231
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Insight into Nephrotoxicity and Processing Mechanism of Arisaema erubescens (Wall.) Schott by Metabolomics and Network Analysis

, , , , , , & show all
Pages 1831-1846 | Received 31 Jan 2023, Accepted 09 Jun 2023, Published online: 19 Jun 2023

References

  • Qi CY, Wang J, Wu X, et al. Botanical, traditional use, phytochemical, and toxicological of Arisaematis rhizoma. Evid Based Complement Alternat Med. 2021;2021:9055574. doi:10.1155/2021/9055574
  • Qiu LM, Jiang S. Combined influence of Arisaematis Rhizoma polysaccharide with cisplatin on the proliferation, apoptosis and epithelial mesenchymal transition of breast carcinoma MDA-MB-231 cells. J Chin Med Mater. 2016;39(3):630–633. doi:10.13863/j.issn1001-4454.2016.03.040
  • Zhao CB, Li XY, Wu N, Peng W, Liu YJ, Wu CJ. Effect of Arisaema erubescens (Wall) Schott rhizome extract on rheumatoid arthritis. Trop J Pharm Res. 2016;15(4):805–813. doi:10.4314/tjpr.v15i4.20
  • Sun N, Liu JY, Yu WY, et al. Research progress on chemical constituents and biological activities of Arisaematis Rhizoma. China J Chin Mater Med. 2021;46(20):5194–5200. doi:10.19540/j.cnki.cjcmm.20210513.601
  • Su F, Sun Y, Zhu W, et al. A comprehensive review of research progress on the genus Arisaema: botany, uses, phytochemistry, pharmacology, toxicity and pharmacokinetics. J Ethnopharmacol. 2022;285:114798. doi:10.1016/j.jep.2021.114798
  • Wang C, Bi Q, Huang D, et al. Identification of Pinelliae Rhizoma and its counterfeit species based on enzymatic signature peptides from toxic proteins. Phytomedicine. 2022;107:154451. doi:10.1016/j.phymed.2022.154451
  • Dong W. Study on Toxicity of Rhizoma Arisaema. Heilongjiang University of traditional Chinese medicine; 2011.
  • Dong G, Wang J, Guo P, Wei D, Yang M, Kong L. Toxicity assessment of Arisaematis Rhizoma in rats by a H-1 NMR-based metabolomics approach. Mol Biosyst. 2015;11(2):407–417. doi:10.1039/c4mb00583j
  • Chen W, Luo H, Zhong Z, Wei J, Wang Y. The safety of Chinese medicine: a systematic review of endogenous substances and exogenous residues. Phytomedicine. 2023;108:154534. doi:10.1016/j.phymed.2022.154534
  • Huang CF, Yang RS, Liu SH, Hsieh PC, Lin-Shiau SY. Evidence for improved neuropharmacological efficacy and decreased neurotoxicity in mice with traditional processing of Rhizoma Arisaematis. Am J Chin Med. 2011;39(5):981–998. doi:10.1142/s0192415x11009354
  • Wu H, Zhong LY. Study on irritation of calcium oxalate crystal in Araceae plants. China J Chin Mater Med. 2008;33:380–384.
  • Wang K, Li K, Chen Y, et al. Computational network pharmacology-based strategy to capture key functional components and decode the mechanism of Chai-Hu-Shu-Gan-San in treating depression. Front Pharmacol. 2021;12:782060. doi:10.3389/fphar.2021.782060
  • Cao YJ, Li HZ, Sun YM, et al. Integration of multi-omics in investigations on the mechanisms of action of Chinese herbal medicine interventions in metabolic diseases. Tradit Med Res. 2022;7(4):31. doi:10.53388/tmr20220117001
  • Zhang XW, Li QH, Xu ZD, Dou JJ. Mass spectrometry-based metabolomics in health and medical science: a systematic review. Rsc Adv. 2020;10(6):3092–3104. doi:10.1039/c9ra08985c
  • Licari C, Tenori L, Giusti B, et al. Analysis of metabolite and lipid association networks reveals molecular mechanisms associated with 3-month mortality and poor functional outcomes in patients with acute ischemic stroke after thrombolytic treatment with recombinant tissue plasminogen activator. J Proteome Res. 2021;20(10):4758–4770. doi:10.1021/acs.jproteome.1c00406
  • Cai Y, Rattray N, Zhang Q, et al. Tumor tissue-specific biomarkers of colorectal cancer by anatomic location and stage. Metabolites. 2020;10(6):257. doi:10.3390/metabo10060257
  • Wang M, Xu J, Yang N, Zhang T, Zhu H, Wang J. Insight into the metabolomic characteristics of post-transplant diabetes mellitus by the integrated LC-MS and GC-MS approach- preliminary study. Front Endocrinol. 2022;12:807318. doi:10.3389/fendo.2021.807318
  • Xu W, Qin X, Liu Y. Network pharmacology research of Astragali Radix in treating chronic atrophic gastritis rats based on mitochondrial metabonomics. J Chromatogr B Analyt Technol Biomed Life Sci. 2020;1145:122109. doi:10.1016/j.jchromb.2020.122109
  • Chen Z, Zheng P, Han S, et al. Tissue-specific oxidative stress and element distribution after oral exposure to titanium dioxide nanoparticles in rats. Nanoscale. 2020;12(38):20033–20046. doi:10.1039/d0nr05591c
  • Wilson ID, Theodoridis G, Virgiliou C. A perspective on the standards describing mass spectrometry-based metabolic phenotyping (metabolomics/metabonomics) studies in publications. J Chromatogr B Analyt Technol Biomed Life Sci. 2021;1164:122515. doi:10.1016/j.jchromb.2020.122515
  • Zhang K, Liu W, Song Q, et al. Integrated strategy drives direct infusion-tandem mass spectrometry as an eligible tool for shotgun pseudo-targeted metabolomics of medicinal plants. Anal Chem. 2021;93(4):2541–2550. doi:10.1021/acs.analchem.0c04602
  • Gandhi S, Chinnadurai V, Bhadra K, et al. Urinary metabolic modulation in human participants residing in Siachen: a 1H NMR metabolomics approach. Sci Rep. 2022;12(1):9070. doi:10.1038/s41598-022-13031-5
  • Yuan ZY, Li J, Zhou XJ, et al. HS-GC-IMS-based metabonomics study of Baihe Jizihuang Tang in a rat model of chronic unpredictable mild stress. J Chromatogr B Analyt Technol Biomed Life Sci. 2020;1148:122143. doi:10.1016/j.jchromb.2020.122143
  • Yan R, Jiang H, Gu S, et al. Fecal metabolites were altered, identified as biomarkers and correlated with disease activity in patients with systemic Lupus Erythematosus in a GC-MS-based metabolomics study. Front Immunol. 2020;11:2138. doi:10.3389/fimmu.2020.02138
  • He J, Chan T, Hong X, et al. Microbiome and metabolome analyses reveal the disruption of lipid metabolism in systemic lupus erythematosus. Front Immunol. 2020;11:1703. doi:10.3389/fimmu.2020.01703
  • Fan Y, Li ZM, Xi J. Recent developments in detoxication techniques for aristolochic acid-containing traditional Chinese medicines. Rsc Adv. 2020;10(3):1410–1425. doi:10.1039/c9ra08327h
  • Saresella M, Marventano I, Barone M, et al. Alterations in circulating fatty acid are associated with gut microbiota dysbiosis and inflammation in multiple sclerosis. Front Immunol. 2020;11:1390. doi:10.3389/fimmu.2020.01390
  • Saini RK, Keum YS. Omega-3 and omega-6 polyunsaturated fatty acids: dietary sources, metabolism, and significance - A review. Life Sci. 2018;203:255–567. doi:10.1016/j.lfs.2018.04.049
  • Pal S, Rendedula D, Nagendla NK, Kaliyaperumal M, Mudiam MKR, Ansari KM. Serum and urine metabolomics analysis reveals the role of altered metabolites in patulin-induced nephrotoxicity. Food Res Int. 2022;156:111177. doi:10.1016/j.foodres.2022.111177
  • Han KH, Kim B, Ji SC, et al. Mechanism of chronic kidney disease progression and novel biomarkers: a metabolomic analysis of experimental glomerulonephritis. Metabolites. 2020;10(4):169. doi:10.3390/metabo10040169
  • Su H, Liu R, Chang M, Huang J, Jin Q, Wang X. Effect of dietary alpha-linolenic acid on blood inflammatory markers: a systematic review and meta-analysis of randomized controlled trials. Eur J Nutr. 2018;57(3):877–891. doi:10.1007/s00394-017-1386-2
  • Istifli ES, Demir E, Kaplan HM, Ateş KE, Doran F. Alpha-linolenic acid confers protection on mice renal cells against cisplatin-induced nephrotoxicity. Cytotechnology. 2019;71(5):905–914. doi:10.1007/s10616-019-00333-2
  • Innes JK, Calder PC. Omega-6 fatty acids and inflammation. Prostaglandins Leukot Essent Fatty Acids. 2018;132:41–48. doi:10.1016/j.plefa.2018.03.004
  • Luo H, Gu C, Liu C, Wang Y, Wang H, Li Y. Plasma metabolic profiling analysis of Strychnos nux-vomica Linn. and Tripterygium wilfordii Hook F-induced renal toxicity using metabolomics coupled with UPLC/Q-TOF-MS. Toxicol Res. 2018;7(6):1153–1163. doi:10.1039/c8tx00115d
  • Mahmod I, Ismail IS, Alitheen NB, et al. NMR and LCMS analytical platforms exhibited the nephroprotective effect of Clinacanthus nutans in cisplatin-induced nephrotoxicity in the in vitro condition. BMC Complement Med Ther. 2020;20(1):320. doi:10.1186/s12906-020-03067-3
  • Arioka Y, Yamamoto Y, Hoshi M, et al. Pre-administration of L-tryptophan improved ADR-induced early renal failure in mice. Life Sci. 2012;91(3–4):100–106. doi:10.1016/j.lfs.2012.06.018
  • Li S, Li C, Wang W. Bile acid signaling in renal water regulation. Am J Physiol Renal Physiol. 2019;317(1):F73–F76. doi:10.1152/ajprenal.00563.2018
  • Wang YN, Hu HH, Zhang DD, et al. The Dysregulation of eicosanoids and bile acids correlates with impaired kidney function and renal fibrosis in chronic renal failure. Metabolites. 2021;11(2):127. doi:10.3390/metabo11020127
  • Liu Y, Chen X, Liu Y, et al. Metabolomic study of the protective effect of Gandi capsule for diabetic nephropathy. Chem Biol Interact. 2019;314:108815. doi:10.1016/j.cbi.2019.108815
  • Xu L, Zhang Y, Zhang P, et al. Integrated metabolomics and network pharmacology strategy driven active traditional Chinese medicine ingredients discovery for the alleviation of cisplatin nephrotoxicity. Chem Res Toxicol. 2019;32(12):2411–2421. doi:10.1021/acs.chemrestox.9b00180
  • Schoemaker MH, Conde de la Rosa L, Buist-Homan M, et al. Tauroursodeoxycholic acid protects rat hepatocytes from bile acid-induced apoptosis via activation of survival pathways. Hepatology. 2004;39(6):1563–1573. doi:10.1002/hep.20246
  • Abd-Elhamid TH, Elgamal DA, Ali SS, et al. Reno-protective effects of ursodeoxycholic acid against gentamicin-induced nephrotoxicity through modulation of NF-kappa B, eNOS and caspase-3 expressions. Cell Tissue Res. 2018;374(2):367–387. doi:10.1007/s00441-018-2886-y
  • He T, Liu J, Wang X, Duan C, Li X, Zhang J. Analysis of cantharidin-induced nephrotoxicity in HK-2 cells using untargeted metabolomics and an integrative network pharmacology analysis. Food Chem Toxicol. 2020;146:111845. doi:10.1016/j.fct.2020.111845
  • Guan T, Xin Y, Zheng K, et al. Metabolomics analysis of the effects of quercetin on renal toxicity induced by cadmium exposure in rats. Biometals. 2021;34(1):33–48. doi:10.1007/s10534-020-00260-2
  • Qu X, Gao H, Sun J, et al. Identification of key metabolites during cisplatin-induced acute kidney injury using an HPLC-TOF/MS-based non-targeted urine and kidney metabolomics approach in rats. Toxicology. 2020;431:152366. doi:10.1016/j.tox.2020.152366