956
Views
4
CrossRef citations to date
0
Altmetric
REVIEW

Bibliometric Study of Adaptogens in Dermatology: Pharmacophylogeny, Phytochemistry, and Pharmacological Mechanisms

, , , , , , , & ORCID Icon show all
Pages 341-361 | Received 23 Nov 2022, Accepted 24 Jan 2023, Published online: 06 Feb 2023

References

  • Stix G. Turbocharging the brain. Sci Am. 2009;301(4):46–55. doi:10.1038/scientificamerican1009-46
  • Lazarev NV. Obshchee i spetsificheskoe v deistvii farmakologicheskikh sredstv [General and specific effects of drugs]. Farmakol Toksikol. 1958;21(3):81–86. Turkish.
  • Lazarev NV, Liublina EI, Rozin MA. Patologicheskaia fiziologiia i eksperimental’naia terapiia [States of non-specific increased resistance]. Patol Fiziol Eksp Ter. 1959;3:16–21. Russian.
  • Brekhman II, Dardymov IV. New substances of plant origin which increase nonspecific resistance. Annu Rev Pharmacol. 1969;9(1):419–430. doi:10.1146/annurev.pa.09.040169.002223
  • Winslow LC, Kroll DJ. Herbs as medicines. Arch Intern Med. 1998;158(20):2192–2199. doi:10.1001/archinte.158.20.2192
  • Panossian A, Seo E-J, Efferth T. Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. Phytomedicine. 2018;50:257–284. doi:10.1016/j.phymed.2018.09.204
  • Panossian A. Understanding adaptogenic activity: specificity of the pharmacological action of adaptogens and other phytochemicals. Ann N Y Acad Sci. 2017;1401(1):49–64. doi:10.1111/nyas.13399
  • Panossian AG, Efferth T, Shikov AN, et al. Evolution of the adaptogenic concept from traditional use to medical systems: pharmacology of stress- and aging-related diseases. Med Res Rev. 2021;41(1):630–703. doi:10.1002/med.21743
  • Liao LY, He YF, Li L, et al. A preliminary review of studies on adaptogens: comparison of their bioactivity in TCM with that of ginseng-like herbs used worldwide. Chin Med UK. 2018;13:1–12.
  • Saric-Bosanac S, Clark AK, Sivamani RK, Shi VY. The role of hypothalamus-pituitary-adrenal (HPA)-like axis in inflammatory pilosebaceous disorders. Dermatol Online J. 2020;26(2). doi:10.5070/D3262047430
  • O’Kane M, Murphy EP, Kirby B. The role of corticotropin-releasing hormone in immune-mediated cutaneous inflammatory disease. Exp Dermatol. 2006;15(3):143–153. doi:10.1111/j.1600-0625.2006.00382.x
  • Nakai K, Tsuruta D. What are reactive oxygen species, free radicals, and oxidative stress in skin diseases? Int J Mol Sci. 2021;22(19):10799. doi:10.3390/ijms221910799
  • Rinnerthaler M, Bischof J, Streubel MK, Trost A, Richter K. Oxidative stress in aging human skin. Biomolecules. 2015;5(2):545–589. doi:10.3390/biom5020545
  • Trüeb RM. Oxidative stress and its impact on skin, scalp and hair. Int J Cosmet Sci. 2021;43(Suppl S1). doi:10.1111/ics.12736
  • Pasparakis M. Role of NF-κB in epithelial biology. Immunol Rev. 2012;246(1):346–358. doi:10.1111/j.1600-065X.2012.01109.x
  • Kumar J, Teoh SL, Das S, Mahakknaukrauh P. Oxidative stress in oral diseases: understanding its relation with other systemic diseases. Front Physiol. 2017;8:693. doi:10.3389/fphys.2017.00693
  • Jurakić Tončić R, Marinović B. The role of impaired epidermal barrier function in atopic dermatitis. Acta Dermatovenerol Croat. 2016;24(2):95.
  • Sroka-Tomaszewska J, Trzeciak M. Molecular mechanisms of atopic dermatitis pathogenesis. Int J Mol Sci. 2021;22(8):16. doi:10.3390/ijms22084130
  • Oray M, Abu Samra K, Ebrahimiadib N, Meese H, Foster CS. Long-term side effects of glucocorticoids. Expert Opin Drug Saf. 2016;15(4):457–465. doi:10.1517/14740338.2016.1140743
  • Hoffmann J, Gendrisch F, Schempp CM, Wolfle U. New herbal biomedicines for the topical treatment of dermatological disorders. Biomedicines. 2020;8(2):21. doi:10.3390/biomedicines8020027
  • Sharma S, Sethi GS, Naura AS. Curcumin ameliorates ovalbumin-induced atopic dermatitis and blocks the progression of atopic march in mice. Inflammation. 2020;43(1):358–369. doi:10.1007/s10753-019-01126-7
  • Aslam H, Shahzad M, Shabbir A, Irshad S. Immunomodulatory effect of thymoquinone on atopic dermatitis. Mol Immunol. 2018;101:276–283. doi:10.1016/j.molimm.2018.07.013
  • Gu Y, Wang X, Liu F, et al. Total flavonoids of sea buckthorn (Hippophae rhamnoides L.) improve MC903-induced atopic dermatitis-like lesions. J Ethnopharmacol. 2022;292:115195. doi:10.1016/j.jep.2022.115195
  • Ahn S, Siddiqi MH, Aceituno VC, et al. Ginsenoside Rg5: rk1attenuates TNF-α/IFN-γ-induced production of thymus- and activation-regulated chemokine (TARC/CCL17) and LPS-induced NO production via downregulation of NF-κB/p38 MAPK/STAT1 signaling in human keratinocytes and macrophages. In Vitro Cell Dev Biol Anim. 2016;52(3):287–295. doi:10.1007/s11626-015-9983-y
  • Yang -C-C, Hung Y-L, Ko W-C, et al. Effect of neferine on DNCB-induced atopic dermatitis in HaCaT cells and BALB/c mice. Int J Mol Sci. 2021;22:15.
  • Reuter J, Wolfle U, Weckesser S, Schempp C. Which plant for which skin disease? Part 1: atopic dermatitis, psoriasis, acne, condyloma and herpes simplex. J Dtsch Dermatol Ges. 2010;8(10):788–796. doi:10.1111/j.1610-0387.2010.07496.x
  • Nast A, Dréno B, Bettoli V, et al. European evidence-based (S3) guidelines for the treatment of acne. J Eur Acad Dermatol Venereol. 2012;26(Suppl 1.):1–29.
  • Picardo M, Eichenfield LF, Tan J. Acne and rosacea. Dermatol Ther. 2017;7(Suppl 1):43–52. doi:10.1007/s13555-016-0168-8
  • Zouboulis CC, Seltmann H, Hiroi N, et al. Corticotropin-releasing hormone: an autocrine hormone that promotes lipogenesis in human sebocytes. Proc Natl Acad Sci U S A. 2002;99(10):7148–7153. doi:10.1073/pnas.102180999
  • Fox L, Csongradi C, Aucamp M, du Plessis J, Gerber M. Treatment modalities for acne. Molecules. 2016;21(8):20. doi:10.3390/molecules21081063
  • Hamdy AA, Kassem HA, Awad GEA, et al. In-vitro evaluation of certain Egyptian traditional medicinal plants against Propionibacterium acnes. S Afr J Bot. 2017;109:90–95. doi:10.1016/j.sajb.2016.12.026
  • Zaman S, Akhtar N. Effect of Turmeric (Curcuma longa Zingiberaceae) extract cream on human skin sebum secretion. Trop J Pharm Res. 2013;12(5):665–669.
  • Jain A, Basal E. Inhibition of Propionibacterium acnes-induced mediators of inflammation by Indian herbs. Phytomedicine. 2003;10(1):34–38. doi:10.1078/094471103321648638
  • Barroso RA, Navarro R, Tim CR, et al. Antimicrobial photodynamic therapy against Propionibacterium acnes biofilms using hypericin (Hypericum perforatum) photosensitizer: in vitro study. Lasers Med Sci. 2021;36(6):1235–1240. doi:10.1007/s10103-020-03163-3
  • Coenye T, Brackman G, Rigole P, et al. Eradication of Propionibacterium acnes biofilms by plant extracts and putative identification of icariin, resveratrol and salidroside as active compounds. Phytomedicine. 2012;19(5):409–412. doi:10.1016/j.phymed.2011.10.005
  • Fabbrocini G, Staibano S, De Rosa G, et al. Resveratrol-containing gel for the treatment of acne vulgaris: a single-blind, vehicle-controlled, pilot study. Am J Clin Dermatol. 2011;12(2):133–141. doi:10.2165/11530630-000000000-00000
  • Huang WC, Tsai TH, Huang CJ, et al. Inhibitory effects of wild bitter melon leaf extract on Propionibacterium acnes-induced skin inflammation in mice and cytokine production in vitro. Food Funct. 2015;6(8):2550–2560. doi:10.1039/C5FO00550G
  • Oender M. Allergic contact dermatitis. Turkderm Turk Arch Dermatol Venerol. 2009;43(1):3–9.
  • Nassau S, Fonacier L. Allergic contact dermatitis. Med Clin N Am. 2020;104(1):61–+. doi:10.1016/j.mcna.2019.08.012
  • Gaffal E, Cron M, Glodde N, Tuting T. Anti-inflammatory activity of topical THC in DNFB-mediated mouse allergic contact dermatitis independent of CB1 and CB2 receptors. Allergy. 2013;68(8):994–1000. doi:10.1111/all.12183
  • Korman NJ. Management of psoriasis as a systemic disease: what is the evidence? Br J Dermatol. 2020;182(4):840–848. doi:10.1111/bjd.18245
  • Chiricozzi A, Romanelli P, Volpe E, Borsellino G, Romanelli M. Scanning the immunopathogenesis of psoriasis. Int J Mol Sci. 2018;19(1):179. doi:10.3390/ijms19010179
  • Zhou C, Yu X, Cai D, Liu C, Li C. Role of corticotropin-releasing hormone and receptor in the pathogenesis of psoriasis. Med Hypotheses. 2009;73(4):513–515. doi:10.1016/j.mehy.2009.02.051
  • Uva L, Miguel D, Pinheiro C, et al. Mechanisms of action of topical corticosteroids in psoriasis. Int J Endocrinol. 2012;2012:16. doi:10.1155/2012/561018
  • OuYang Q, Pan YQ, Luo HQ, Xuan CX, Liu JE, Liu J. MAD ointment ameliorates imiquimod-induced psoriasiform dermatitis by inhibiting the IL-23/IL-17 axis in mice. Int Immunopharmacol. 2016;39:369–376. doi:10.1016/j.intimp.2016.08.013
  • Kukula O, Kirmizikan S, Tiryaki ES, Cicekli MN, Gunaydin C. Asiatic acid exerts an anti-psoriatic effect in the imiquimod-induced psoriasis model in mice. Immunopharmacol Immunotoxicol. 2022;44(3):367–372.
  • Li FL, Xu R, Zeng QC, et al. Tanshinone IIA inhibits growth of keratinocytes through cell cycle arrest and apoptosis: underlying treatment mechanism of psoriasis. Evid Based Complement Altern Med. 2012;2012:14.
  • More NB, Sharma N, Pulivendala G, Bale S, Godugu C. Natural product topical therapy in mitigating imiquimod-induced psoriasis-like skin inflammation-underscoring the anti-psoriatic potential of nimbolide. Indian J Pharmacol. 2021;53(4):278–285. doi:10.4103/ijp.IJP_591_20
  • Sohn A, Frankel A, Patel RV, Goldenberg G. Eczema. Mt Sinai J Med. 2011;78(5):730–739. doi:10.1002/msj.20289
  • Berthold E, Weisshaar E. Treatment of hand eczema. Hautarzt. 2019;70(10):790–796. doi:10.1007/s00105-019-04475-4
  • Kohandel Z, Farkhondeh T, Aschner M, Samarghandian S. Anti-inflammatory effects of thymoquinone and its protective effects against several diseases. Biomed Pharmacother. 2021;138:111492. doi:10.1016/j.biopha.2021.111492
  • Marianecci C, Rinaldi F, Di Marzio L, et al. Ammonium glycyrrhizinate-loaded niosomes as a potential nanotherapeutic system for anti-inflammatory activity in murine models. Int J Nanomedicine. 2014;9:635–651. doi:10.2147/IJN.S55066
  • Kutlubay Z, Baglam S, Engin B, Serdaroglu S. Male androgenetic alopecia. Turkderm Turk Arch Dermatol Venerol. 2014;48:36–39.
  • Piraccini BM, Alessandrini A. Androgenetic alopecia. G Ital Dermatol Venereol. 2014;149(1):15–24.
  • Murata K, Takeshita F, Samukawa K, Tani T, Matsuda H. Effects of ginseng rhizome and ginsenoside ro on testosterone 5 alpha-reductase and hair re-growth in testosterone-treated mice. Phytother Res. 2012;26(1):48–53. doi:10.1002/ptr.3511
  • Kim AR, Kim SN, Jung IK, Kim HH, Park YH, Park WS. The inhibitory effect of Scutellaria baicalensis extract and its active compound, baicalin, on the translocation of the androgen receptor with implications for preventing androgenetic alopecia. Planta Med. 2014;80(2–3):153–158. doi:10.1055/s-0033-1360300
  • Dhariwala MY, Ravikumar P. An overview of herbal alternatives in androgenetic alopecia. J Cosmet Dermatol. 2019;18(4):966–975. doi:10.1111/jocd.12930
  • Ito N, Ito T, Kromminga A, et al. Human hair follicles display a functional equivalent of the hypothalamic-pituitary-adrenal axis and synthesize cortisol. FASEB J. 2005;19(10):1332–1334. doi:10.1096/fj.04-1968fje
  • Fischer TW, Bergmann A, Kruse N, et al. New effects of caffeine on corticotropin-releasing hormone (CRH)-induced stress along the intrafollicular classical hypothalamic-pituitary-adrenal (HPA) axis (CRH-R1/2, IP -R, ACTH, MC-R2) and the neurogenic non-HPA axis (substance P, p75 and TrkA) in ex vivo human male androgenetic scalp hair follicles. Br J Dermatol. 2021;184(1):96–110. doi:10.1111/bjd.19115
  • Rassouli O, Liapakis G, Venihaki M. Role of central and peripheral CRH in skin. Curr Mol Pharmacol. 2018;11(1):72–80. doi:10.2174/1874467209666161026144219
  • Chen Y, Lyga J. Brain-skin connection: stress, inflammation and skin aging. Inflamm Allergy Drug Targets. 2014;13(3):177–190. doi:10.2174/1871528113666140522104422
  • Kono M, Nagata H, Umemura S, Kawana S, Osamura RY. In situ expression of corticotropin-releasing hormone (CRH) and proopiomelanocortin (POMC) genes in human skin. FASEB J. 2001;15(12):2297–2299. doi:10.1096/fj.01-0254fje
  • Slominski A, Wortsman J, Pisarchik A, et al. Cutaneous expression of corticotropin-releasing hormone (CRH), urocortin, and CRH receptors. FASEB J. 2001;15(10):1678–1693. doi:10.1096/fj.00-0850rev
  • Slominski A, Pisarchik A, Tobin DJ, Mazurkiewicz JE, Wortsman J. Differential expression of a cutaneous corticotropin-releasing hormone system. Endocrinology. 2004;145(2):941–950.
  • Ganceviciene R, Graziene V, Fimmel S, Zouboulis CC. Involvement of the corticotropin-releasing hormone system in the pathogenesis of acne vulgaris. Br J Dermatol. 2009;160(2):345–352. doi:10.1111/j.1365-2133.2008.08959.x
  • Vinay K, Sawatkar GU, Dogra S. Hair manifestations of endocrine diseases: a brief review. Indian J Dermatol Venereol Leprol. 2018;84(5):528–538. doi:10.4103/ijdvl.IJDVL_671_17
  • Sjerobabski-Masnec I, Situm M. Skin aging. Acta Clin Croat. 2010;49(4):515–518.
  • Tobin DJ. Introduction to skin aging. J Tissue Viability. 2017;26(1):37–46. doi:10.1016/j.jtv.2016.03.002
  • Fitsiou E, Pulido T, Campisi J, Alimirah F, Demaria M. Cellular senescence and the senescence-associated secretory phenotype as drivers of skin photoaging. J Invest Dermatol. 2021;141(4):1119–1126. doi:10.1016/j.jid.2020.09.031
  • Plengmuankhae W, Tantitadapitak C. Low temperature and water dehydration increase the levels of asiaticoside and madecassoside in Centella asiatica (L.) Urban. S Afr J Bot. 2015;97:196–203. doi:10.1016/j.sajb.2015.01.013
  • Meng H, Zhao MM, Yang RY, et al. Salvianolic acid B regulates collagen synthesis: indirect influence on human dermal fibroblasts through the microvascular endothelial cell pathway. J Cosmet Dermatol. 2022;21(7):3007–3015.
  • Muta K, Inomata S, Fukuhara T, et al. Inhibitory effect of the extract of rhizome of &ITCurcuma longa&IT L in gelatinase activity and its effect on human skin. J Biosci Bioeng. 2018;125(3):353–358. doi:10.1016/j.jbiosc.2017.10.001
  • Borek C. Antioxidant health effects of aged garlic extract. J Nutr. 2001;131(3s):1010S–1015S. doi:10.1093/jn/131.3.1010S
  • Imai J, Ide N, Nagae S, Moriguchi T, Matsuura H, Itakura Y. Antioxidant and radical scavenging effects of aged garlic extract and its constituents. Planta Med. 1994;60(5):417–420. doi:10.1055/s-2006-959522
  • Wang YS, Zhou SS, Shen CY, Jiang JG. Isolation and identification of four antioxidants from Rhodiola crenulata and evaluation of their UV photoprotection capacity in vitro. J Funct Food. 2020;66:11. doi:10.1016/j.jff.2020.103825
  • Zu RL, Yi H, Yi YL, Yong JY, Li Y. Effect of cryptotanshinone on Staphylococcus epidermidis biofilm formation under in vitro conditions. Jundishapur J Microbiol. 2019;12(4):11.
  • Luo J, Dong B, Wang K, et al. Baicalin inhibits biofilm formation, attenuates the quorum sensing-controlled virulence and enhances Pseudomonas aeruginosa clearance in a mouse peritoneal implant infection model. PLoS One. 2017;12(4):e0176883. doi:10.1371/journal.pone.0176883
  • Onlom C, Khanthawong S, Waranuch N, Ingkaninan K. In vitro anti-malassezia activity and potential use in anti-dandruff formulation of Asparagus racemosus. Int J Cosmet Sci. 2014;36(1):74–78. doi:10.1111/ics.12098
  • Lee J, Nho YH, Yun SK, Hwang YS. Use of ethanol extracts of Terminalia chebula to prevent periodontal disease induced by dental plaque bacteria. BMC Complement Altern Med. 2017;17:10. doi:10.1186/s12906-017-1619-1
  • Jeon HJ, Kim K, Kim C, Kim MJ, Kim TO, Lee SE. Molecular mechanisms of anti-melanogenic gedunin derived from neem tree (Azadirachta indica) using b16f10 mouse melanoma cells and early-stage Zebrafish. Plants-Basel. 2021;10(2):11.
  • Kim K. Effect of ginseng and ginsenosides on melanogenesis and their mechanism of action. J Ginseng Res. 2015;39(1):1–6. doi:10.1016/j.jgr.2014.10.006
  • Kwon KJ, Bae S, Kim K, et al. Asiaticoside, a component of Centella asiatica, inhibits melanogenesis in B16F10 mouse melanoma. Mol Med Rep. 2014;10(1):503–507. doi:10.3892/mmr.2014.2159
  • Chae JK, Subedi L, Jeong M, et al. Gomisin N inhibits melanogenesis through regulating the PI3K/Akt and MAPK/ERK signaling pathways in melanocytes. Int J Mol Sci. 2017;18(2):13. doi:10.3390/ijms18020471
  • Kudo M, Kobayashi-Nakamura K, Tsuji-Naito K, Slominski AT. Bifunctional effects of O-methylated flavones from Scutellaria baicalensis Georgi on melanocytes: inhibition of melanin production and intracellular melanosome transport. PLoS One. 2017;12(2):26. doi:10.1371/journal.pone.0171513
  • Oh TI, Jung HJ, Lee YM, et al. Zerumbone, a tropical ginger sesquiterpene of Zingiber officinale Roscoe, attenuates -MSH-induced melanogenesis in B16F10 cells. Int J Mol Sci. 2018;19(10):17. doi:10.3390/ijms19103149
  • Cibrian D, de la Fuente H, Sánchez-Madrid F. Metabolic pathways that control skin homeostasis and inflammation. Trends Mol Med. 2020;26(11):975–986. doi:10.1016/j.molmed.2020.04.004
  • Fernández-Gallego N, Sánchez-Madrid F, Cibrian D. Role of AHR ligands in skin homeostasis and cutaneous inflammation. Cells. 2021;10(11):3176. doi:10.3390/cells10113176
  • Wang T, Li K, Xiao S, Xia Y. A plausible role for Collectins in skin immune homeostasis. Front Immunol. 2021;12:594858. doi:10.3389/fimmu.2021.594858
  • Slominski A, Wortsman J, Tuckey RC, Paus R. Differential expression of HPA axis homolog in the skin. Mol Cell Endocrinol. 2007;265–266:143–149. doi:10.1016/j.mce.2006.12.012
  • Bale S, Venkatesh P, Sunkoju M, Godugu C. An adaptogen: withaferin A ameliorates in vitro and in vivo pulmonary fibrosis by modulating the interplay of fibrotic, matricelluar proteins, and cytokines. Front Pharmacol. 2018;9:248. doi:10.3389/fphar.2018.00248
  • Gu Y, Han J, Jiang C, Zhang Y. Biomarkers, oxidative stress and autophagy in skin aging. Ageing Res Rev. 2020;59:101036. doi:10.1016/j.arr.2020.101036
  • Pfisterer K, Shaw LE, Symmank D, Weninger W. The extracellular matrix in skin inflammation and infection. Front Cell Dev Biol. 2021;9:682414. doi:10.3389/fcell.2021.682414
  • Li M, Li X, Liu B, et al. Time-resolved extracellular matrix atlas of the developing human skin dermis. Front Cell Dev Biol. 2021;9:783456. doi:10.3389/fcell.2021.783456
  • Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol. 2014;15(12):786–801. doi:10.1038/nrm3904
  • Bhattacharjee O, Ayyangar U, Kurbet AS, Ashok D, Raghavan S. Unraveling the ECM-immune cell crosstalk in skin diseases. Front Cell Dev Biol. 2019;7:68.
  • Nyström A, Bruckner-Tuderman L. Matrix molecules and skin biology. Semin Cell Dev Biol. 2019;89:136–146. doi:10.1016/j.semcdb.2018.07.025