390
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Effect of Gabapentin-Fluoxetine Derivative GBP1F in a Murine Model of Depression, Anxiety and Cognition

, ORCID Icon, , ORCID Icon, , , & ORCID Icon show all
Pages 1793-1803 | Received 08 Mar 2023, Accepted 26 May 2023, Published online: 16 Jun 2023

References

  • Binder MR. Gabapentin—the popular but controversial anticonvulsant drug may be zeroing in on the pathophysiology of disease. AJCEM. 2021;9(4):122–134. doi:10.11648/j.ajcem.20210904.15
  • Zullino DF, Khazaal Y, Hattenschwiler J, Borgeat F, Besson J. Anticonvulsant drugs in the treatment of substance withdrawal. Drugs Today. 2004;40(7):603–620. doi:10.1358/dot.2004.40.7.850478
  • Ostadhadi S, Akbarian R, Norouzi-Javidan A, et al. Possible involvement of ATP-sensitive potassium channels in the antidepressant-like effects of gabapentin in mouse forced swimming test. Can J Physiol Pharmacol. 2017;95(7):795–802. doi:10.1139/cjpp-2016-0292
  • Ostadhadi S, Kordjazy N, Haj-Mirzaian A, Ameli S, Akhlaghipour G, Dehpour A. Involvement of NO/cGMP pathway in the antidepressant-like effect of gabapentin in mouse forced swimming test. Naunyn-Schmiedebergs Archiv Pharmacol. 2016;389:393–402. doi:10.1007/s00210-015-1203-5
  • Evoy KE, Peckham AM, Covvey JR, Tidgewell KJ. Gabapentinoid pharmacology in the context of emerging misuse liability. J Clin Pharmacol. 2021;61:S89–S99. doi:10.1002/jcph.1833
  • Rao ML, Clarenbach P, Vahlensieck M, Krätzschmar S. Gabapentin augments whole blood serotonin in healthy young men. J Neural Transm. 1988;73:129–134. doi:10.1007/BF01243384
  • Kapil V, Green JL, Le Lait M-C, Wood DM, Dargan PI. Misuse of the γ-aminobutyric acid analogues baclofen, gabapentin and pregabalin in the UK. Br J Clin Pharmacol. 2014;78(1):190. doi:10.1111/bcp.12277
  • Khave LJ, Noori M, Rahimi-Movaghar A, Noroozi A. Management of gabapentin misuse in a patient with previous history of opioid use disorder: case report. Asian J Psychiatr. 2023;80:103322. doi:10.1016/j.ajp.2022.103322
  • Venkatesh G, Kalaiyarasi C, Ramanathan M. Antidepressant like effect of gabapentin decreases the immobility time in despair animal models in mice: roll of serotonergic system in it. Res J Pharma Technol. 2011;4(11):1702–1706.
  • Türk S, Tok F, Erdoğan Ö, et al. Synthesis, anticancer evaluation and in silico ADMET studies on urea/thiourea derivatives from gabapentin. Phosphorus Sulfur Silicon Relat Elem. 2020;196(4):382–388. doi:10.1080/10426507.2020.1845678
  • Saleem MF, Khan MA, Ahmad I, Aslam N, Khurshid U. Synthesis and characterization of some new Schiff base derivatives of gabapentin, and assessment of their antibacterial, antioxidant and anticonvulsant activities. Trop J Pharma Res. 2021;20(1):145–153. doi:10.4314/tjpr.v20i1.21
  • Ahmad N, Subhan F, Islam NU, et al. Pharmacological evaluation of the gabapentin salicylaldehyde derivative, gabapentsal, against tonic and phasic pain models, inflammation, and pyrexia. Naunyn-Schmiedebergs Archiv Pharmacol. 2021;394:2033–2047. doi:10.1007/s00210-021-02118-x
  • Kanwal N, Khan IU, Sharif S, Hussain EA, Mehmood A, Sahin O. Efficient syntheses, crystal structure and thermal properties of gabapentin 4-acetamido, 2-mesitylene and 2, 4-dinitro sulfonamides derivatives. J Chem Crystallogr. 2019;49:162–168. doi:10.1007/s10870-018-00765-2
  • Papagiouvannis G, Theodosis-Nobelos P, Tziona P, Gavalas A, Kourounakis PN, Rekka EA. Gabapentin antioxidant derivatives with anti-inflammatory and neuroprotective potency. Lett Drug Des Discov. 2022;19(7):579–590. doi:10.2174/1570180818666211210161922
  • Dingman MA, Gyekis JP, Whetzel CA, Klein LC, Vandenbergh DJ. Age-specific locomotor response to nicotine in yellow and mottled yellow A vy/a mice. BMC Res Notes. 2013;6(1):497. doi:10.1186/1756-0500-6-497
  • Hall CS. Emotional behavior in the rat. I. Defecation and urination as measures of individual differences in emotionality. J Comp Psychol. 1934;18(3):385. doi:10.1037/h0071444
  • Lezak KR, Missig G, Carlezon WA. Behavioral methods to study anxiety in rodents. Dialogues Clin Neurosci. 2022;2022:154.
  • Arif M, Rauf K, Rehman NU, Tokhi A, Ikram M, Sewell RD. 6-methoxyflavone and donepezil behavioral plus neurochemical correlates in reversing chronic ethanol and withdrawal induced cognitive impairment. Drug Des Devel Ther. 2022;1573–1593. doi:10.2147/DDDT.S360677
  • Rehman NU, Abbas M, Al-Rashida M, et al. Effect of 4-fluoro-N-(4-sulfamoylbenzyl) benzene sulfonamide on acquisition and expression of nicotine-induced behavioral sensitization and striatal adenosine levels. Drug Des Devel Ther. 2020;14:3777. doi:10.2147/DDDT.S270025
  • Walia V, Garg C, Garg M. NO-sGC-cGMP signaling influence the anxiolytic like effect of lithium in mice in light and dark box and elevated plus maze. Brain Res. 2019;1704:114–126. doi:10.1016/j.brainres.2018.10.002
  • Bertagna NB, Dos Santos PGC, Queiroz RM, Fernandes GJD, Cruz FC, Miguel TT. Involvement of the ventral, but not dorsal, hippocampus in anxiety-like behaviors in mice exposed to the elevated plus maze: participation of CRF1 receptor and PKA pathway. Pharmacol Rep. 2021;73(1):57–72. doi:10.1007/s43440-020-00182-3
  • Mayorga AJ, Dalvi A, Page ME, Zimov-Levinson S, Hen R, Lucki I. Antidepressant-like behavioral effects in 5-hydroxytryptamine1A and 5-hydroxytryptamine1B receptor mutant mice. J Pharmacol Exp Therap. 2001;298(3):1101–1107.
  • Steru L, Chermat R, Thierry B, Simon P. The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology. 1985;85(3):367–370. doi:10.1007/BF00428203
  • Vadnie CA, DePoy LM, McClung CA. Measuring the effects of circadian rhythm-related manipulations on depression-like behavior in rodents: forced swim and tail suspension tests. In: Circadian Clocks. Springer; 2021:69–78.
  • Perez E, De Biasi M. Assessment of affective and somatic signs of ethanol withdrawal in C57BL/6J mice using a short-term ethanol treatment. Alcohol. 2015;49(3):237–243. doi:10.1016/j.alcohol.2015.02.003
  • Abi I, Ashiekaa M, Abi E, Adeniyi OS, Saalu LC. High fat diet alteration of gut microbiota impacts learning, memory and anxiety response in mice: cannabidiol and omega 3 possible remedies. Adv Alzheimers Dis. 2022;11(1):1–9. doi:10.4236/aad.2022.111001
  • Prieur EA, Jadavji NM. Assessing spatial working memory using the spontaneous alternation Y-maze test in aged male mice. Bio-Protocol. 2019;9(3). doi:10.21769/BioProtoc.3162
  • Rauf K, Subhan F, Sewell RD. A bacoside containing Bacopa monnieri extract reduces both morphine hyperactivity plus the elevated striatal dopamine and serotonin turnover. Phytother Res. 2012;26(5):758–763. doi:10.1002/ptr.3631
  • Martin JC, Gainer D. Psychiatric uses of gabapentin. Innov Clin Neurosci. 2022;19(7–9):55–60.
  • Berlin RK, Butler PM, Perloff MD. Gabapentin therapy in psychiatric disorders: a systematic review. Prim Care Companion CNS Disord. 2015;17(5):27293.
  • Yasmin S, Carpenter LL, Leon Z, Siniscalchi JM, Price LH. Adjunctive gabapentin in treatment-resistant depression: a retrospective chart review. J Affect Disord. 2001;63(1–3):243–247. doi:10.1016/S0165-0327(00)00187-7
  • Oka M, Itoh Y, Wada M, Yamamoto A, Fujita T. Gabapentin blocks L-type and P/Q-type Ca 2+ channels involved in depolarization-stimulated nitric oxide synthase activity in primary cultures of neurons from mouse cerebral cortex. Pharm Res. 2003;20:897–899. doi:10.1023/A:1024078704020
  • Oka M, Itoh Y, Wada M, Yamamoto A, Fujita T. A comparison of Ca2+ channel blocking mode between gabapentin and verapamil: implication for protection against hypoxic injury in rat cerebrocortical slices. Br J Pharmacol. 2003;139(2):435–443. doi:10.1038/sj.bjp.0705246
  • Rajasekaran K, Jayakumar R, Venkatachalam K. Increased neuronal nitric oxide synthase (nNOS) activity triggers picrotoxin-induced seizures in rats and evidence for participation of nNOS mechanism in the action of antiepileptic drugs. Brain Res. 2003;979(1–2):85–97. doi:10.1016/S0006-8993(03)02878-6
  • Bang S, Yoo S, Hwang SW. Gabapentin attenuates the activation of transient receptor potential A1 by cinnamaldehyde. Exp Neurobiol. 2009;18(1):1–7. doi:10.5607/en.2009.18.1.1
  • Kukkar A, Bali A, Singh N, Jaggi AS. Implications and mechanism of action of gabapentin in neuropathic pain. Arch Pharm Res. 2013;36:237–251. doi:10.1007/s12272-013-0057-y
  • Bergquist F, Jonason J, Pileblad E, Nissbrandt H. Effects of local administration of L‐, N‐, and P/Q‐type calcium channel blockers on spontaneous dopamine release in the striatum and the substantia nigra: a microdialysis study in rat. J Neurochem. 1998;70(4):1532–1540. doi:10.1046/j.1471-4159.1998.70041532.x
  • Fass DM. Regulation of L-Type Calcium (2+) Channels in Pituitary Cells. University of Pittsburgh; 1999.
  • Guiard BP, Mansari ME, Blier P. Prospect of a dopamine contribution in the next generation of antidepressant drugs: the triple reuptake inhibitors. Curr Drug Targets. 2009;10(11):1069–1084. doi:10.2174/138945009789735156
  • Prica C, Hascoet M, Bourin M. Is co-administration of bupropion with SSRIs and SNRIs in forced swimming test in mice, predictive of efficacy in resistant depression? Behav Brain Res. 2008;194(1):92–99. doi:10.1016/j.bbr.2008.06.028
  • Yamada J, Sugimoto Y, Yamada S. Involvement of dopamine receptors in the anti-immobility effects of dopamine re-uptake inhibitors in the forced swimming test. Eur J Pharmacol. 2004;504(3):207–211. doi:10.1016/j.ejphar.2004.09.057
  • Lambert G, Johansson M, Ågren H, Friberg P. Reduced brain norepinephrine and dopamine release in treatment-refractory depressive illness: evidence in support of the catecholamine hypothesis of mood disorders. Arch Gen Psychiatry. 2000;57(8):787–793. doi:10.1001/archpsyc.57.8.787
  • Terbeck S, Savulescu J, Chesterman LP, Cowen PJ. Noradrenaline effects on social behaviour, intergroup relations, and moral decisions. Neurosci Biobehav Rev. 2016;66:54–60. doi:10.1016/j.neubiorev.2016.03.031
  • Mesripour A, Sajadian S, Hajhashemi V. Antidepressant-like effect of vitamin B6 in mice forced swimming test and the possible involvement of the noradrenergic system. J Rep Pharma Sci. 2019;8(2):133. doi:10.4103/jrptps.JRPTPS_52_18
  • Estrada VB, Matsubara NK, Gomes MV, Corrêa FMA, Pelosi GG. Noradrenaline microinjected into the dorsal periaqueductal gray matter causes anxiolytic-like effects in rats tested in the elevated T-maze. Life Sci. 2016;152:94–98. doi:10.1016/j.lfs.2016.03.011
  • Rantamäki T, Hendolin P, Kankaanpää A, et al. Pharmacologically diverse antidepressants rapidly activate brain-derived neurotrophic factor receptor TrkB and induce phospholipase-Cγ signaling pathways in mouse brain. Neuropsychopharmacology. 2007;32(10):2152–2162. doi:10.1038/sj.npp.1301345
  • Kozisek ME, Middlemas D, Bylund DB. Brain-derived neurotrophic factor and its receptor tropomyosin-related kinase B in the mechanism of action of antidepressant therapies. Pharmacol Ther. 2008;117(1):30–51. doi:10.1016/j.pharmthera.2007.07.001
  • Kim IB, Park S-C. Neural circuitry–neurogenesis coupling model of depression. Int J Mol Sci. 2021;22(5):2468. doi:10.3390/ijms22052468
  • Yan Z, Rein B. Mechanisms of synaptic transmission dysregulation in the prefrontal cortex: pathophysiological implications. Mol Psychiatry. 2022;27(1):445–465. doi:10.1038/s41380-021-01092-3
  • Singh P, Mehdi MM. Functional foods, bioactives, and cognitive impairments during aging. In: Plant Bioactives as Natural Panacea Against Age-Induced Diseases. Elsevier; 2023:271–286.
  • Sharma K, Sundriyal A, Loshali A, Agrawal M, Krishna CG, Singh Y. Mechanism of action of antidepressants. In: How Synthetic Drugs Work. Elsevier; 2023:255–273.
  • Eloziia N, Kumar N, Kothiyal P, Deka P, Nayak BK. A review on antidepressant plants. J Pharma Res. 2017;11(5):382–396.
  • Yardımcı H, Demir G. The relationship of diet quality and body composition with depression level in young women. Acta Scientiarum Health Sci. 2023;45:e60410–e60410. doi:10.4025/actascihealthsci.v45i1.60410