480
Views
3
CrossRef citations to date
0
Altmetric
REVIEW

Withaferin A: A Dietary Supplement with Promising Potential as an Anti-Tumor Therapeutic for Cancer Treatment - Pharmacology and Mechanisms

, , , , , ORCID Icon, , , & show all
Pages 2909-2929 | Received 23 May 2023, Accepted 18 Aug 2023, Published online: 21 Sep 2023

References

  • Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. doi:10.3322/caac.21492
  • Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020;83(3):770–803. doi:10.1021/acs.jnatprod.9b01285
  • Dutta R, Khalil R, Green R, et al. (Ashwagandha) and Withaferin A: potential in Integrative Oncology. Int J Mol Sci. 2019;20(21):5310. doi:10.3390/ijms20215310
  • Farooqui AA, Farooqui T, Madan A, et al. Ayurvedic Medicine for the Treatment of Dementia: mechanistic Aspects. Evid Based Complement Alternat Med. 2018;2018:2481076. doi:10.1155/2018/2481076
  • Pratte MA, Nanavati KB, Young V, et al. An Alternative Treatment for Anxiety: a Systematic Review of Human Trial Results Reported for the Ayurvedic Herb Ashwagandha (Withania somnifera). J Altern Complement Med. 2014;20(12):901–908. doi:10.1089/acm.2014.0177
  • Singh RH, Narsimhamurthy K, Singh G. Neuronutrient impact of Ayurvedic Rasayana therapy in brain aging. Biogerontology. 2008;9(6):369–374. doi:10.1007/s10522-008-9185-z
  • Rege NN, Thatte UM, Dahanukar SA. Adaptogenic properties of six rasayana herbs used in Ayurvedic medicine. Phytother Res. 1999;13(4):275–291. doi:10.1002/(SICI)1099-1573(199906)13:4<275::AID-PTR510>3.0.CO;2-S
  • Dar NJ, Hamid A, Ahmad M. Pharmacologic overview of Withania somnifera, the Indian Ginseng. Cell Mol Life Sci. 2015;72(23):4445–4460. doi:10.1007/s00018-015-2012-1
  • Bhat JA, Akther T, Najar RA, et al. Withania somnifera (L.) Dunal (Ashwagandha); current understanding and future prospect as a potential drug candidate. Front Pharmacol. 2022;13:1029123. doi:10.3389/fphar.2022.1029123
  • Straughn AR, Kakar SS. Withaferin A: a potential therapeutic agent against COVID-19 infection. J Ovarian Res. 2020;13(1):79. doi:10.1186/s13048-020-00684-x
  • Kim S-H, Singh SV. Mammary cancer chemoprevention by withaferin A is accompanied by in vivo suppression of self-renewal of cancer stem cells. Cancer Prevent Res. 2014;7(7):738–747. doi:10.1158/1940-6207.CAPR-13-0445
  • Sehrawat A, Samanta SK, Hahm E-R, et al. Withaferin A-mediated apoptosis in breast cancer cells is associated with alterations in mitochondrial dynamics. Mitochondrion. 2019;47:282–293. doi:10.1016/j.mito.2019.01.003
  • Stan SD, Hahm E-R, Warin R, et al. Withaferin A Causes FOXO3a- and Bim-Dependent Apoptosis and Inhibits Growth of Human Breast Cancer Cells In vivo. Cancer Res. 2008;68(18):7661–7669. doi:10.1158/0008-5472.CAN-08-1510
  • Hahm E-R, Moura MB, Kelley EE, et al. Withaferin A-induced apoptosis in human breast cancer cells is mediated by reactive oxygen species. PLoS One. 2011;6(8):e23354. doi:10.1371/journal.pone.0023354
  • Hahm E-R, Singh SV. Autophagy fails to alter withaferin A-mediated lethality in human breast cancer cells. Curr Cancer Drug Targets. 2013;13(6):640–650. doi:10.2174/15680096113139990039
  • Lee J, Hahm E-R, Marcus AI, et al. Withaferin A inhibits experimental epithelial-mesenchymal transition in MCF-10A cells and suppresses vimentin protein level in vivo in breast tumors. Mol Carcinog. 2015;54(6):417–429. doi:10.1002/mc.22110
  • Szarc Vel Szic K, Op de Beeck K, Ratman D, et al. Pharmacological levels of Withaferin A (Withania somnifera) trigger clinically relevant anticancer effects specific to triple negative breast cancer cells. PLoS One. 2014;9(2):e87850. doi:10.1371/journal.pone.0087850
  • Lee J, Sehrawat A, Singh SV. Withaferin A causes activation of Notch2 and Notch4 in human breast cancer cells. Breast Cancer Res Treat. 2012;136(1):45–56. doi:10.1007/s10549-012-2239-6
  • Thaiparambil JT, Bender L, Ganesh T, et al. Withaferin A inhibits breast cancer invasion and metastasis at sub-cytotoxic doses by inducing vimentin disassembly and serine 56 phosphorylation. Int J Cancer. 2011;129(11):2744–2755. doi:10.1002/ijc.25938
  • Nagalingam A, Kuppusamy P, Singh SV, et al. Mechanistic elucidation of the antitumor properties of withaferin a in breast cancer. Cancer Res. 2014;74(9):2617–2629. doi:10.1158/0008-5472.CAN-13-2081
  • Lu L, Shi W, Deshmukh RR, et al. Tumor necrosis factor-α sensitizes breast cancer cells to natural products with proteasome-inhibitory activity leading to apoptosis. PLoS One. 2014;9(11):e113783. doi:10.1371/journal.pone.0113783
  • Liu W, Barnette AR, Andreansky S, et al. ERBB2 Overexpression Establishes ERBB3-Dependent Hypersensitivity of Breast Cancer Cells to Withaferin A. Mol Cancer Ther. 2016;15(11):2750–2757. doi:10.1158/1535-7163.MCT-15-0932
  • Hahm ER, Lee J, Huang Y, et al. Withaferin a suppresses estrogen receptor-α expression in human breast cancer cells. Mol Carcinog. 2011;50(8):614–624. doi:10.1002/mc.20760
  • Zhang X, Mukerji R, Samadi AK, et al. Down-regulation of estrogen receptor-alpha and rearranged during transfection tyrosine kinase is associated with withaferin a-induced apoptosis in MCF-7 breast cancer cells. BMC Complement Altern Med. 2011;11(1):84. doi:10.1186/1472-6882-11-84
  • Antony ML, Lee J, Hahm E-R, et al. Growth arrest by the antitumor steroidal lactone withaferin A in human breast cancer cells is associated with down-regulation and covalent binding at cysteine 303 of β-tubulin. J Biol Chem. 2014;289(3):1852–1865. doi:10.1074/jbc.M113.496844
  • Samanta SK, Lee J, Hahm E-R, et al. Peptidyl-prolyl cis/trans isomerase Pin1 regulates withaferin A-mediated cell cycle arrest in human breast cancer cells. Mol Carcinog. 2018;57(7):936–946. doi:10.1002/mc.22814
  • Zhang X, Timmermann B, Samadi AK, et al. Withaferin a induces proteasome-dependent degradation of breast cancer susceptibility gene 1 and heat shock factor 1 proteins in breast cancer cells. ISRN Biochem. 2012;2012:707586. doi:10.5402/2012/707586
  • Hahm ER, Singh SV. Withaferin A-induced apoptosis in human breast cancer cells is associated with suppression of inhibitor of apoptosis family protein expression. Cancer Lett. 2013;334(1):101–108. doi:10.1016/j.canlet.2012.08.026
  • Hahm ER, Lee J, Singh SV. Role of mitogen-activated protein kinases and Mcl-1 in apoptosis induction by withaferin A in human breast cancer cells. Mol Carcinog. 2014;53(11):907–916. doi:10.1002/mc.22050
  • Ghosh K, De S, Das S, et al. Withaferin A Induces ROS-Mediated Paraptosis in Human Breast Cancer Cell-Lines MCF-7 and MDA-MB-231. PLoS One. 2016;11(12):e0168488. doi:10.1371/journal.pone.0168488
  • Muniraj N, Siddharth S, Nagalingam A, et al. Withaferin A inhibits lysosomal activity to block autophagic flux and induces apoptosis via energetic impairment in breast cancer cells. Carcinogenesis. 2019. doi:10.1093/carcin/bgz015
  • Grossman EA, Ward CC, Spradlin JN, et al. Covalent Ligand Discovery against Druggable Hotspots Targeted by Anti-cancer Natural Products. Cell Chem Biol. 2017;24(11):1368–1376.e4. doi:10.1016/j.chembiol.2017.08.013
  • Sari AN, Bhargava P, Dhanjal JK, et al. Combination of Withaferin-A and CAPE Provides Superior Anticancer Potency: bioinformatics and Experimental Evidence to Their Molecular Targets and Mechanism of Action. Cancers. 2020;12(5):1160. doi:10.3390/cancers12051160
  • Munagala R, Kausar H, Munjal C, et al. Withaferin A induces p53-dependent apoptosis by repression of HPV oncogenes and upregulation of tumor suppressor proteins in human cervical cancer cells. Carcinogenesis. 2011;32(11):1697–1705. doi:10.1093/carcin/bgr192
  • Lee DH, LIM I-H, SUNG E-G, et al. Withaferin A inhibits matrix metalloproteinase-9 activity by suppressing the Akt signaling pathway. Oncol Rep. 2013;30(2):933–938. doi:10.3892/or.2013.2487
  • Sherwood LC, Aqil F, Vadhanam MV, et al. Development of a goat model for evaluation of withaferin A: cervical implants for the treatment of cervical intraepithelial neoplasia. Exp Mol Pathol. 2017;103(3):320–329. doi:10.1016/j.yexmp.2017.11.008
  • Nile SH, Nile A, Gansukh E, et al. Subcritical water extraction of withanosides and withanolides from ashwagandha (Withania somnifera L) and their biological activities. Food Chem Toxicol. 2019;132:110659. doi:10.1016/j.fct.2019.110659
  • Kakar SS, Ratajczak MZ, Powell KS, et al. Withaferin a alone and in combination with cisplatin suppresses growth and metastasis of ovarian cancer by targeting putative cancer stem cells. PLoS One. 2014;9(9):e107596. doi:10.1371/journal.pone.0107596
  • Kakar SS, Parte S, Carter K, et al. Withaferin A (WFA) inhibits tumor growth and metastasis by targeting ovarian cancer stem cells. Oncotarget. 2017;8(43):74494–74505. doi:10.18632/oncotarget.20170
  • Kakar SS, Jala VR, Fong MY. Synergistic cytotoxic action of cisplatin and withaferin A on ovarian cancer cell lines. Biochem Biophys Res Commun. 2012;423(4):819–825. doi:10.1016/j.bbrc.2012.06.047
  • Straughn AR, Kelm NQ, Kakar SS. Withaferin A and Ovarian Cancer Antagonistically Regulate Skeletal Muscle Mass. Front Cell Dev Biol. 2021;9:636498. doi:10.3389/fcell.2021.636498
  • Straughn AR, Kakar SS. Withaferin A ameliorates ovarian cancer-induced cachexia and proinflammatory signaling. J Ovarian Res. 2019;12(1):115. doi:10.1186/s13048-019-0586-1
  • Pistollato F, Calderón Iglesias R, Ruiz R, et al. The use of natural compounds for the targeting and chemoprevention of ovarian cancer. Cancer Lett. 2017;411:191–200. doi:10.1016/j.canlet.2017.09.050
  • Kakar SS, Worth CA, Wang Z, et al. DOXIL when combined with Withaferin A (WFA) targets ALDH1 positive cancer stem cells in ovarian cancer. J Cancer Stem Cell Res. 2016;4.
  • Fong MY, Jin S, Rane M, et al. Withaferin A synergizes the therapeutic effect of doxorubicin through ROS-mediated autophagy in ovarian cancer. PLoS One. 2012;7(7):e42265. doi:10.1371/journal.pone.0042265
  • Zhang X, Samadi AK, Roby KF, et al. Inhibition of cell growth and induction of apoptosis in ovarian carcinoma cell lines CaOV3 and SKOV3 by natural withanolide Withaferin A. Gynecol Oncol. 2012;124(3):606–612. doi:10.1016/j.ygyno.2011.11.044
  • Perestelo NR, Llanos GG, Reyes CP, et al. Expanding the Chemical Space of Withaferin A by Incorporating Silicon To Improve Its Clinical Potential on Human Ovarian Carcinoma Cells. J Med Chem. 2019;62(9):4571–4585. doi:10.1021/acs.jmedchem.9b00146
  • Hahm ER, Singh SV. Cytoprotective autophagy induction by withaferin A in prostate cancer cells involves GABARAPL1. Mol Carcinog. 2020;59(10):1105–1115. doi:10.1002/mc.23240
  • Moselhy J, Suman S, Alghamdi M, et al. Withaferin A Inhibits Prostate Carcinogenesis in a PTEN-deficient Mouse Model of Prostate Cancer. Neoplasia. 2017;19(6):451–459. doi:10.1016/j.neo.2017.04.005
  • Kumar R, Nayak D, Somasekharan SP. SILAC-based quantitative MS approach reveals Withaferin A regulated proteins in prostate cancer. J Proteomics. 2021;247:104334. doi:10.1016/j.jprot.2021.104334
  • Roy RV, Suman S, Das TP, et al. Withaferin A, a Steroidal Lactone from Withania somnifera, Induces Mitotic Catastrophe and Growth Arrest in Prostate Cancer Cells. J Nat Prod. 2013;76(10):1909–1915. doi:10.1021/np400441f
  • Nishikawa Y, Okuzaki D, Fukushima K, et al. Withaferin A Induces Cell Death Selectively in Androgen-Independent Prostate Cancer Cells but Not in Normal Fibroblast Cells. PLoS One. 2015;10(7):e0134137. doi:10.1371/journal.pone.0134137
  • Kim SH, Singh KB, Hahm E-R, et al. Withania somnifera root extract inhibits fatty acid synthesis in prostate cancer cells. J Tradit Complement Med. 2020;10(3):188–197. doi:10.1016/j.jtcme.2020.02.002
  • Setty Balakrishnan A, Nathan AA, Kumar M, et al. Withania somnifera targets interleukin-8 and cyclooxygenase-2 in human prostate cancer progression. Prostate Int. 2017;5(2):75–83. doi:10.1016/j.prnil.2017.03.002
  • Kim SH, Hahm E-R, Singh KB, et al. RNA-seq reveals novel mechanistic targets of withaferin A in prostate cancer cells. Carcinogenesis. 2020;41(6):778–789. doi:10.1093/carcin/bgaa009
  • Srinivasan S, Ranga RS, Burikhanov R, et al. Par-4-dependent apoptosis by the dietary compound withaferin A in prostate cancer cells. Cancer Res. 2007;67(1):246–253. doi:10.1158/0008-5472.CAN-06-2430
  • Das TP, Suman S, Alatassi H, et al. Inhibition of AKT promotes FOXO3a-dependent apoptosis in prostate cancer. Cell Death Dis. 2016;7(2):e2111. doi:10.1038/cddis.2015.403
  • Siddique AA, Joshi P, Misra L, et al. 5,6-De-epoxy-5-en-7-one-17-hydroxy withaferin A, a new cytotoxic steroid from Withania somnifera L. Dunal leaves. Nat Prod Res. 2014;28(6):392–398. doi:10.1080/14786419.2013.871545
  • Um HJ, Min K-J, Kim DE, et al. Withaferin A inhibits JAK/STAT3 signaling and induces apoptosis of human renal carcinoma Caki cells. Biochem Biophys Res Commun. 2012;427(1):24–29. doi:10.1016/j.bbrc.2012.08.133
  • Choi MJ, Park EJ, Min KJ, et al. Endoplasmic reticulum stress mediates withaferin A-induced apoptosis in human renal carcinoma cells. Toxicol In Vitro. 2011;25(3):692–698. doi:10.1016/j.tiv.2011.01.010
  • Xia S, Miao Y, Liu S. Withaferin A induces apoptosis by ROS-dependent mitochondrial dysfunction in human colorectal cancer cells. Biochem Biophys Res Commun. 2018;503(4):2363–2369. doi:10.1016/j.bbrc.2018.06.162
  • Choi BY, Kim B-W. Withaferin-A Inhibits Colon Cancer Cell Growth by Blocking STAT3 Transcriptional Activity. J Cancer Prevention. 2015;20(3):185–192. doi:10.15430/JCP.2015.20.3.185
  • Suman S, Das TP, Sirimulla S, et al. Withaferin-A suppress AKT induced tumor growth in colorectal cancer cells. Oncotarget. 2016;7(12):13854–13864. doi:10.18632/oncotarget.7351
  • Alnuqaydan AM, Rah B, Almutary AG, et al. Synergistic antitumor effect of 5-fluorouracil and withaferin-A induces endoplasmic reticulum stress-mediated autophagy and apoptosis in colorectal cancer cells. Am J Cancer Res. 2020;10(3):799–815.
  • Chung SS, Wu Y, Okobi Q, et al. Proinflammatory Cytokines IL-6 and TNF- α Increased Telomerase Activity through NF- κ B/STAT1/STAT3 Activation, and Withaferin A Inhibited the Signaling in Colorectal Cancer Cells. Mediators Inflamm. 2017;2017:5958429. doi:10.1155/2017/5958429
  • Das T, Roy KS, Chakrabarti T, et al. Withaferin A modulates the Spindle assembly checkpoint by degradation of Mad2-Cdc20 complex in colorectal cancer cell lines. Biochem Pharmacol. 2014;91(1):31–39. doi:10.1016/j.bcp.2014.06.022
  • Koduru S, Kumar R, Srinivasan S, et al. Notch-1 inhibition by Withaferin-A: a therapeutic target against colon carcinogenesis. Mol Cancer Ther. 2010;9(1):202–210. doi:10.1158/1535-7163.MCT-09-0771
  • Li X, Zhu F, Jiang J, et al. Simultaneous inhibition of the ubiquitin-proteasome system and autophagy enhances apoptosis induced by ER stress aggravators in human pancreatic cancer cells. Autophagy. 2016;12(9):1521–1537. doi:10.1080/15548627.2016.1191722
  • Yu Y, Hamza A, Zhang T, et al. Withaferin A targets heat shock protein 90 in pancreatic cancer cells. Biochem Pharmacol. 2010;79(4):542–551. doi:10.1016/j.bcp.2009.09.017
  • Aliebrahimi S, Kouhsari SM, Arab SS, et al. Phytochemicals, withaferin A and carnosol, overcome pancreatic cancer stem cells as c-Met inhibitors. Biomed Pharmacother. 2018;106:1527–1536. doi:10.1016/j.biopha.2018.07.055
  • Liu X, Qi W, Cooke LS, et al. An analog of withaferin A activates the MAPK and glutathione “stress” pathways and inhibits pancreatic cancer cell proliferation. Cancer Invest. 2011;29(10):668–675. doi:10.3109/07357907.2011.626478
  • Gu M, Yu Y, Gunaherath GMKB, et al. Structure-activity relationship (SAR) of withanolides to inhibit Hsp90 for its activity in pancreatic cancer cells. Invest New Drugs. 2014;32(1):68–74. doi:10.1007/s10637-013-9987-y
  • Li X, Zhu F, Jiang J, et al. Synergistic antitumor activity of withaferin A combined with oxaliplatin triggers reactive oxygen species-mediated inactivation of the PI3K/AKT pathway in human pancreatic cancer cells. Cancer Lett. 2015;357(1):219–230. doi:10.1016/j.canlet.2014.11.026
  • Shiragannavar VD, Gowda NGS, Kumar DP, et al. Withaferin A Acts as a Novel Regulator of Liver X Receptor-α in HCC. Front Oncol. 2020;10:628506. doi:10.3389/fonc.2020.628506
  • Siddharth S, Muniraj N, Saxena N, et al. Concomitant Inhibition of Cytoprotective Autophagy Augments the Efficacy of Withaferin A in Hepatocellular Carcinoma. Cancers. 2019;11(4):453. doi:10.3390/cancers11040453
  • Hsu JH. Identification of Withaferin A as a Potential Candidate for Anti-Cancer Therapy in Non-Small Cell Lung Cancer. Cancers. 2019;11(7):1003. doi:10.3390/cancers11071003
  • Kyakulaga AH, Aqil F, Munagala R, et al. Withaferin A inhibits Epithelial to Mesenchymal Transition in Non-Small Cell Lung Cancer Cells. Sci Rep. 2018;8(1):15737. doi:10.1038/s41598-018-34018-1
  • Lin CC, Yang T-Y, Lu H-J, et al. Attenuating role of withaferin A in the proliferation and migration of lung cancer cells via a p53-miR-27a/miR-10b pathway. Oncol Lett. 2021;21(3):232. doi:10.3892/ol.2021.12493
  • Jan YH, Lai T-C, Yang C-J, et al. Adenylate kinase 4 modulates oxidative stress and stabilizes HIF-1α to drive lung adenocarcinoma metastasis. J Hematol Oncol. 2019;12(1):12. doi:10.1186/s13045-019-0698-5
  • Kyakulaga AH, Aqil F, Munagala R, et al. Synergistic combinations of paclitaxel and withaferin A against human non-small cell lung cancer cells. Oncotarget. 2020;11(16):1399–1416. doi:10.18632/oncotarget.27519
  • Cai Y, Sheng Z-Y, Chen Y, et al. Effect of Withaferin A on A549 cellular proliferation and apoptosis in non-small cell lung cancer. Asian Pac J Cancer Prev. 2014;15(4):1711–1714. doi:10.7314/APJCP.2014.15.4.1711
  • Malik V, Kumar V, Kaul SC, et al. Computational Insights into the Potential of Withaferin-A, Withanone and Caffeic Acid Phenethyl Ester for Treatment of Aberrant-EGFR Driven Lung Cancers. Biomolecules. 2021;11(2):160. doi:10.3390/biom11020160
  • Liu X, Chen L, Liang T, et al. Withaferin A induces mitochondrial-dependent apoptosis in non-small cell lung cancer cells via generation of reactive oxygen species. J buon. 2017;22(1):244–250.
  • Choudhary MI, Hussain S, Yousuf S, Dar A. Chlorinated and diepoxy withanolides from Withania somnifera and their cytotoxic effects against human lung cancer cell line. Phytochemistry. 2010;71(17–18):2205–2209. doi:10.1016/j.phytochem.2010.08.019
  • Rossato Viana A, Godoy Noro B, Lenz JC, et al. Cytotoxic screening and antibacterial activity of Withaferin A. J Toxicol Environ Health A. 2022;85(16):685–698. doi:10.1080/15287394.2022.2071787
  • Llanos GG, Araujo LM, Jiménez IA, et al. Withaferin A-related steroids from Withania aristata exhibit potent antiproliferative activity by inducing apoptosis in human tumor cells. Eur J Med Chem. 2012;54:499–511. doi:10.1016/j.ejmech.2012.05.032
  • Cohen SM, Mukerji R, Timmermann BN, et al. A novel combination of withaferin A and sorafenib shows synergistic efficacy against both papillary and anaplastic thyroid cancers. Am J Surg. 2012;204(6):895–900. doi:10.1016/j.amjsurg.2012.07.027
  • Shin JA, Kim L-H, Ryu MH, et al. Withaferin A mitigates metastatic traits in human oral squamous cell carcinoma caused by aberrant claudin-1 expression. Cell Biol Toxicol. 2022;38(1):147–165. doi:10.1007/s10565-021-09584-2
  • Panjamurthy K, Manoharan S, Nirmal MR, et al. Protective role of Withaferin-A on immunoexpression of p53 and bcl-2 in 7,12-dimethylbenz(a)anthracene-induced experimental oral carcinogenesis. Invest New Drugs. 2009;27(5):447–452. doi:10.1007/s10637-008-9199-z
  • Yu TJ, Tang J-Y, Ou-Yang F, et al. Low Concentration of Withaferin a Inhibits Oxidative Stress-Mediated Migration and Invasion in Oral Cancer Cells. Biomolecules. 2020;10(5):777. doi:10.3390/biom10050777
  • Peng SY, Wang YY, Lan TH, et al. Low Dose Combined Treatment with Ultraviolet-C and Withaferin a Enhances Selective Killing of Oral Cancer Cells. Antioxidants. 2020;9(11):1120.
  • Chang HW, Li R-N, Wang H-R, et al. Withaferin A Induces Oxidative Stress-Mediated Apoptosis and DNA Damage in Oral Cancer Cells. Front Physiol. 2017;8:634. doi:10.3389/fphys.2017.00634
  • Samadi AK, Cohen SM, Mukerji R, et al. Natural withanolide withaferin A induces apoptosis in uveal melanoma cells by suppression of Akt and c-MET activation. Tumour Biol. 2012;33(4):1179–1189. doi:10.1007/s13277-012-0363-x
  • Xu K, Zhang C, Li Y, et al. Withaferin A suppresses skin tumor promotion by inhibiting proteasome-dependent isocitrate dehydrogenase 1 degradation. Transl Cancer Res. 2019;8(6):2449–2460. doi:10.21037/tcr.2019.09.57
  • Li W, Zhao Y. Withaferin A suppresses tumor promoter 12-O-tetradecanoylphorbol 13-acetate-induced decreases in isocitrate dehydrogenase 1 activity and mitochondrial function in skin epidermal JB6 cells. Cancer Sci. 2013;104(2):143–148. doi:10.1111/cas.12051
  • McKenna MK, Gachuki BW, Alhakeem SS, et al. Anti-cancer activity of withaferin A in B-cell lymphoma. Cancer Biol Ther. 2015;16(7):1088–1098. doi:10.1080/15384047.2015.1046651
  • Clesham K, Walf-Vorderwülbecke V, Gasparoli L, et al. Identification of a c-MYB-directed therapeutic for acute myeloid leukemia. Leukemia. 2022;36(6):1541–1549. doi:10.1038/s41375-022-01554-9
  • Yang ES, Choi MJ, Kim JH, et al. Combination of withaferin A and X-ray irradiation enhances apoptosis in U937 cells. Toxicol In Vitro. 2011;25(8):1803–1810. doi:10.1016/j.tiv.2011.09.016
  • Okamoto S, Tsujioka T, Suemori S-I, et al. Withaferin A suppresses the growth of myelodysplasia and leukemia cell lines by inhibiting cell cycle progression. Cancer Sci. 2016;107(9):1302–1314. doi:10.1111/cas.12988
  • Malik F, Kumar A, Bhushan S, et al. Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic cell death of human myeloid leukemia HL-60 cells by a dietary compound withaferin A with concomitant protection by N-acetyl cysteine. Apoptosis. 2007;12(11):2115–2133. doi:10.1007/s10495-007-0129-x
  • Hassannia B, Wiernicki B, Ingold I, et al. Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma. J Clin Invest. 2018;128(8):3341–3355. doi:10.1172/JCI99032
  • Yco LP, Mocz G, Opoku-Ansah J, et al. Withaferin A Inhibits STAT3 and Induces Tumor Cell Death in Neuroblastoma and Multiple Myeloma. Biochem Insights. 2014;7:1–13. doi:10.4137/BCI.S18863
  • Tang Q, Ren L, Liu J, et al. Withaferin A triggers G2/M arrest and intrinsic apoptosis in glioblastoma cells via ATF4-ATF3-CHOP axis. Cell Prolif. 2020;53(1):e12706. doi:10.1111/cpr.12706
  • Shah N, Kataria H, Kaul SC, et al. Effect of the alcoholic extract of Ashwagandha leaves and its components on proliferation, migration, and differentiation of glioblastoma cells: combinational approach for enhanced differentiation. Cancer Sci. 2009;100(9):1740–1747. doi:10.1111/j.1349-7006.2009.01236.x
  • Grogan PT, Sleder KD, Samadi AK, et al. Cytotoxicity of withaferin A in glioblastomas involves induction of an oxidative stress-mediated heat shock response while altering Akt/mTOR and MAPK signaling pathways. Invest New Drugs. 2013;31(3):545–557. doi:10.1007/s10637-012-9888-5
  • Chang E, Pohling C, Beygui N, et al. Synergistic inhibition of glioma cell proliferation by Withaferin A and tumor treating fields. J Neurooncol. 2017;134(2):259–268. doi:10.1007/s11060-017-2534-5
  • Grogan PT, Sarkaria JN, Timmermann BN, et al. Oxidative cytotoxic agent withaferin A resensitizes temozolomide-resistant glioblastomas via MGMT depletion and induces apoptosis through Akt/mTOR pathway inhibitory modulation. Invest New Drugs. 2014;32(4):604–617. doi:10.1007/s10637-014-0084-7
  • Chang E, Pohling C, Natarajan A, et al. AshwaMAX and Withaferin A inhibits gliomas in cellular and murine orthotopic models. J Neurooncol. 2016;126(2):253–264. doi:10.1007/s11060-015-1972-1
  • Shohat B, Shaltiel A, Ben-Bassat M, et al. The effect of withaferin A, a natural steroidal lactone, on the fine structure of S-180 tumor cells. Cancer Lett. 1976;2(2):71–77. doi:10.1016/S0304-3835(76)80014-6
  • Li AX, Sun M, Li X. Withaferin-A induces apoptosis in osteosarcoma U2OS cell line via generation of ROS and disruption of mitochondrial membrane potential. Eur Rev Med Pharmacol Sci. 2017;21(6):1368–1374.
  • Yang H, Wang Y, Cheryan VT, et al. Withaferin A inhibits the proteasome activity in mesothelioma in vitro and in vivo. PLoS One. 2012;7(8):e41214. doi:10.1371/journal.pone.0041214
  • Nagy Z, Cheung BB, Tsang W, et al. Withaferin A activates TRIM16 for its anti-cancer activity in melanoma. Sci Rep. 2020;10(1):19724. doi:10.1038/s41598-020-76722-x
  • Mayola E, Gallerne C, Esposti DD, et al. Withaferin A induces apoptosis in human melanoma cells through generation of reactive oxygen species and down-regulation of Bcl-2. Apoptosis. 2011;16(10):1014–1027. doi:10.1007/s10495-011-0625-x
  • Kalthur G, Pathirissery UD. Enhancement of the response of B16F1 melanoma to fractionated radiotherapy and prolongation of survival by withaferin A and/or hyperthermia. Integr Cancer Ther. 2010;9(4):370–377. doi:10.1177/1534735410378664
  • Kalthur G, Mutalik S, Pathirissery UD. Effect of Withaferin A on the development and decay of thermotolerance in B16F1 melanoma: a preliminary study. Integr Cancer Ther. 2009;8(1):93–97. doi:10.1177/1534735408330715
  • Subramanian C, Zhang H, Gallagher R, et al. Withanolides are potent novel targeted therapeutic agents against adrenocortical carcinomas. World J Surg. 2014;38(6):1343–1352. doi:10.1007/s00268-014-2532-0
  • Samadi AK, Tong X, Mukerji R, et al. Withaferin A, a Cytotoxic Steroid from Vassobia breviflora, Induces Apoptosis in Human Head and Neck Squamous Cell Carcinoma. J Nat Prod. 2010;73(9):1476–1481. doi:10.1021/np100112p
  • Kim G, Kim T-H, Hwang E-H, et al. Withaferin A inhibits the proliferation of gastric cancer cells by inducing G2/M cell cycle arrest and apoptosis. Oncol Lett. 2017;14(1):416–422. doi:10.3892/ol.2017.6169
  • Xu K, Shi H, Du Y, Ou J. Withaferin A inhibits proliferation of human endometrial cancer cells via transforming growth factor-β (TGF-β) signalling. Biotech. 2021;11(7):323.
  • Liu X, Li Y, Ma Q, et al. Withaferin-A Inhibits Growth of Drug-Resistant Breast Carcinoma by Inducing Apoptosis and Autophagy, Endogenous Reactive Oxygen Species (ROS) Production, and Inhibition of Cell Migration and Nuclear Factor kappa B (Nf-κB)/Mammalian Target of Rapamycin (m-TOR) Signalling Pathway. Med Sci Monit. 2019;25:6855–6863. doi:10.12659/MSM.916931
  • Kim SH, Hahm E-R, Arlotti JA, et al. Withaferin A inhibits in vivo growth of breast cancer cells accelerated by Notch2 knockdown. Breast Cancer Res Treat. 2016;157(1):41–54. doi:10.1007/s10549-016-3795-y
  • Ur Rasool R, Rah B, Amin H, et al. Dual modulation of Ras-Mnk and PI3K-AKT-mTOR pathways: a Novel c-FLIP inhibitory mechanism of 3-AWA mediated translational attenuation through dephosphorylation of eIF4E. Sci Rep. 2016;6(1):18800. doi:10.1038/srep18800
  • Yang Z, Garcia A, Xu S, et al. Withania somnifera root extract inhibits mammary cancer metastasis and epithelial to mesenchymal transition. PLoS One. 2013;8(9):e75069. doi:10.1371/journal.pone.0075069
  • Samanta SK, Sehrawat A, Kim S-H, et al. Disease Subtype-Independent Biomarkers of Breast Cancer Chemoprevention by the Ayurvedic Medicine Phytochemical Withaferin A. J Natl Cancer Inst. 2017;109(6):djw293. doi:10.1093/jnci/djw293
  • Yang H, Shi G, Dou QP. The tumor proteasome is a primary target for the natural anticancer compound Withaferin A isolated from “Indian winter cherry”. Mol Pharmacol. 2007;71(2):426–437. doi:10.1124/mol.106.030015
  • Suman S, Das TP, Moselhy J, et al. Oral administration of withaferin A inhibits carcinogenesis of prostate in TRAMP model. Oncotarget. 2016;7(33):53751–53761. doi:10.18632/oncotarget.10733
  • Chandrasekaran B, Pal D, Kolluru V, et al. The chemopreventive effect of withaferin A on spontaneous and inflammation-associated colon carcinogenesis models. Carcinogenesis. 2018;39(12):1537–1547. doi:10.1093/carcin/bgy109
  • Kuppusamy P, Nagalingam A, Muniraj N, et al. Concomitant activation of ETS-like transcription factor-1 and Death Receptor-5 via extracellular signal-regulated kinase in withaferin A-mediated inhibition of hepatocarcinogenesis in mice. Sci Rep. 2017;7(1):17943. doi:10.1038/s41598-017-18190-4
  • Kunimasa K, Nagano T, Shimono Y, et al. Glucose metabolism-targeted therapy and withaferin A are effective for epidermal growth factor receptor tyrosine kinase inhibitor-induced drug-tolerant persisters. Cancer Sci. 2017;108(7):1368–1377. doi:10.1111/cas.13266
  • Samadi AK, Mukerji R, Shah A, et al. A novel RET inhibitor with potent efficacy against medullary thyroid cancer in vivo. Surgery. 2010;148(6):1228–1236. doi:10.1016/j.surg.2010.09.026
  • Manoharan S, Panjamurthy K, Balakrishnan S, et al. Circadian time-dependent chemopreventive potential of withaferin-A in 7,12-dimethylbenz[a]anthracene-induced oral carcinogenesis. Pharmacol Rep. 2009;61(4):719–726. doi:10.1016/S1734-1140(09)70125-2
  • Manoharan S, Panjamurthy K, Menon VP, et al. Protective effect of Withaferin-A on tumour formation in 7,12-dimethylbenz[a]anthracene induced oral carcinogenesis in hamsters. Indian J Exp Biol. 2009;47(1):16–23.
  • Li W, Zhang C, Du H, et al. Withaferin A suppresses the up-regulation of acetyl-coA carboxylase 1 and skin tumor formation in a skin carcinogenesis mouse model. Mol Carcinog. 2016;55(11):1739–1746. doi:10.1002/mc.22423
  • Sanchez-Martin M, Ambesi-Impiombato A, Qin Y, et al. Synergistic antileukemic therapies in NOTCH1 -induced T-ALL. Proc Natl Acad Sci U S A. 2017;114(8):2006–2011. doi:10.1073/pnas.1611831114
  • Amin H, Nayak D, Ur Rasool R, et al. Par-4 dependent modulation of cellular β-catenin by medicinal plant natural product derivative 3-azido Withaferin A. Mol Carcinog. 2016;55(5):864–881. doi:10.1002/mc.22328
  • Agarwalla P, Mukherjee S, Sreedhar B, et al. Glucocorticoid receptor-mediated delivery of nano gold-withaferin conjugates for reversal of epithelial-to-mesenchymal transition and tumor regression. Nanomedicine. 2016;11(19):2529–2546. doi:10.2217/nnm-2016-0224
  • Uma Devi P, Kamath R. Radiosensitizing effect of withaferin A combined with hyperthermia on mouse fibrosarcoma and melanoma. J Radiat Res. 2003;44(1):1–6. doi:10.1269/jrr.44.1
  • Sharada AC, Solomon FE, Devi PU, et al. Antitumor and radiosensitizing effects of withaferin A on mouse Ehrlich ascites carcinoma in vivo. Acta Oncol. 1996;35(1):95–100. doi:10.3109/02841869609098486
  • Devi PU, Sharada AC, Solomon FE. In vivo growth inhibitory and radiosensitizing effects of withaferin A on mouse Ehrlich ascites carcinoma. Cancer Lett. 1995;95(1–2):189–193. doi:10.1016/0304-3835(95)03892-Z
  • Shohat B, Joshua H. Effect of withaferin A on Ehrlich ascites tumor cells. II. Target tumor cell destruction in vivo by immune activation. Int J Cancer. 1971;8(3):487–496. doi:10.1002/ijc.2910080317
  • Gupta RC, Bansal SS, Aqil F, et al. Controlled-release systemic delivery - A new concept in cancer chemoprevention. Carcinogenesis. 2012;33(8):1608–1615. doi:10.1093/carcin/bgs209
  • Pires N, Gota V, Gulia A, et al. Safety and pharmacokinetics of Withaferin-A in advanced stage high grade osteosarcoma: a phase I trial. J Ayurveda Integr Med. 2020;11(1):68–72. doi:10.1016/j.jaim.2018.12.008
  • Malik V, Radhakrishnan N, Kaul SC, et al. Computational Identification of BCR-ABL Oncogenic Signaling as a Candidate Target of Withaferin A and Withanone. Biomolecules. 2022;12(2):212. doi:10.3390/biom12020212
  • Kalra RS, Kumar V, Dhanjal JK, et al. COVID19-inhibitory activity of withanolides involves targeting of the host cell surface receptor ACE2: insights from computational and biochemical assays. J Biomol Struct Dyn. 2022;40(17):7885–7898. doi:10.1080/07391102.2021.1902858
  • Surya Ulhas R, Malaviya A. In-silico validation of novel therapeutic activities of withaferin a using molecular docking and dynamics studies. J Biomol Struct Dyn. 2022;1–12. doi:10.1080/07391102.2022.2078410
  • Bargagna-Mohan P, Hamza A, Kim Y-E, et al. The tumor inhibitor and antiangiogenic agent withaferin A targets the intermediate filament protein vimentin. Chem Biol. 2007;14(6):623–634. doi:10.1016/j.chembiol.2007.04.010
  • Falsey RR, Marron MT, Gunaherath GMKB, et al. Actin microfilament aggregation induced by withaferin A is mediated by annexin II. Nat Chem Biol. 2006;2(1):33–38. doi:10.1038/nchembio755
  • Ozorowski G, Ryan CM, Whitelegge JP, et al. Withaferin A binds covalently to the N-terminal domain of annexin A2. Biol Chem. 2012;393(10):1151–1163. doi:10.1515/hsz-2012-0184
  • Stewart JA, Bhagwat AS. A redox-sensitive iron-sulfur cluster in murine FAM72A controls its ability to degrade the nuclear form of uracil-DNA glycosylase. DNA Repair (Amst). 2022;118:103381. doi:10.1016/j.dnarep.2022.103381
  • Vanden Berghe W, Sabbe L, Kaileh M, et al. Molecular insight in the multifunctional activities of Withaferin A. Biochem Pharmacol. 2012;84(10):1282–1291. doi:10.1016/j.bcp.2012.08.027
  • Lee I-C, Choi BY. Withaferin-A--A Natural Anticancer Agent with Pleitropic Mechanisms of Action. Int J Mol Sci. 2016;17(3):290. doi:10.3390/ijms17030290
  • Chirumamilla CS, Pérez-Novo C, Van Ostade X, et al. Molecular insights into cancer therapeutic effects of the dietary medicinal phytochemical withaferin A. Proc Nutr Soc. 2017;76(2):96–105. doi:10.1017/S0029665116002937
  • Stan SD, Zeng Y, Singh SV. Ayurvedic medicine constituent withaferin a causes G2 and M phase cell cycle arrest in human breast cancer cells. Nutr Cancer. 2008;60(Suppl 1):51–60. doi:10.1080/01635580802381477
  • Green DR. Apoptotic pathways: paper wraps stone blunts scissors. Cell. 2000;102(1):1–4. doi:10.1016/S0092-8674(00)00003-9
  • Anichini A, Mortarini R, Sensi M, et al. APAF-1 signaling in human melanoma. Cancer Lett. 2006;238(2):168–179. doi:10.1016/j.canlet.2005.06.034
  • Mandal C, Dutta A, Mallick A, et al. Withaferin A induces apoptosis by activating p38 mitogen-activated protein kinase signaling cascade in leukemic cells of lymphoid and myeloid origin through mitochondrial death cascade. Apoptosis. 2008;13(12):1450–1464. doi:10.1007/s10495-008-0271-0
  • Ichikawa H, Takada Y, Shishodia S, et al. Withanolides potentiate apoptosis, inhibit invasion, and abolish osteoclastogenesis through suppression of nuclear factor-kappaB (NF-kappaB) activation and NF-kappaB-regulated gene expression. Mol Cancer Ther. 2006;5(6):1434–1445. doi:10.1158/1535-7163.MCT-06-0096
  • Zhang X, Zhang L, Yang H, et al. c-Fos as a proapoptotic agent in TRAIL-induced apoptosis in prostate cancer cells. Cancer Res. 2007;67(19):9425–9434. doi:10.1158/0008-5472.CAN-07-1310
  • Krueger A, Schmitz I, Baumann S, et al. Cellular FLICE-inhibitory protein splice variants inhibit different steps of caspase-8 activation at the CD95 death-inducing signaling complex. J Biol Chem. 2001;276(23):20633–20640. doi:10.1074/jbc.M101780200
  • Fukazawa T, Fujiwara T, Uno F, et al. Accelerated degradation of cellular FLIP protein through the ubiquitin-proteasome pathway in p53-mediated apoptosis of human cancer cells. Oncogene. 2001;20(37):5225–5231. doi:10.1038/sj.onc.1204673
  • Woo SM, Min K-J, Kim S, et al. Axl is a novel target of withaferin A in the induction of apoptosis and the suppression of invasion. Biochem Biophys Res Commun. 2014;451(3):455–460. doi:10.1016/j.bbrc.2014.08.018
  • Li L, Niu B, Zhang W, et al. Withaferin A inhibits cell proliferation of U266B1 and IM-9 human myeloma cells by inducing intrinsic apoptosis. Acta Biochim Pol. 2022;69(1):197–203. doi:10.18388/abp.2020_5938
  • Su M, Mei Y, Sinha S. Role of the Crosstalk between Autophagy and Apoptosis in Cancer. J Oncol. 2013;2013:102735. doi:10.1155/2013/102735
  • Bommareddy A, Hahm E-R, Xiao D, et al. Atg5 regulates phenethyl isothiocyanate-induced autophagic and apoptotic cell death in human prostate cancer cells. Cancer Res. 2009;69(8):3704–3712. doi:10.1158/0008-5472.CAN-08-4344
  • Jung YY, Um J-Y, Chinnathambi A, et al. Withanolide modulates the potential crosstalk between apoptosis and autophagy in different colorectal cancer cell lines. Eur J Pharmacol. 2022;928:175113. doi:10.1016/j.ejphar.2022.175113
  • Hassannia B, Vandenabeele P, Vanden Berghe T. Targeting Ferroptosis to Iron Out Cancer. Cancer Cell. 2019;35(6):830–849. doi:10.1016/j.ccell.2019.04.002
  • Dixon SJ, Lemberg K, Lamprecht M, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060–1072. doi:10.1016/j.cell.2012.03.042
  • Brigelius-Flohé R, Maiorino M. Glutathione peroxidases. Biochim Biophys Acta. 2013;1830(5):3289–3303. doi:10.1016/j.bbagen.2012.11.020
  • Logie E, Novo CP, Driesen A, et al. Phosphocatalytic Kinome Activity Profiling of Apoptotic and Ferroptotic Agents in Multiple Myeloma Cells. Int J Mol Sci. 2021;22(23):12731. doi:10.3390/ijms222312731
  • Nishi M, Akutsu H, Kudoh A, et al. Induced cancer stem-like cells as a model for biological screening and discovery of agents targeting phenotypic traits of cancer stem cell. Oncotarget. 2014;5(18):8665–8680. doi:10.18632/oncotarget.2356
  • Bolós V, Peinado H, Perez-Moreno MA, et al. The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J Cell Sci. 2003;116(Pt 3):499–511. doi:10.1242/jcs.00224
  • Winter M, Meignan S, Völkel P, et al. Vimentin Promotes the Aggressiveness of Triple Negative Breast Cancer Cells Surviving Chemotherapeutic Treatment. Cells. 2021;10(6):1504. doi:10.3390/cells10061504
  • Chaudhary A, Kalra RS, Malik V, et al. 2, 3-Dihydro-3β-methoxy Withaferin-A Lacks Anti-Metastasis Potency: bioinformatics and Experimental Evidences. Sci Rep. 2019;9(1):17344. doi:10.1038/s41598-019-53568-6
  • Mohan R, Hammers H, Bargagna-mohan P, et al. Withaferin A is a potent inhibitor of angiogenesis. Angiogenesis. 2004;7(2):115–122. doi:10.1007/s10456-004-1026-3
  • Prasanna KS, Shilpa P, Salimath BP. Withaferin A suppresses the expression of vascular endothelial growth factor in Ehrlich ascites tumor cells via Sp1 transcription factor. Curr Trends Biotechnol Pharm. 2009;3(2):138–148.
  • Saha S, Islam MK, Shilpi JA, et al. Inhibition of VEGF: a novel mechanism to control angiogenesis by Withania somnifera’s key metabolite Withaferin A. Silico Pharmacol. 2013;1(1):11. doi:10.1186/2193-9616-1-11
  • Wang Y-X, Ding W-B, Dong C-W. Withaferin A Suppresses Liver Tumor Growth in a Nude Mouse Model by Downregulation of Cell Signaling Pathway Leading to Invasion and Angiogenesis. Trop J Pharm Res. 2015;14(6):1005–1011. doi:10.4314/tjpr.v14i6.10
  • Gao R, Shah N, Lee J-S, et al. Withanone-rich combination of Ashwagandha withanolides restricts metastasis and angiogenesis through hnRNP-K. Mol Cancer Ther. 2014;13(12):2930–2940. doi:10.1158/1535-7163.MCT-14-0324
  • Rah B, Amin H, Yousuf K, et al. A novel MMP-2 inhibitor 3-azidowithaferin A (3-azidoWA) abrogates cancer cell invasion and angiogenesis by modulating extracellular Par-4. PLoS One. 2012;7(9):e44039. doi:10.1371/journal.pone.0044039
  • Royston KJ, Udayakumar N, Lewis K, et al. A Novel Combination of Withaferin A and Sulforaphane Inhibits Epigenetic Machinery, Cellular Viability and Induces Apoptosis of Breast Cancer Cells. Int J Mol Sci. 2017;18(5):1092. doi:10.3390/ijms18051092
  • Zhang Y, Tan Y, Liu S. Implications of Withaferin A for the metastatic potential and drug resistance in hepatocellular carcinoma cells via Nrf2-mediated EMT and ferroptosis. Toxicol Mech Methods. 2022;1–9.
  • Makol A, Kaur H, Sharma S, et al. Vimentin as a potential therapeutic target in sorafenib resistant HepG2, a HCC model cell line. Clin Mol Hepatol. 2020;26(1):45–53. doi:10.3350/cmh.2019.0031
  • Maxwell SA, Cherry EM, Bayless KJ. Akt, 14-3-3ζ, and vimentin mediate a drug-resistant invasive phenotype in diffuse large B-cell lymphoma. Leuk Lymphoma. 2011;52(5):849–864. doi:10.3109/10428194.2010.551793
  • Mandlik Ingawale DS, Namdeo AG. Pharmacological evaluation of Ashwagandha highlighting its healthcare claims, safety, and toxicity aspects. J Diet Suppl. 2021;18(2):183–226. doi:10.1080/19390211.2020.1741484
  • Devi PU, Sharada AC, Solomon FE, et al. In vivo growth inhibitory effect of Withania somnifera (Ashwagandha) on a transplantable mouse tumor, Sarcoma 180. Indian J Exp Biol. 1992;30(3):169–172.
  • Gupta SK, Jadhav S, Gohil D, et al. Safety, toxicity and pharmacokinetic assessment of oral Withaferin-A in mice. Toxicol Rep. 2022;9:1204–1212. doi:10.1016/j.toxrep.2022.05.012
  • Shohat B, Gitter S, Abraham A, et al. Antitumor activity of withaferin A (NSC-101088). Cancer Chemother Rep. 1967;51(5):271–276.
  • Shohat B, Gitter S, Lavie D. Effect of withaferin A on Ehrlich ascites tumor cells--cytological observations. Int J Cancer. 1970;5(2):244–252. doi:10.1002/ijc.2910050212
  • Tyagi A, Kolluru V, Chandrasekaran B, et al. ASR488, a novel small molecule, activates an mRNA binding protein, CPEB1, and inhibits the growth of bladder cancer. Oncol Lett. 2020;20(1):850–860. doi:10.3892/ol.2020.11593
  • Zhang H, Samadi AK, Cohen MS, et al. Anti-proliferative withanolides from the Solanaceae: a structure-activity study. Pure Appl Chem. 2012;84(6):1353–1367. doi:10.1351/PAC-CON-11-10-08
  • Tyagi A, Chandrasekaran B, Kolluru V, et al. ASR490, a Small Molecule, Overrides Aberrant Expression of Notch1 in Colorectal Cancer. Mol Cancer Ther. 2020;19(12):2422–2431. doi:10.1158/1535-7163.MCT-19-0949
  • Dai T, Jiang W, Guo Z, et al. Studies on oral bioavailability and first-pass metabolism of withaferin A in rats using LC-MS/MS and Q-TRAP. Biomed Chromatogr. 2019;33(9):e4573. doi:10.1002/bmc.4573
  • Aqil F, Jeyabalan J, Kausar H, et al. Multi-layer polymeric implants for sustained release of chemopreventives. Cancer Lett. 2012;326(1):33–40. doi:10.1016/j.canlet.2012.07.017
  • Akram M, Shah SA. Monograph. Withania somnifera. Altern Med Rev. 2004;9(2):211–214.
  • Sharada M, Ahuja A, Vij SP. Application of Biotechnology in Indian Ginseng (Ashwagandha): progress and prospects. Recent Adv Plant Tissue Culture Appl. 2008;1:67.
  • Ankad GM, Pai SR, Hiremath J, et al. Traditional Horticulture Practices Increase the Production of Selected Withanolides in Withania Somnifera (L.) Dunal-A RP-UFLC Analysis. J Chromatogr Sci. 2020;58(10):899–906. doi:10.1093/chromsci/bmaa057
  • Singh M, Agrawal S, Afzal O, et al. Optimization of Elicitation Conditions to Enhance the Production of Potent Metabolite Withanolide from Withania somnifera (L.). Metabolites. 2022;12(9):854. doi:10.3390/metabo12090854
  • Tripathi D, Meena RP, Pandey-Rai S. Short term UV-B radiation mediated modulation of physiological traits and withanolides production in Withania coagulans (L.) Dunal under in-vitro condition. Physiol Mol Biol Plants. 2021;27(8):1823–1835. doi:10.1007/s12298-021-01046-7
  • Tripathi D, Rai KK, Pandey-Rai S. Impact of green synthesized WcAgNPs on in-vitro plant regeneration and withanolides production by inducing key biosynthetic genes in Withania coagulans. Plant Cell Rep. 2021;40(2):283–299. doi:10.1007/s00299-020-02630-z
  • Pandey SS, Singh S, Pandey H, et al. Endophytes of Withania somnifera modulate in planta content and the site of withanolide biosynthesis. Sci Rep. 2018;8(1):5450. doi:10.1038/s41598-018-23716-5
  • Grover A, Samuel G, Bisaria VS, et al. Enhanced withanolide production by overexpression of squalene synthase in Withania somnifera. J Biosci Bioeng. 2013;115(6):680–685. doi:10.1016/j.jbiosc.2012.12.011
  • Mishra S, Bansal S, Mishra B, et al. RNAi and Homologous Over-Expression Based Functional Approaches Reveal Triterpenoid Synthase Gene-Cycloartenol Synthase Is Involved in Downstream Withanolide Biosynthesis in Withania somnifera. PLoS One. 2016;11(2):e0149691. doi:10.1371/journal.pone.0149691
  • Sivanandhan G, Kapil Dev G, Theboral J, et al. Sonication, Vacuum Infiltration and Thiol Compounds Enhance the Agrobacterium-Mediated Transformation Frequency of Withania somnifera (L.) Dunal. PLoS One. 2015;10(4):e0124693. doi:10.1371/journal.pone.0124693
  • Ray S, Jha S. Production of withaferin A in shoot cultures of Withania somnifera. Planta Med. 2001;67(5):432–436. doi:10.1055/s-2001-15811
  • Sivanandhan G, Arun M, Mayavan S, et al. Chitosan enhances withanolides production in adventitious root cultures of Withania somnifera (L.) Dunal. Ind Crops Prod. 2012;37(1):124–129. doi:10.1016/j.indcrop.2011.11.022
  • Sivanandhan G, Kapil Dev G, Jeyaraj M, et al. Increased production of withanolide A, withanone, and withaferin A in hairy root cultures of Withania somnifera (L.) Dunal elicited with methyl jasmonate and salicylic acid. Plant Cell Tissue Organ Cult. 2013;114(1):121–129. doi:10.1007/s11240-013-0297-z
  • Sivanandhan G, Kapil Dev G, Jeyaraj M, et al. A promising approach on biomass accumulation and withanolides production in cell suspension culture of Withania somnifera (L.) Dunal. Protoplasma. 2013;250(4):885–898. doi:10.1007/s00709-012-0471-x
  • Ciddi VJ. Withaferin A from cell cultures of Withania somnifera. Indian J Pharm Sci. 2006;68(4).