393
Views
2
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Synthesis of Amino Acids Bearing Halodifluoromethyl Moieties and Their Application to p53-Derived Peptides Binding to Mdm2/Mdm4

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1247-1274 | Received 18 Feb 2023, Accepted 01 Apr 2023, Published online: 25 Apr 2023

References

  • Mardirossian M, Rubini M, Adamo MFA, et al. Natural and synthetic halogenated amino acids-structural and bioactive features in antimicrobial peptides and peptidomimetics. Molecules. 2021;26(23):7401. doi:10.3390/molecules26237401
  • Scholfield MR, Ford MC, Carlsson A-C-C, Butta H, Mehl RA, Ho PS. Structure-energy relationships of halogen bonds in proteins. Biochemistry. 2017;56(22):2794–2802. doi:10.1021/acs.biochem.7b00022
  • Carlsson A-C-C, Scholfield MR, Rowe RK, et al. Increasing enzyme stability and activity through hydrogen bond-enhanced halogen bonds. Biochemistry. 2018;57(28):4135–4147. doi:10.1021/acs.biochem.8b00603
  • Erdélyi M. Halogen bonding in solution. Chem Soc Rev. 2012;41(9):3547–3557. doi:10.1039/C2CS15292D
  • Danelius E, Andersson H, Jarvoll P, Lood K, Gräfenstein J, Erdélyi M. Halogen bonding: a powerful tool for modulation of peptide conformation. Biochemistry. 2017;56(25):3265–3272. doi:10.1021/acs.biochem.7b00429
  • Erdélyi M. Application of the halogen bond in protein systems. Biochemistry. 2017;56(22):2759–2761. doi:10.1021/acs.biochem.7b00371
  • Peintner S, Erdélyi M. Pushing the limits of characterising a weak halogen bond in solution. Chem Eur J. 2022;28(5):e202103559. doi:10.1002/chem.202103559
  • Bertolani A, Pirrie L, Stefan L, et al. Supramolecular amplification of amyloid self-assembly by iodination. Nat Commun. 2015;6:7574. doi:10.1038/ncomms8574
  • Pizzi A, Dichiarante V, Terraneo G, Metrangolo P. Crystallographic insights into the self-assembly of KLVFF amyloid-beta peptides. Pept Sci. 2018;100:e23088. doi:10.1002/bip.23088
  • Pizzi A, Lascialfari L, Demitri N, et al. Halogen bonding modulates hydrogel formation from fmoc amino acids. CrystEngComm. 2017;19(14):1870–1874. doi:10.1039/C7CE00031F
  • Bergamaschi G, Lascialfari L, Pizzi A, et al. A halogen bond-donor amino acid for organocatalysis in water. Chem Comm. 2018;54(76):10718–10721. doi:10.1039/C8CC06010J
  • Pizzi A, Demitri N, Terraneo G, Metrangolo P. Halogen bonding at the wet interfaces of an amyloid peptide structure. CrystEngComm. 2018;20(36):5321–5326. doi:10.1039/C8CE01205A
  • Pizzi A, Catalano L, Demitri N, Dichiarante V, Terraneo G, Metrangolo P. Halogen bonding as a key interaction in the self‐assembly of iodinated diphenylalanine peptides. Pept Sci. 2020;112(1):e24127. doi:10.1002/pep2.24127
  • Pizzi A, Pigliacelli C, Bergamaschi G, Gori A, Metrangolo P. Biomimetic engineering of the molecular recognition and self-assembly of peptides and proteins via halogenation. Coord Chem Rev. 2020;411:213242. doi:10.1016/j.ccr.2020.213242
  • Marchetti A, Pizzi A, Bergamaschi G, et al. Fibril structure demonstrates the role of iodine labelling on a pentapeptide self-assembly. Chem Eur J. 2022;28(14):e202104089. doi:10.1002/chem.202104089
  • Bittner S, Scherzer R, Harlev E. The five bromotryptophans. Amino Acids. 2007;33(1):19–42. doi:10.1007/s00726-006-0441-8
  • Strickland M, Willis CL. Synthesis of halogenated α‐amino acids. In: Hughes AB, editor. Amino Acids, Peptides and Proteins in Organic Chemistry: Origins and Synthesis of Amino Acids. Vol. 1. Weinheim: Wiley-VCH; 2009:441–471.
  • Erak M, Bellmann-Sickert K, Els-Heindl S, Beck-Sickinger AG. Peptide chemistry toolbox - transforming natural peptides into peptide therapeutics. Bioorg Med Chem. 2018;26(10):2759–2765. doi:10.1016/j.bmc.2018.01.012
  • Li W, Separovic F, O’Brien-Simpson NM, Wade JD. Chemically modified and conjugated antimicrobial peptides against superbugs. Chem Soc Rev. 2021;50(8):4932–4973. doi:10.1039/d0cs01026j
  • Xie M, Liu D, Yang Y. Anti-cancer peptides: classification, mechanism of action, reconstruction and modification. Open Biol. 2020;10(7):200004. doi:10.1098/rsob.200004
  • Hardegger LA, Kuhn B, Spinnler B, et al. Systematic investigation of halogen bonding in protein-ligand interactions. Angew Chem Int Ed. 2011;50(1):314–318. doi:10.1002/anie.201006781
  • Parisini E, Metrangolo P, Pilati T, Resnati G, Terraneo G. Halogen bonding in halocarbon-protein complexes: a structural survey. Chem Soc Rev. 2011;40(5):2267–2278. doi:10.1039/c0cs00177e
  • Clark T, Hennemann M, Murray JS, Politzer P. Halogen bonding: the sigma-hole. Proceedings of “modeling interactions in biomolecules II”, Prague, September 5th-9th, 2005. J Mol Model. 2007;13(2):291–296. doi:10.1007/s00894-006-0130-2
  • Wilcken R, Liu X, Zimmermann MO, et al. Halogen-enriched fragment libraries as leads for drug rescue of mutant p53. J Am Chem Soc. 2012;134(15):6810–6818. doi:10.1021/ja301056a
  • Wilcken R, Zimmermann MO, Lange A, Zahn S, Boeckler FM. Using halogen bonds to address the protein backbone: a systematic evaluation. J Comput Aided Mol Des. 2012;26(8):935–945. doi:10.1007/s10822-012-9592-8
  • Lange A, Heidrich J, Zimmermann MO, Exner TE, Boeckler FM. Scaffold effects on halogen bonding strength. J Chem Inf Model. 2019;59(2):885–894. doi:10.1021/acs.jcim.8b00621
  • Zimmermann MO, Boeckler FM. Targeting the protein backbone with aryl halides: systematic comparison of halogen bonding and π⋯π interactions using N-methylacetamide. Medchemcomm. 2016;7(3):500–505. doi:10.1039/C5MD00499C
  • Zimmermann MO, Lange A, Boeckler FM. Evaluating the potential of halogen bonding in molecular design: automated scaffold decoration using the new scoring function XBScore. J Chem Inf Model. 2015;55(3):687–699. doi:10.1021/ci5007118
  • Zimmermann MO, Lange A, Zahn S, Exner TE, Boeckler FM. Using surface scans for the evaluation of halogen bonds toward the side chains of aspartate, asparagine, glutamate, and glutamine. J Chem Inf Model. 2016;56(7):1373–1383. doi:10.1021/acs.jcim.6b00075
  • Lange A, Zimmermann MO, Wilcken R, Zahn S, Boeckler FM. Targeting histidine side chains in molecular design through nitrogen-halogen bonds. J Chem Inf Model. 2013;53(12):3178–3189. doi:10.1021/ci4004305
  • Wilcken R, Zimmermann MO, Lange A, Zahn S, Kirchner B, Boeckler FM. Addressing methionine in molecular design through directed sulfur-halogen bonds. J Chem Theory Comput. 2011;7(7):2307–2315. doi:10.1021/ct200245e
  • Katagiri T, Handa M, Matsukawa Y, Dileep Kumar JS, Uneyama K. Efficient synthesis of an optically pure β-bromo-β,β-difluoroalanine derivative, a general precursor for β,β-difluoroamino acids. Tetrahedron Asymmetry. 2001;12(9):1303–1311. doi:10.1016/S0957-4166(01)00237-3
  • Suzuki A, Mae M, Amii H, Uneyama K. Catalytic route to the synthesis of optically active beta,beta-difluoroglutamic acid and beta,beta-difluoroproline derivatives. J Org Chem. 2004;69(15):5132–5134. doi:10.1021/jo049789c
  • Joerger AC, Fersht AR. Structural biology of the tumor suppressor p53. Annu Rev Biochem. 2008;77(1):557–582. doi:10.1146/annurev.biochem.77.060806.091238
  • Kirsch DG, Kastan MB. Tumor-suppressor p53: implications for tumor development and prognosis. J Clin Oncol. 1998;16(9):3158–3168. doi:10.1200/JCO.1998.16.9.3158
  • Boeckler FM, Joerger AC, Jaggi G, Rutherford TJ, Veprintsev DB, Fersht AR. Targeted rescue of a destabilized mutant of p53 by an in silico screened drug. Proc Natl Acad Sci. 2008;105(30):10360–10365. doi:10.1073/pnas.0805326105
  • Wilcken R, Wang G, Boeckler FM, Fersht AR. Kinetic mechanism of p53 oncogenic mutant aggregation and its inhibition. Proc Natl Acad Sci. 2012;109(34):13584–13589. doi:10.1073/pnas.1211550109
  • Vogel SM, Bauer MR, Joerger AC, et al. Lithocholic acid is an endogenous inhibitor of MDM4 and MDM2. Proc Natl Acad Sci. 2012;109(42):16906–16910. doi:10.1073/pnas.1215060109
  • Abdel-Halim M, Keeton AB, Gurpinar E, et al. Trisubstituted and tetrasubstituted pyrazolines as a novel class of cell-growth inhibitors in tumor cells with wild type p53. Bioorg Med Chem. 2013;21(23):7343–7356. doi:10.1016/j.bmc.2013.09.055
  • Wilcken R, Zimmermann MO, Bauer MR, et al. Experimental and theoretical evaluation of the ethynyl moiety as a halogen bioisostere. ACS Chem Biol. 2015;10(12):2725–2732. doi:10.1021/acschembio.5b00515
  • Joerger AC, Bauer MR, Wilcken R, et al. Exploiting transient protein states for the design of small-molecule stabilizers of mutant p53. Structure. 2015;23(12):2246–2255. doi:10.1016/j.str.2015.10.016
  • Bauer MR, Jones RN, Baud MGJ, et al. Harnessing fluorine-sulfur contacts and multipolar interactions for the design of p53 mutant Y220C rescue drugs. ACS Chem Biol. 2016;11(8):2265–2274. doi:10.1021/acschembio.6b00315
  • Stahlecker J, Klett T, Schwer M, et al. Revisiting a challenging p53 binding site: a diversity-optimized HEFLib reveals diverse binding modes in T-p53C-Y220C. RSC Med Chem. 2022;13(12):1575–1586. doi:10.1039/D2MD00246A
  • Li Z, Zhao H, Wan C. Cyclized Helical Peptides. Weinheim: Wiley-VCH; 2021.
  • Bell S, Klein C, Müller L, Hansen S, Buchner J. P53 contains large unstructured regions in its native state. J Mol Biol. 2002;322(5):917–927. doi:10.1016/S0022-2836(02)00848-3
  • Dawson R, Müller L, Dehner A, Klein C, Kessler H, Buchner J. The N-terminal domain of p53 is natively unfolded. J Mol Biol. 2003;332(5):1131–1141. doi:10.1016/j.jmb.2003.08.008
  • Kussie PH, Gorina S, Marechal V, et al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science. 1996;274(5289):948–953. doi:10.1126/science.274.5289.948
  • Popowicz GM, Czarna A, Holak TA. Structure of the human Mdmx protein bound to the p53 tumor suppressor transactivation domain. Cell Cycle. 2008;7(15):2441–2443. doi:10.4161/cc.6365
  • Pazgier M, Liu M, Zou G, et al. Structural basis for high-affinity peptide inhibition of p53 interactions with MDM2 and MDMX. Proc Natl Acad Sci. 2009;106(12):4665–4670. doi:10.1073/pnas.0900947106
  • Li C, Pazgier M, Li C, et al. Systematic mutational analysis of peptide inhibition of the p53-MDM2/MDMX interactions. J Mol Biol. 2010;398(2):200–213. doi:10.1016/j.jmb.2010.03.005
  • Nikolovska-Coleska Z, Wang R, Fang X, et al. Development and optimization of a binding assay for the XIAP BIR3 domain using fluorescence polarization. Anal Biochem. 2004;332(2):261–273. doi:10.1016/j.ab.2004.05.055
  • Czarna A, Popowicz GM, Pecak A, Wolf S, Dubin G, Holak TA. High affinity interaction of the p53 peptide-analogue with human Mdm2 and Mdmx. Cell Cycle. 2009;8(8):1176–1184. doi:10.4161/cc.8.8.8185
  • Schon O, Friedler A, Bycroft M, Freund SMV, Fersht AR. Molecular mechanism of the interaction between MDM2 and p53. J Mol Biol. 2002;323(3):491–501. doi:10.1016/S0022-2836(02)00852-5
  • Sánchez-Puig N, Veprintsev DB, Fersht AR. Binding of natively unfolded HIF-1alpha ODD domain to p53. Mol Cell. 2005;17(1):11–21. doi:10.1016/j.molcel.2004.11.019
  • Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys. 2010;132(15):154104. doi:10.1063/1.3382344
  • Schäfer A, Horn H, Ahlrichs R. Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J Chem Phys. 1992;97(4):2571–2577. doi:10.1063/1.463096
  • Tao J, Perdew JP, Staroverov VN, Scuseria GE. Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys Rev Lett. 2003;91(14):146401. doi:10.1103/PhysRevLett.91.146401
  • Weigend F, Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys. 2005;7(18):3297–3305. doi:10.1039/B508541A
  • TURBOMOLE V7.4.1 2019, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH; 2007. Available from http://www.turbomole.com. Accessed April 3, 2023.
  • Weber IT, Wu J, Adomat J, et al. Crystallographic analysis of human immunodeficiency virus 1 protease with an analog of the conserved CA-p2 substrate – interactions with frequently occurring glutamic acid residue at P2’ position of substrates. Eur J Biochem. 1997;249(2):523–530. doi:10.1111/j.1432-1033.1997.00523.x
  • Jung JH, Bae S, Lee JY, et al. E3 ubiquitin ligase Hades negatively regulates the exonuclear function of p53. Cell Death Differ. 2011;18(12):1865–1875. doi:10.1038/cdd.2011.57
  • Zhan YA, Wu H, Powell AT, Daughdrill GW, Ytreberg FM. Impact of the K24N mutation on the transactivation domain of p53 and its binding to murine double-minute clone 2. Proteins. 2013;81(10):1738–1747. doi:10.1002/prot.24310
  • Mizuta S, Stenhagen ISR, O’Duill M, et al. Catalytic decarboxylative fluorination for the synthesis of tri- and difluoromethyl arenes. Org Lett. 2013;15(11):2648–2651. doi:10.1021/ol4009377
  • Verhoog S, Pfeifer L, Khotavivattana T, et al. Silver-mediated 18F-labeling of aryl-CF3 and aryl-CHF2 with 18F-fluoride. Synlett. 2015;27(01):25–28. doi:10.1055/s-0035-1560592
  • Barton DHR, Crich D, Motherwell WB. The invention of new radical chain reactions. Part VIII. Radical chemistry of thiohydroxamic esters; a new method for the generation of carbon radicals from carboxylic acids. Tetrahedron. 1985;41(19):3901–3924. doi:10.1016/S0040-4020(01)97173-X
  • Khotavivattana T, Verhoog S, Tredwell M, et al. 18F-labeling of aryl-SCF3, -OCF3 and -OCHF2 with [18F]fluoride. Angew Chem Int Ed. 2015;54(34):9991–9995. doi:10.1002/anie.201504665
  • Burton DJ, Denise MW. Synthesis of bromodifluoromethyl phenyl sulfide, sulfoxide and sulfone. J Fluor Chem. 1981;18(4):573–582. doi:10.1016/S0022-1139(00)82673-1
  • Wang Y-S, Fang X, Chen H-Y, et al. Genetic incorporation of twelve meta-substituted phenylalanine derivatives using a single pyrrolysyl-tRNA synthetase mutant. ACS Chem Biol. 2013;8(2):405–415. doi:10.1021/cb300512r
  • Pearson DA, Blanchette M, Baker ML, Guindon CA. Trialkylsilanes as scavengers for the trifluoroacetic acid deblocking of protecting groups in peptide synthesis. Tetrahedron Lett. 1989;30(21):2739–2742. doi:10.1016/S0040-4039(00)99113-5
  • Popowicz GM, Czarna A, Rothweiler U, et al. Molecular basis for the inhibition of p53 by Mdmx. Cell Cycle. 2007;6(19):2386–2392. doi:10.4161/cc.6.19.4740