226
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Synthesis and Characterization of a New Carbon-11 Labeled Positron Emission Tomography Radiotracer for Orexin 2 Receptors Neuroimaging

, , ORCID Icon, , ORCID Icon, & show all
Pages 215-222 | Received 23 Sep 2023, Accepted 13 Dec 2023, Published online: 31 Jan 2024

References

  • Spinazzi R, Andreis PG, Rossi GP, Nussdorfer GG. Orexins in the regulation of the hypothalamic-pituitary-adrenal axis. Pharmacol Rev. 2006;58(1):46–57. PubMed PMID: 16507882. doi:10.1124/pr.58.1.4
  • Kukkonen JP. Orexin/hypocretin signaling. Curr Top Behav Neurosci. 2017;33:17–50. PubMed PMID: 27909990. doi:10.1007/7854_2016_49
  • Voisin T, Rouet-Benzineb P, Reuter N, Laburthe M. Orexins and their receptors: structural aspects and role in peripheral tissues. Cell Mol Life Sci. 2003;60(1):72–87. PubMed PMID: 12613659. doi:10.1007/s000180300005
  • Smart D, Jerman J. The physiology and pharmacology of the orexins. Pharmacol Ther. 2002;94(1–2):51–61. PubMed PMID: 12191593. doi:10.1016/s0163-7258(02)00171-7
  • Milbank E, López M. Orexins/hypocretins: key regulators of energy homeostasis. Front Endocrinol. 2019;10:830. PubMed PMID: 31920958; PMCID: PMC6918865. doi:10.3389/fendo.2019.00830
  • Scammell TE. Overview of sleep: the neurologic processes of the sleep-wake cycle. J Clin Psychiatry. 2015;76(5):e13. PubMed PMID: 26035194. doi:10.4088/JCP.14046tx1c
  • Grafe LA, Cornfeld A, Luz S, Valentino R, Bhatnagar S. Orexins mediate sex differences in the stress response and in cognitive flexibility. Biol Psychiatry. 2017;81(8):683–692. PubMed PMID: 27955897; PMCID: PMC5359079. doi:10.1016/j.biopsych.2016.10.013
  • Baimel C, Bartlett SE, Chiou LC, et al. Orexin/hypocretin role in reward: implications for opioid and other addictions. Br J Pharmacol. 2015;172(2):334–348. PubMed PMID: 24641197; PMCID: PMC4292951. doi:10.1111/bph.12639
  • Lu XY, Bagnol D, Burke S, Akil H, Watson SJ. Differential distribution and regulation of OX1 and OX2 orexin/hypocretin receptor messenger RNA in the brain upon fasting. Horm Behav. 2000;37(4):335–344. PubMed PMID: 10860677. doi:10.1006/hbeh.2000.1584
  • Abbas MG, Shoji H, Soya S, Hondo M, Miyakawa T, Sakurai T. Comprehensive behavioral analysis of male ox1r (-/-) mice showed implication of orexin receptor-1 in mood, anxiety, and social behavior. Front Behav Neurosci. 2015;9:324. PubMed PMID: 26696848; PMCID: PMC4674555. doi:10.3389/fnbeh.2015.00324
  • Vraka K, Mytilinaios D, Katsenos AP, et al. Cellular localization of orexin 1 receptor in human hypothalamus and morphological analysis of neurons expressing the receptor. Biomolecules. 2023;13(4):592. PubMed PMID: 37189339; PMCID: PMC10135972. doi:10.3390/biom13040592
  • Inutsuka A, Yamanaka A. The regulation of sleep and wakefulness by the hypothalamic neuropeptide orexin/hypocretin. Nagoya J Med Sci. 2013;75(1–2):29–36. PubMed PMID: 23544265; PMCID: PMC4345701.
  • Oh J, Petersen C, Walsh CM, Bittencourt JC, Neylan TC, Grinberg LT. The role of co-neurotransmitters in sleep and wake regulation. Mol Psychiatry. 2019;24(9):1284–1295. PubMed PMID: 30377299; PMCID: PMC6491268. doi:10.1038/s41380-018-0291-2
  • Han Y, Yuan K, Zheng Y, Lu L. Orexin receptor antagonists as emerging treatments for psychiatric disorders. Neurosci Bull. 2020;36(4):432–448. PubMed PMID: 31782044; PMCID: PMC7142186. doi:10.1007/s12264-019-00447-9
  • Mogavero MP, Silvani A, Lanza G, DelRosso LM, Ferini-Strambi L, Ferri R. Targeting orexin receptors for the treatment of insomnia: from physiological mechanisms to current clinical evidence and recommendations. Nat Sci Sleep. 2023;15:17–38. PubMed PMID: 36713640; PMCID: PMC9879039. doi:10.2147/nss.S201994
  • Pardon M, Claes P, Druwé S, et al. Modulation of sleep behavior in zebrafish larvae by pharmacological targeting of the orexin receptor. Front Pharmacol. 2022;13:1012622. PubMed PMID: 36339591; PMCID: PMC9632972. doi:10.3389/fphar.2022.1012622
  • Lau J, Rousseau E, Kwon D, Lin KS, Bénard F, Chen X. Insight into the development of PET radiopharmaceuticals for oncology. Cancers (Basel). 2020;12(5):1312. PubMed PMID: 32455729; PMCID: PMC7281377. doi:10.3390/cancers12051312
  • Ten-Blanco M, Flores Á, Cristino L, Pereda-Pérez I, Berrendero F. Targeting the orexin/hypocretin system for the treatment of neuropsychiatric and neurodegenerative diseases: from animal to clinical studies. Front Neuroendocrinol. 2023;69:101066. doi:10.1016/j.yfrne.2023.101066
  • Couvineau A, Dayot S, Nicole P, et al. The anti-tumoral properties of orexin/hypocretin hypothalamic neuropeptides: an unexpected therapeutic role. Front Endocrinol. 2018;9:573. PubMed PMID: 30319552; PMCID: PMC6170602. doi:10.3389/fendo.2018.00573
  • Jin C, Luo X, Li X, et al. Positron emission tomography molecular imaging-based cancer phenotyping. Cancer. 2022;128(14):2704–2716. PubMed PMID: 35417604; PMCID: PMC9324101. doi:10.1002/cncr.34228
  • Crișan G, Moldovean-Cioroianu NS, Timaru DG, Andrieș G, Căinap C, Chiș V. Radiopharmaceuticals for PET and SPECT imaging: a literature review over the last decade. Int J Mol Sci. 2022;23(9):5023. PubMed PMID: 35563414; PMCID: PMC9103893. doi:10.3390/ijms23095023
  • Liu Y, Chen Z, Wang Y, et al. Noninvasive positron emission tomography imaging of SIRT1 in a model of early-stage alcoholic liver disease. Mol Pharm. 2023;20(4):1990–1995. PubMed PMID: 36827644. doi:10.1021/acs.molpharmaceut.2c00904
  • Xu Y, Wang Y, Wang H, Wang C. Synthesis and characterization of carbon-11 labeled iloperidone for imaging of α1-Adrenoceptor in brain. Front Mol Biosci. 2020;7:586327. PubMed PMID: 33195432; PMCID: PMC7542234. doi:10.3389/fmolb.2020.586327
  • Dale NC, Hoyer D, Jacobson LH, Pfleger KDG, Johnstone EKM. Orexin signaling: a complex, multifaceted process. Front Cell Neurosci. 2022;16:812359. PubMed PMID: 35496914; PMCID: PMC9044999. doi:10.3389/fncel.2022.812359
  • Rong J, Haider A, Jeppesen TE, Josephson L, Liang SH. Radiochemistry for positron emission tomography. Nat Commun. 2023;14(1). doi:10.1038/s41467-023-36377-4
  • Watanabe H, Fukui K, Shimizu Y, et al. Synthesis and biological evaluation of F-18 labeled tetrahydroisoquinoline derivatives targeting orexin 1 receptor. Bioorg Med Chem Lett. 2019;29(13):1620–1623. PubMed PMID: 31056243. doi:10.1016/j.bmcl.2019.04.044
  • Wang C, Wilson CM, Moseley CK, et al. Evaluation of potential PET imaging probes for the orexin 2 receptors. Nucl Med Biol. 2013;40(8):1000–1005. PubMed PMID: 23953751; PMCID: PMC3812298. doi:10.1016/j.nucmedbio.2013.07.001
  • Wang C, Moseley CK, Carlin SM, Wilson CM, Neelamegam R, Hooker JM. Radiosynthesis and evaluation of [11C]EMPA as a potential PET tracer for orexin 2 receptors. Bioorg Med Chem Lett. 2013;23(11):3389–3392. PubMed PMID: 23601709; PMCID: PMC3664928. doi:10.1016/j.bmcl.2013.03.079
  • Bai P, Liu Y, Xu Y, et al. Synthesis and characterization of a new Positron emission tomography probe for orexin 2 receptors neuroimaging. Bioorg Chem. 2022;123:105779. PubMed PMID: 35397430; PMCID: PMC9050936. doi:10.1016/j.bioorg.2022.105779
  • Watanabe H, Matsushita N, Shimizu Y, et al. Synthesis and characterization of a novel (18)F-labeled 2,5-diarylnicotinamide derivative targeting orexin 2 receptor. Medchemcomm. 2019;10(12):2126–2130. PubMed PMID: 32904113; PMCID: PMC7451066. doi:10.1039/c9md00397e
  • Bai P, Bai S, Placzek MS, et al. A new positron emission tomography probe for orexin receptors neuroimaging. Molecules. 2020;25(5):1018. PubMed PMID: 32106419; PMCID: PMC7179119. doi:10.3390/molecules25051018
  • Nerella SG, Singh P, Sanam T, Digwal CS. PET molecular imaging in drug development: the imaging and chemistry perspective. Front Med Lausanne. 2022;9:812270. PubMed PMID: 35295604; PMCID: PMC8919964. doi:10.3389/fmed.2022.812270
  • Cole EL, Stewart MN, Littich R, Hoareau R, Scott PJ. Radiosyntheses using fluorine-18: the art and science of late stage fluorination. Curr Top Med Chem. 2014;14(7):875–900. PubMed PMID: 24484425; PMCID: PMC4140448. doi:10.2174/1568026614666140202205035
  • Pretze M, Grosse-Gehling P, Mamat C. Cross-coupling reactions as valuable tool for the preparation of PET radiotracers. Molecules. 2011;16(2):1129–1165. PubMed PMID: 21270732; PMCID: PMC6259626. doi:10.3390/molecules16021129
  • Geldenhuys WJ, Mohammad AS, Adkins CE, Lockman PR. Molecular determinants of blood-brain barrier permeation. Ther Deliv. 2015;6(8):961–971. PubMed PMID: 26305616; PMCID: PMC4675962. doi:10.4155/tde.15.32
  • He Q, Liu J, Liang J, et al. Towards improvements for penetrating the blood-brain barrier-recent progress from a material and pharmaceutical perspective. Cells. 2018;7(4):24. PubMed PMID: 29570659; PMCID: PMC5946101. doi:10.3390/cells7040024
  • Nagahara T, Saitoh T, Kutsumura N, et al. Design and synthesis of non-peptide, selective orexin receptor 2 agonists. J Med Chem. 2015;58(20):7931–7937. PubMed PMID: 26267383. doi:10.1021/acs.jmedchem.5b00988
  • Wang Y, Yao Y, Liu J, et al. Synthesis and biological activity of piperine derivatives as potential PPARγ agonists. Drug Des Devel Ther. 2020;14:2069–2078. PubMed PMID: 32546971; PMCID: PMC7266110. doi:10.2147/dddt.S238245