Zhang X, Wang W. Enhanced skin permeation of glabridin using eutectic mixture-based nanoemulsion. Drug Deliv Transl Res. 2017;7(2):325–332. doi:10.1007/s13346-017-0359-6
  • Asha MK, Debraj D, Prashanth D, et al. In vitro anti-Helicobacter pylori activity of a flavonoid rich extract of Glycyrrhiza glabra and its probable mechanisms of action. J Ethnopharmacol. 2013;145(2):581–586. doi:10.1016/j.jep.2012.11.033
  • Tsukatani T, Kuroda R, Kawaguchi T. Screening biofilm eradication activity of ethanol extracts from foodstuffs: potent biofilm eradication activity of glabridin, a major flavonoid from licorice (Glycyrrhiza glabra), alone and in combination with ɛ-poly-L-lysine. World J Microbiol Biotechnol. 2022;38(2):24. doi:10.1007/s11274-021-03206-z