1,462
Views
6
CrossRef citations to date
0
Altmetric
PERSPECTIVES

The Coming of Age of AI/ML in Drug Discovery, Development, Clinical Testing, and Manufacturing: The FDA Perspectives

ORCID Icon
Pages 2691-2725 | Received 28 Jun 2023, Accepted 24 Aug 2023, Published online: 06 Sep 2023

References

  • IMDRF/AIMD WG/N67 Machine Learning-enabled Medical Devices Key Terms and Definitions, final document; 2022. Available from: https://www.imdrf.org/documents/machine-learning-enabled-medical-devices-key-terms-and-definitions. Accessed July 10, 2023.
  • Turing AM. Computing machinery and intelligence. Mind. 1950;59(236):433–460. doi:10.1093/mind/LIX.236.433
  • McCarthy J, Minsky ML, Rochester N, Shannon CE. A proposal for the Dartmouth Summer Research Project on Artificial Intelligence. AI Mag. 1956;27(4):12–14.
  • Newell A, Simon HA. The Logic Theorist—A case study in heuristics. Proceedings of the Western Joint Computer Conference Contrasts in Scientific Style. 1956. 74–90.
  • Rosenblatt F. The perceptron A probabilistic model for information storage and organization in the brain. Psychol Rev. 1958;65(6):386–408. doi:10.1037/h0042519
  • Gugerty L. Newell and Simon’s Logic Theorist: Historical Background and Impact on Cognitive Modeling. Proce Human Factors Ergonomics Society Ann Meeting. 2006;50(9):880–884. doi:10.1177/154193120605000904.
  • Colmerauer A, Roussel P. The birth of Prolog. Proceedings of the Logic Programming Workshop. 1972. 1–4. Available from: https://groups.seas.harvard.edu/courses/cs252/2016fa/10.pdf. Accessed July 10, 2023.
  • Shortliffe EH, Buchanan BG. A model of inexact reasoning in medicine. Math Biosci. 1975;23(3–4):351–379. doi:10.1016/0025-5564(75)90047-4
  • Davis R, Lenat D. Knowledge-Based Systems in Artificial Intelligence. McGraw-Hill; 1982.
  • McCarthy J, Brayton RK, Eds. LISP 1.5 Programmer’s Manual. MIT Press; 1983.
  • Lenat DB. CYC A large-scale investment in knowledge infrastructure. Commun ACM. 1995;38(11):33–38. doi:10.1145/219717.219745
  • Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature. 1986;323(6088):533–536. doi:10.1038/323533a0
  • Werbos PJ. Generalization of backpropagation with application to a recurrent gas market model. Neural Networks. 1988;1(4):339–356. doi:10.1016/0893-6080(88)90007-X
  • Campbell M, Hoane AJ, Hsu FH. Deep Blue. Artif Intell. 2002;134(1–2):57–83. doi:10.1016/S0004-3702(01)00129-1
  • LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Procee IEEE. 1998;86(11):2278–2324. doi:10.1109/5.726791
  • Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L. ImageNet A large-scale hierarchical image database. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Miami, FL, USA. 2009. 248–255. doi:10.1109/CVPR.2009.5206848.
  • Ferrucci D, Brown E, Chu-Carroll J, et al. Building Watson An overview of the DeepQA project. AI Mag. 2010;31(3):59–79. doi:10.1609/aimag.v31i3.2303
  • Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Commun ACM. 2017;60;84–90. doi:10.1145/3065386.
  • Silver D, Huang A, Maddison CJ, et al. Mastering the game of Go with deep neural networks and tree search. Nature. 2016;529(7587):484–489. doi:10.1038/nature16961
  • Silver D, Schrittwieser J, Simonyan K, et al. Mastering the game of Go without human knowledge. Nature. 2017;550(7676):354–359. doi:10.1038/nature24270
  • Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. Adv Neural Inf Process Syst. 2017;5998–6008.
  • Devlin J, Chang MW, Lee K, Toutanova K. BERT Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics. Human Language Technologies (NAACL-HLT). 2018. 4171–4186.
  • Vinyals O, Babuschkin I, Czarnecki WM, et al. Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature. 2019;575(7782):350–354. doi:10.1038/s41586-019-1724-z
  • Jumper J, Evans R, Pritzel A, et al. Applying and improving AlphaFold at CASP14. Proteins Structure Function Bioinformatics. 2021;89(12):1711–1721. doi:10.1002/prot.26257
  • Partnership on AI. Available from: https://www.partnershiponai.org/about/. Accessed July 10, 2023.
  • OpenAI. Charter. Available from: https://www.openai.com/charter/. Accessed July 10, 2023.
  • IEEE. The IEEE Global Initiative on Ethics of Autonomous and Intelligent Systems. Available from: https://ethicsinaction.ieee.org/. Accessed July 10, 2023.
  • Deng J, Lin Y. The Benefits and Challenges of ChatGPT. An Overview. Front Computing Intelligent Sys. 2023;2(2):81–83. doi:10.54097/fcis.v2i2.4465
  • Available from: https://www.fda.gov/science-research/science-and-research-special-topics/artificial-intelligence-and-machine-learning-aiml-drug-development. Accessed July 10, 2023.
  • Available from: https://openai.com/. Accessed July 10, 2023.
  • Jongsma KR, Van Solinge WW, Haitjema S. Acht misvattingen over AI in de zorg [Eight misconceptions about AI in healthcare]. Ned Tijdschr Geneeskd. 2023;167:D7578.
  • Fjelland R. Why general artificial intelligence will not be realized. Humanities Social Sci Commun. 2020;7(1):1–9. doi:10.1057/s41599-020-0494-4
  • Bohannon J. Fears of an AI pioneer. Science. 2015. doi:10.1126/science.349.6245.252
  • Available from: https://www.nytimes.com/2023/06/10/technology/ai-humanity.html. Accessed July 10, 2023.
  • Rydell J, Racey P. Street lamps and the feeding ecology of insectivorous bats. J Mammal. 1995;76(2):430–446.
  • Narayan R, McClintock JE. Observational Evidence for a Correlation Between Jet Power and Black Hole Spin. Class Quantum Grav. 2013;30(24):L69–L73. doi:10.1111/j.1745-3933.2011.01181.x.
  • Crouch CH, Mazur E. Peer Instruction: ten years of experience and results. Am J Phys. 2001;69(9):970–977. doi:10.1119/1.1374249
  • Kahneman D. Thinking, Fast and Slow. Farrar, Straus and Giroux; 2011.
  • Mauro JC, Varshneya AK, Gupta PK, et al. Enthalpy landscapes and the glass transition, in: Fluid Structure Interaction II. Fluid Stru Interaction II. 2008;80(9):241–281. doi:10.1007/978-1-4020-9741-6_15.
  • Galilei G. Two New Sciences. Translated by Stillman Drake, 1974. University of Wisconsin Press; 1638.
  • Mindell DP. The Evolving World: Evolution in Everyday Life. Harvard University Press; 2013.
  • Radford B. The Ten-Percent Myth. Sci Am Mind. 2014;25(2):28–33.
  • Rakov VA, Uman MA. Lightning: Physics and Effects. Cambridge University Press; 2003.
  • Lewandowsky S, Gignac GE, Vaughan S. The pivotal role of perceived scientific consensus in acceptance of science. Nat Clim Chang. 2013;3(4):399–404. doi:10.1038/nclimate1720
  • Bishop BA, Anderson CW. Student conceptions of natural selection and its role in evolution. J Research Sci Teach. 1990;27(5):415–427. doi:10.1002/tea.3660270503
  • National Geographic Society. Ostrich. National Geographic Society; 2010.
  • Beacham RC. Spectacle Entertainments of Early Imperial Rome. Yale University Press; 1999.
  • Byrne CJ. The Far Side of the Moon: A Photographic Guide. Springer Science & Business Media; 2007.
  • Gordon JE. Structures: Or Why Things Don’t Fall Down. Da Capo Press; 1978.
  • Valtin H. Drink at least eight glasses of water a day. Really? Is there scientific evidence for “8x8”? Am J Phys. 2002;283(5):R993–R1004. doi:10.1152/ajpregu.00365.2002
  • Goss KD. The Salem Witch Trials: A Reference Guide. Greenwood Press; 2008.
  • Sears ME, Kerr KJ, Bray RI, et al. Arsenic, Cadmium, Lead, and Mercury in Sweat: a Systematic Review. J Environ Public Health. 2012;2012:1–10. doi:10.1155/2012/184745
  • Available from: https://www.thefountaininstitute.com/blog/chat-gpt-ethics. Accessed July 10, 2023.
  • Rottman D Available from: https://www.technologyreview.com/2023/03/25/1070275/chatgpt-revolutionize-economy-decide-what-looks-like/. Accessed July 10, 2023.
  • Available from: https://blog.enterprisedna.co/is-chat-gpt-safe/#~text=Using%20ChatGPT%20Safely-,Is%20ChatGPT%20Safe%20to%20Use%3F,that%20it%20sounds%20human%2Dlike. Accessed July 10, 2023.
  • Available from: https://www.forbes.com/sites/forbestechcouncil/2023/03/10/the-unforeseen-consequences-of-chatgpt/?sh=39d2e3b91eea. Accessed July 10, 2023.
  • ElZarrad MK, Lee AY, Purcell R, Steele SJ. Advancing an agile regulatory ecosystem to respond to the rapid development of innovative technologies. Clin Transl Sci. 2022;15(5):1332–1339. doi:10.1111/cts.13267
  • Chen M, Hao Y, Sun Y, Zhang S, Tian H. Artificial intelligence in drug safety assessment Focus on drug-induced liver injury. Drug Metab Rev. 2020;52(2):250–265.
  • Stokes JM, Yang K, Swanson K. A deep learning approach to antibiotic discovery. Cell. 2020;180(4):688–702. doi:10.1016/j.cell.2020.01.021
  • Pappalardo F, Russo G, Candido S, Pennisi M, Cavalieri S. Artificial intelligence for the development of individualized treatment in autoimmune diseases. J Clin Med. 2020;9(2):438. doi:10.3390/jcm9020438
  • Liu Y, Zhang W, Li L. Deep learning-based transcriptome data classification for drug response prediction. BMC Genomics. 2018;19(Suppl 7):682. doi:10.1186/s12864-018-5071-5
  • Finkbeiner S, Frumkin M, Kao J. 7.14 - High-Content Screening (HCS) as a Discovery Tool for Neurological Diseases. In: Gereau AK IV, Sarah AL, editors. Neurotherapeutics. Academic Press; 2015:237–262.
  • Subudhi SK, Aparicio A. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol. 2019;20(8):e431–e441.
  • Haque A, Engel J, Teichmann SA, Lönnberg T. A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications. Genome Med. 2017;9(1):75. doi:10.1186/s13073-017-0467-4
  • Zhou Y, Zhang Z, Tay FEH. Drug-target interaction prediction a deep learning-based approach. Neurocomputing. 2019;321:321–330.
  • Papin C, Aransay NR, Isambert N, et al. Optimising patient selection for oncology Phase 1 trials using kernel methods A data‐driven feasibility study. Br J Clin Pharmacol. 2018;84(12):2877–2886. doi:10.1111/bcp.13753
  • Wang W, Haerian K, Salmasian H, Harpaz R, Chase H, Friedman C. A drug-adverse event extraction algorithm to support pharmacovigilance knowledge mining from PubMed citations. AMIA Annual Symposium Proceedings. 2011. 2011. 1464–1470.
  • Paraskevopoulou MD, Maniou S, Panagiotopoulou M, Vlachakis D, Iliopoulos I. DrugCombi a web application for analyzing and visualizing drug combinations. Cancer Res. 2020;80(16 Supplement):4804.
  • Kluger Y, Basri R, Chang JT. Machine learning tools for drug combination discovery and optimization. Mol Syst Biol. 2020;16(9):e9687.
  • Zitnik M, Agrawal M, Leskovec J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics. 2018;34(13):i457–i466. doi:10.1093/bioinformatics/bty294
  • Kumar V, Medabalimi S. Applications of artificial intelligence in pharmaceutical continuous manufacturing. J Pharm Innov. 2021;16(2):189–198.
  • Gómez-Bombarelli R, Wei JN, Duvenaud D, et al. Automatic chemical design using a data-driven continuous representation of molecules. ACS Central Science. 2018;4(2):268–276. doi:10.1021/acscentsci.7b00572
  • Shen L, Du W, Liang XJ. Intelligent drug delivery systems inspired by biomimetic design and advancing technologies. Adv Drug Deliv Rev. 2021;176:113882.
  • Du Toit LC, Pillay V, Danckwerts MP, Fang S, Crews AL, Adler KB. Tuberculosis chemotherapy current drug delivery approaches. Respir Res. 2011;12(1):118. doi:10.1186/1465-9921-12-118
  • Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115–118. doi:10.1038/nature21056
  • Hodos RA, Kidd BA, Shameer K, Readhead BP, Dudley JT. In silico methods for drug repurposing and pharmacology. Wiley Interdiscip Rev Syst Biol Med. 2016;8(3):186–210. doi:10.1002/wsbm.1337
  • Yuan Q, Li H, Zhang J, Liu X. A review of in silico ADME/T modeling approaches. J Pharmacol Toxicol Methods. 2021;113:106881.
  • Gottlieb A, Stein GY, Oron Y. Prediction of intracellular drug concentrations in the central nervous system. Eur J Pharmacol. 2012;674(2–3):285–292.
  • Kostal J, Voutchkova-Kostal A, Anastas PT, Zimmerman JB. Identifying and designing chemicals with minimal acute aquatic toxicity. Proce National Acad Sci. 2012;112(20):6289–6294. doi:10.1073/pnas.1314991111.
  • Chen C, Guo Y, Grossman RL. Elucidating the landscape of aberrant DNA methylation in hepatocellular carcinoma through epigenomic data analysis. Front Genet. 2018;9:15. doi:10.3389/fgene.2018.00015
  • Vora LK, Gholap AD, Jetha K, et al. Artificial Intelligence in Pharmaceutical Technology and Drug Delivery Design. Pharmaceutics. 2023;15(7):1916. doi:10.3390/pharmaceutics15071916.
  • Gupta A, Bishnoi A, Sharma AK. Artificial intelligence in pharmaceutical product development. Int J Pharm Sci Res. 2019;10(3):1012–1021.
  • Anzalone AV, Randolph PB, Davis JR, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019;576(7785):149–157. doi:10.1038/s41586-019-1711-4
  • Zhou J, Troyanskaya OG. Predicting effects of noncoding variants with deep learning-based sequence model. Nat Methods. 2015;12(10):931–934. doi:10.1038/nmeth.3547
  • Moore CB, Wallace JR, Frase AT, Pendergrass SA, Ritchie MD. BioBin: a bioinformatics tool for automating the binning of rare variants using publicly available biological knowledge. BMC Med Genomics. 2013;6(Suppl 2):S6. doi:10.1186/1755-8794-6-S2-S6
  • Unterthiner T, Mayr A, Klambauer G, et al. Deep learning as an opportunity in virtual screening. Proce Deep Learning Workshop NIPS. 2014;27(1):1–9.
  • Wang S, Summers RM. Machine learning and radiology. Med Image Anal. 2012;16(5):933–951. doi:10.1016/j.media.2012.02.005
  • Krieg C, Nowicka M, Guglietta S, et al. High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy. Nat Med. 2018;24(2):144–153. doi:10.1038/nm.4466
  • Pestian J, Glauser T, Matykiewicz P, Forestier G, Moreau-Gaudry A, Jannin P. Using natural language processing and machine learning algorithms to categorize medical devices for multiple taxonomies. J Biomed Inform. 2017;67:34–43. doi:10.1016/j.jbi.2017.02.001
  • Chen J, Xu X, Xiao W, et al. An ensemble machine learning model for predicting sites of metabolism of xenobiotics. Sci Rep. 2019;9(1):1–12. doi:10.1038/s41598-018-37186-2
  • Robinson O, Want E, Coen M, Kennedy S, Spector T, Holmes E. Metabolic phenotyping and systems biology approaches to understanding metabolic syndrome and fatty liver disease. Gastroenterology. 2014;146(1):46–62. doi:10.1053/j.gastro.2013.11.001
  • Pasolli E, Truong DT, Malik F, Waldron L, Segata N. Machine learning meta-analysis of large metagenomic datasets: tools and biological insights. PLoS Comput Biol. 2016;12(7):e1004977. doi:10.1371/journal.pcbi.1004977
  • Baek M, DiMaio F, Anishchenko I, et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science. 2021;373(6557):871–876. doi:10.1126/science.abj8754
  • Akram MU, Shah MA, Han J. Mining big data: current status, and forecast to the future. Int J Inf Manage. 2019;44:47–63.
  • Zhang L, Zhang X, Ju H, Chen Z, Xu T. Integrating machine learning and metagenomics for drug discovery. Front Genet. 2019;10:446. doi:10.3389/fgene.2019.00446
  • Bento AP, Gaulton A, Hersey A, et al. The ChEMBL bioactivity database: an update. Nucleic Acids Res. 2014;42(D1):D1083–D1090. doi:10.1093/nar/gkt1031
  • Hamp T, Getz G, Khalili A, Cesnik AJ. Artificial intelligence in neurodegenerative disease research: current status and future perspectives. Alzheimer’s Dementia. 2020;16(11):1576–1590.
  • Paulus MP, Thompson WK. The Challenges and Opportunities of Small Data in Mental Health. Biol Psychiatry. 2019;4(9):772–775.
  • Burlina P, Joshi N, Pekala M, Pacheco KD, Freund DE, Bressler NM. Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks. JAMA Ophthalmol. 2017;135(11):1170–1176. doi:10.1001/jamaophthalmol.2017.3782
  • Chen Y, Chu F, Chen H, Wang Y, Wang Z. Orphan drug discovery: an automated screening approach on a heterogeneous network-based inference method. J Biomed Inform. 2019;94:103184. doi:10.1016/j.jbi.2019.103184
  • Jalali A, Shirazi FH, Chetty G. Computational approaches for identifying novel analgesics: A review. Front Pharmacol. 2020;11:607. doi:10.3389/fphar.2020.00607
  • Modamio S, López-Coronado M, Jódar-Sánchez F. Analysis of machine learning techniques for heart failure readmissions. Artif Intell Med. 2018;90:43–54.
  • Korotkevich G, Sukhov V, Budin B. Fast gene set enrichment analysis. bioRxiv. 2016. doi:10.1101/060012.
  • Chen C, Liaw A, Breiman L. Using random forest to learn imbalanced data. Univ California Berkeley. 2004;110(1):24.
  • Ezzat A, Wu M, Li XL, Kwoh CK. Drug combination sensitivity scoring facilitates the discovery of synergistic and efficacious drug combinations in cancer. PLoS Comput Biol. 2019;15(3):e1006752. doi:10.1371/journal.pcbi.1006752
  • Gálvez-Peralta M, Camacho-Molina A, Medeiros M. Artificial intelligence applied to medicine: Current trends and future directions. Front Med. 2019;6:139. doi:10.3389/fmed.2019.00139
  • Aliper A, Plis S, Artemov A, Ulloa A, Mamoshina P, Zhavoronkov A. Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data. Mol Pharm. 2016;13(7):2524–2530. doi:10.1021/acs.molpharmaceut.6b00248
  • Ryan PB, Schuemie MJ, Welebob E, Duke J, Valentine S, Hartzema AG. Defining a reference set to support methodological research in drug safety. Drug Safety. 2013;36(1):33–47. doi:10.1007/s40264-013-0097-8
  • Hicks JK, Swen JJ, Gaedigk A. Challenges in CYP2D6 phenotype assignment from genotype data: A critical assessment and call for standardization. Curr Drug Metab. 2020;21(8):665–681.
  • Rostami-Hodjegan A, Tucker GT. Simulation and prediction of in vivo drug metabolism in human populations from in vitro data. Nat Rev Drug Discov. 2007;6(2):140–148. doi:10.1038/nrd2173
  • Zhang L, Beal SL, Sheiner LB. Simultaneous vs. sequential analysis for population PK/PD data I: best-case performance. J Pharmacokinet Pharmacodyn. 2003;30(6):387–404. doi:10.1023/B:JOPA.0000012998.04442.1f
  • Harpaz R, DuMouchel W, LePendu P, Bauer-Mehren A, Ryan P, Shah NH. Performance of pharmacovigilance signal-detection algorithms for the FDA adverse event reporting system. Clin Pharmacol Ther. 2013;93(6):539–546. doi:10.1038/clpt.2013.24
  • Mervin LH, Afzal AM, Drakakis G, Lewis R, Engkvist O, Bender A. Target prediction utilising negative bioactivity data covering large chemical space. J Cheminform. 2015;7(1):51. doi:10.1186/s13321-015-0098-y
  • Vamathevan J, Clark D, Czodrowski P, et al. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov. 2019;18(6):463–477. doi:10.1038/s41573-019-0024-5
  • Costello JC, Heiser LM, Georgii E, et al. A community effort to assess and improve drug sensitivity prediction algorithms. Nat Biotechnol. 2014;32(12):1202–1212. doi:10.1038/nbt.2877
  • Rajput MKS, Prasad R, Bhatt P, Sharma A. Deep neural network models for predicting drug-induced liver injury using structural and bioactivity data. J Chem Inf Model. 2019;59(7):3128–3138. doi:10.1021/acs.jcim.9b00105
  • Vilar S, Uriarte E, Santana L, et al. Similarity-based modeling in large-scale prediction of drug-drug interactions. Nat Protoc. 2016;9(9):2147–2163. doi:10.1038/nprot.2014.151
  • Zhang W, Liu F, Luo L, Zhang J. Predicting drug side effects by multi-label learning and ensemble learning. BMC Bioinform. 2017;16(1):365. doi:10.1186/s12859-015-0774-y
  • Ching T, Himmelstein DS, Beaulieu-Jones BK, et al. Opportunities and obstacles for deep learning in biology and medicine. J Royal Soc Interface. 2018;15(141):20170387. doi:10.1098/rsif.2017.0387
  • Cherkasov A, Muratov EN, Fourches D, et al. QSAR modeling: where have you been? Where are you going to?. J Med Chem. 2014;57(12):4977–5010. doi:10.1021/jm4004285
  • Cui Y, Zhang Y, Zhao Y, Zhang L, Li D. Artificial intelligence in rare diseases: applications, challenges, and future directions. Hum Genet. 2021;140(7):963–979.
  • Rathore S, Gupta RD, Sharma A. Impact of artificial intelligence in pharma and life sciences: demystifying the future. Front Artificial Intelligence. 2019;2:26. doi:10.3389/frai.2019.00026
  • Forsström T, Axelson H, Stertman L, Virding S. Artificial intelligence for regulatory decision support. Regulatory Toxicol Pharmacol. 2017;91:S45–S49.
  • Cheng F, Desai RJ, Handy DE, et al. Network-based approach to prediction and population-based validation of in silico drug repurposing. Nat Commun. 2018;9(1):1–12. doi:10.1038/s41467-018-05116-5
  • Napolitano F, Zhao Y, Moreira VM, et al. Drug repositioning a machine-learning approach through data integration. J Cheminform. 2013;5(1):1–14. doi:10.1186/1758-2946-5-30
  • Gupta MK, Chauhan S. Artificial intelligence in formulation development. Curr Opin Chem Eng. 2020;28:107–114.
  • Luo H, Zhang P, Huang H, et al. D3Targets-2019-nCoV a webserver for predicting drug targets and for multi-target and multi-site based virtual screening against COVID-19. Acta Pharmaceutica Sinica B. 2020;10(7):1239–1248. doi:10.1016/j.apsb.2020.04.006
  • Maffucci I, Contini A. In Silico Drug Repurposing for SARS-CoV-2 Main Proteinase and Spike Proteins. J Proteome Res. 2020;19(11):4637–4648. doi:10.1021/acs.jproteome.0c00383.
  • Nath N, Remya R, Bhaumik S, Muthusamy A. Machine learning-based drug resistance prediction in cancer A systematic literature review. Brief Bioinform. 2019;20(1):300–316.
  • Costello JC, Heiser LM. Artificial intelligence for drug response prediction in cancer. Mol Oncol. 2019;13(4):759–766.
  • Tatonetti NP, Ye PP, Daneshjou R, Altman RB. Data-driven prediction of drug effects and interactions. Science. 2012;337(6104):1625–1628.
  • Zhang L, Tan J, Han D, Zhu H. From machine learning to deep learning: progress in machine intelligence for rational drug discovery. Drug Discov Today. 2017;22(11):1680–1685. doi:10.1016/j.drudis.2017.08.010
  • Garg A, Bhargava A. AI-based inventory management of perishable products in the healthcare sector. Comput Ind Eng. 2020;148:106652.
  • Segler MH, Preuss M, Waller MP. Planning chemical syntheses with deep neural networks and symbolic AI. Nature. 2018;555(7698):604–610. doi:10.1038/nature25978
  • Carbonell P, Jervis AJ, Robinson CJ, et al. An automated Design-Build-Test-Learn pipeline for enhanced microbial production of fine chemicals. Commun Biol. 2018;1(1):1–10. doi:10.1038/s42003-018-0076-9
  • Jiménez J, Skalic M, Martínez-Rosell G, De Fabritiis G, Valencia A. DeepDock: a novel deep-learning architecture for protein–ligand interactions. J Chem Inf Model. 2018;58(4):816–823. doi:10.1021/acs.jcim.7b00717
  • Mendez D, Gaulton A, Bento AP, et al. ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Res. 2019;47(D1):D930–D940. doi:10.1093/nar/gky1075
  • Menden MP, Iorio F, Garnett M, McDermott U, Benes CH. Machine learning prediction of cancer cell sensitivity to drugs based on genomic and chemical properties. PLoS One. 2013;8(4):e61318. doi:10.1371/journal.pone.0061318
  • Lee I, Nam H, Kim K, Ghang H. Recent advances in genome mining of secondary metabolites in Aspergillus terreus. Front Microbiol. 2019;9:3235. doi:10.3389/fmicb.2018.03235
  • Mayr A, Klambauer G, Unterthiner T, Hochreiter S. DeepTox: Toxicity Prediction using Deep Learning. Front Environ Sci. 2016;3:80. doi:10.3389/fenvs.2015.00080
  • Ong E, Wong MU, Huffman A, He Y. COVID-19 Coronavirus Vaccine Design Using Reverse Vaccinology and Machine Learning. Front Immunol. 2020;11:1581. doi:10.3389/fimmu.2020.01581
  • Nath A, Lee AC, Engler M, et al. Machine learning-assisted virtual screening A review. Mol Inform. 2021;40(3):2000133.
  • Marzullo L, Schölkopf B. Predicting drug withdrawal symptoms from social media data. PLoS Comput Biol. 2020;16(12):e1008352.
  • Collins FS, Morgan M, Patrinos A. The Human Genome Project: Lessons from Large-Scale Biology. Science. 2003;300(5617):286–290. doi:10.1126/science.1084564
  • Copeland RA. Enzymes: A Practical Introduction to Structure, Mechanism, and Data Analysis. 2nd ed. Wiley; 2000.
  • Gordon JW, Singer GA. The mouse: the laboratory animal of the year. Genome Biol. 2004;5(4):117. doi:10.1186/gb-2004-5-10-117
  • Fang Y, Fu D, Shen XZ, Aburatani H, Hayes JD, Yamamoto M. Quantitative Cell-based Protein Degradation Assays to Identify and Classify Drugs that Target the Ubiquitin-Proteasome System. J Biol Chem. 2008;283(46):33554–33562. doi:10.1074/jbc.M804597200
  • Mayr LM, Bojanic D. Novel trends in high-throughput screening. Curr Opin Pharmacol. 2009;9(5):580–588. doi:10.1016/j.coph.2009.08.004
  • Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE. A Geometric Approach to Macromolecule-Ligand Interactions. J Mol Biol. 1982;161(2):269–288. doi:10.1016/0022-2836(82)90153-X
  • Swinney DC, Anthony J. How were new medicines discovered?. Nat Rev Drug Discov. 2011;10(7):507–519. doi:10.1038/nrd3480
  • Jensen LJ, Saric J, Bork P. Literature mining for the biologist: from information retrieval to biological discovery. Nat Rev Genet. 2006;7(2):119–129. doi:10.1038/nrg1768
  • Rothman KJ, Greenland S, Lash TL. Modern Epidemiology. 3rd ed. Lippincott Williams & Wilkins; 2008.
  • Kneller R. The Importance of New Companies for Drug Discovery: origins of a Decade of New Drugs. Nat Rev Drug Discov. 2010;9(11):867–882. doi:10.1038/nrd3251
  • Schneider G. Automating drug discovery. Nat Rev Drug Discov. 2018;17(2):97–113. doi:10.1038/nrd.2017.232
  • Chen H, Engkvist O, Wang Y, Olivecrona M, Blaschke T. The rise of deep learning in drug discovery. Drug Discov Today. 2018;23(6):1241–1250. doi:10.1016/j.drudis.2018.01.039
  • Mamoshina P, Vieira A, Putin E, Zhavoronkov A. Applications of Deep Learning in Biomedicine. Mol Pharm. 2016;13(5):1445–1454. doi:10.1021/acs.molpharmaceut.5b00982
  • Wallach I, Heifets A. Most Ligand-Based Classification Benchmarks Reward Memorization Rather than Generalization. J Chem Inf Model. 2018;58(5):916–932. doi:10.1021/acs.jcim.7b00403
  • Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44–56.
  • Tari LB, Patel JH. Systematic drug repositioning through mining adverse event data in ClinicalTrials.gov. PeerJ. 2014;2:e304. doi:10.7717/peerj.304
  • Dudley JT, Deshpande T, Butte AJ. Exploiting drug-disease relationships for computational drug repositioning. Brief Bioinform. 2011;12(4):303–311. doi:10.1093/bib/bbr013
  • Mak KK, Pichika MR. Artificial intelligence in drug development: present status and future prospects. Drug Discov Today. 2019;24(3):773–780. doi:10.1016/j.drudis.2018.11.014
  • Zitnik M, Nguyen F, Wang B, Leskovec J, Goldenberg A, Hoffman MM. Machine learning for integrating data in biology and medicine: principles, practice, and opportunities. Information Fusion. 2019;50:71–91. doi:10.1016/j.inffus.2018.09.012
  • Collins FS, Varmus H. A new initiative on precision medicine. N Eng J Med. 2015;372(9):793–795. doi:10.1056/NEJMp1500523
  • Sherman RE, Anderson SA, Dal Pan GJ, et al. Real-World Evidence — What Is It and What Can It Tell Us?. N Eng J Med. 2016;375(23):2293–2297. doi:10.1056/NEJMsb1609216
  • Camacho DM, Collins KM, Powers RK, Costello JC, Collins JJ. Next-Generation Machine Learning for Biological Networks. Cell. 2018;173(7):1581–1592. doi:10.1016/j.cell.2018.05.015
  • Preuer K, Lewis RPI, Hochreiter S, Bender A, Bulusu KC, Klambauer G. DeepSynergy: predicting anti-cancer drug synergy with Deep Learning. Bioinformatics. 2018;34(9):1538–1546. doi:10.1093/bioinformatics/btx806
  • Jang H, Pluciński L, Taniguchi R, Gross SP, Julaiti A. A Machine Learning Approach to Predicting Chemical Reactions. Chem Sci. 2018;9(8):2262–2270.
  • Wang L, Wu Y, Deng Y, et al. Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free-energy calculation protocol and force field. J Am Chem Soc. 2015;137(7):2695–2703. doi:10.1021/ja512751q
  • Xu Y, Dai Z, Chen F, Gao S, Pei J, Lai L. Deep Learning for Drug-Induced Liver Injury. J Chem Inf Model. 2015;55(10):2085–2093. doi:10.1021/acs.jcim.5b00238
  • Duvenaud D, Maclaurin D, Iparraguirre J, et al. Convolutional Networks on Graphs for Learning Molecular Fingerprints. Adv Neural Inf Process Syst. 2015;28:2224–2232.
  • Ramsundar B, Liu B, Wu Z, et al. Is Multitask Deep Learning Practical for Pharma?. J Chem Inf Model. 2017;57(8):2068–2076. doi:10.1021/acs.jcim.7b00146
  • Ekins S, Puhl AC, Zorn KM, et al. Exploiting Machine Learning for End-to-End Drug Discovery and Development. Nat Mater. 2019;18(5):435–441. doi:10.1038/s41563-019-0338-z
  • Ribeiro JML, Bravo P, Wang Y, Tiwary P. Reweighted autoencoded variational Bayes for enhanced sampling (RAVE). J Chem Phys. 2018;149(7):072301. doi:10.1063/1.5025487
  • Noé F, Tkatchenko A, Müller KR, Clementi C. Machine learning for quantum mechanical properties of atoms in molecules. J Chem Phys. 2020;152(19):194104. doi:10.1063/1.5143268
  • Bycroft C, Freeman C, Petkova D, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562(7726):203–209. doi:10.1038/s41586-018-0579-z
  • Chen B, Butte AJ, Butte MJ. Data-Mining for Detecting Signals of Adverse Drug Reactions of Novel Drugs. J Med Internet Res. 2018;20(11):e11148.
  • Fumagalli SE, Padhiar NH, Meyer D, et al. Analysis of 3.5 million SARS-CoV-2 sequences reveals unique mutational trends with consistent nucleotide and codon frequencies. Virol J. 2023;20(1):31. doi:10.1186/s12985-023-01982-8
  • Weissler EH, Naumann T, Andersson T, et al. The role of machine learning in clinical research transforming the future of evidence generation. Trials. 2021;22(1):537. doi:10.1186/s13063-021-05489-x
  • Chan HCS, Shan H, Dahoun T, Vogel H, Yuan S. Advancing Drug Discovery via Artificial Intelligence. Trends Pharmacol Sci. 2019;40(8):592–604. doi:10.1016/j.tips.2019.06.004
  • Schneider P, Walters WP, Plowright AT, et al. Rethinking drug design in the artificial intelligence era. Nat Rev Drug Discov. 2020;19(5):353–364. doi:10.1038/s41573-019-0050-3
  • Liu Z, Chen X, Carter W, et al. AI- powered drug repurposing for developing COVID-19 treatments. Reference Module Biomed Sci. 2022. doi:10.1016/B978-0-12-824010-6.00005-8.
  • Mouchlis VD, Afantitis A, Serra A, et al. Advances in de Novo Drug Design From Conventional to Machine Learning Methods. Int J Mol Sci. 2021;22(4). doi:10.3390/ijms22041676
  • Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583–589. doi:10.1038/s41586-021-03819-2
  • Levinthal C. How to Fold Graciously. Mossbauer Spectroscopy in Biological Systems: Proceedings of a Meeting Held at Allerton House, Monticello, Illinois. 1969. 22–24.
  • Corey RB, Kuntz ID. ENCEPP: a program for predicting the conformational geometry of organic molecules. J Comput Chem. 1974;2(3):287–303.
  • Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993;234(3):779–815. doi:10.1006/jmbi.1993.1626
  • Rose GD, Geselowitz AR, Lesser GJ, Lee RH, Zehfus MH. Hydrophobicity of amino acid residues in globular proteins. Science. 1985;229(4716):834–838. doi:10.1126/science.4023714
  • Levitt M, Warshel A. Computer simulation of protein folding. Nature. 1975;253(5494):694–698. doi:10.1038/253694a0
  • Karplus M, McCammon JA. Molecular dynamics simulations of biomolecules. Nat Struct Biol. 2002;9(9):646–652.
  • ones DT, Taylor WR, Thornton JM. A new approach to protein fold recognition. Nature. 1992;358(6381):86–89. doi:10.1038/358086a0
  • Simons KT, Kooperberg C, Huang E, Baker D. Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J Mol Biol. 1997;268(1):209–225. doi:10.1006/jmbi.1997.0959
  • Montanucci L, Capriotti E, Frank Y, Ben-Tal N, Fariselli P. DDGun: an untrained method for the prediction of protein stability changes upon single and multiple point variations. BMC Bioinform. 2019;20(S14):S14. doi:10.1186/s12859-019-2923-1
  • Savojardo C, Fariselli P, Martelli PL, Casadio R. INPS-MD: a web server to predict stability of protein variants from sequence and structure. Bioinformatics. 2016;32(16):2542–2544. doi:10.1093/bioinformatics/btw192
  • Lv X, Chen J, Lu Y, Chen Z, Xiao N, Yang Y. Accurately predicting mutation-caused stability changes from protein sequences using extreme gradient boosting. J Chem Inf Mod. 2020;60(4):2388–2395. doi:10.1021/acs.jcim.0c00064
  • Bertoline LMF, Lima AN, Krieger JE, Teixeira SK. Before and after AlphaFold2: An overview of protein structure prediction. Front Bioinform. 2023;3:1120370. doi:10.3389/fbinf.2023.1120370
  • Milla´n C, Keegan RM, Pereira J, et al. Assessing the utility of CASP14 models for molecular replacement. Proteins. 2021;89(12):1752–1769. doi:10.1002/prot.26214
  • Available from: https://alphafold.ebi.ac.uk/faq. Accessed July 10, 2023.
  • Hopkins AL, Groom CR, Alex A, et al. Ligand efficiency: A useful metric for lead selection. Drug Discov Today. 2004;9(10):430–431. doi:10.1016/S1359-6446(04)03069-7
  • Kozakov D, Hall DR, Xia B, et al. The ClusPro web server for protein-protein docking. Nat Protoc. 2017;12(2):255. doi:10.1038/nprot.2016.169
  • Cheng T, Li Q, Zhou Z, et al. Structure-based virtual screening for drug discovery: a problem-centric review. AAPS J. 2012;14(1):133–141. doi:10.1208/s12248-012-9322-0.
  • Rao VS, Srinivas K, Sujini GN, et al. Protein-protein interaction detection: methods and analysis. Int J Proteomics. 2014;2014:147648. doi:10.1155/2014/147648.
  • Erlanson DA, Davis BJ, Jahnke W, et al. Fragment-Based Drug Discovery: Advancing Fragments in the Absence of Crystal Structures. Cell Chem Biol. 2016;26(1):9–15. doi:10.1016/j.chembiol.2018.10.001.
  • Metallo SJ. Intrinsically disordered proteins are potential drug targets. Curr Opin Chem Biol. 2010;14(4):481. doi:10.1016/j.cbpa.2010.06.169.
  • Macalino SJY, Gosu V, Hong S, et al. Role of computer-aided drug design in modern drug discovery. Arch Pharm Res. 2015;38(9):1686–1701. doi:10.1007/s12272-015-0640-5
  • Karplus M, Kuriyan J. Molecular dynamics and protein function. Proce National Acad Sci. 2005;102(19):6679–6685. doi:10.1073/pnas.0408930102
  • Teague SJ. Implications of protein flexibility for drug discovery. Nat Rev Drug Discov. 2003;2(7):527–541. doi:10.1038/nrd1129
  • Lexa KW, Carlson HA. Protein flexibility in docking and surface mapping. Q Rev Biophys. 2012;45(3):301. doi:10.1017/S0033583512000066
  • Macarron R, Banks MN, Bojanic D, et al. Impact of high-throughput screening in biomedical research. Nat Rev Drug Discov. 2011;10(3):188–195. doi:10.1038/nrd3368
  • Hansch C, Fujita T. ρ-σ-π Analysis. A Method for the Correlation of Biological Activity and Chemical Structure. J Am Chem Soc. 1964;86(8):1616–1626. doi:10.1021/ja01062a035
  • Kuroda D, et al. Structure-based drug design for combating influenza virus by targeting the PA-PB1 interaction. Sci Rep. 2012;2:1166.
  • Dror RO, Dirks RM, Grossman JP, et al. Biomolecular simulation: a computational microscope for molecular biology. Annu Rev Biophys. 2012;41(1):429–452. doi:10.1146/annurev-biophys-042910-155245
  • Shaw DE, Maragakis P, Lindorff-Larsen K, et al. Atomic-level characterization of the structural dynamics of proteins. Science. 2010;330(6002):341–346. doi:10.1126/science.1187409
  • Lock EF, Abdo N, Huang R, et al. Quantitative high-throughput screening for chemical toxicity in a population-based in vitro model. Toxicol Sci. 2012;126(2):578. doi:10.1093/toxsci/kfs023
  • Kühlbrandt W. Cryo-EM enters a new era. eLife. 2014;3:e03678. doi:10.7554/eLife.03678
  • Senn HM, Thiel W. QM/MM methods for biomolecular systems. Angewandte Chemie. 2009;48(7):1198–1229. doi:10.1002/anie.200802019
  • Fons N. Textbook of Drug Design and Discovery, Fifth Edition. Yale J Biol Med;2017;90:160.
  • Bender A, Glen RC. Molecular similarity: A key technique in molecular informatics. Org Biomol Chem. 2004;2(22):3204–3218.
  • Shoichet BK. Virtual screening of chemical libraries. Nature. 2004;432(7019):862–865. doi:10.1038/nature03197
  • Jensen LJ, Kuhn M, Stark M, et al. STRING 8—a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res. 2006;37(suppl_1):D412–D416. doi:10.1093/nar/gkn760
  • Chipot C, Pohorille A, Eds. Free Energy Calculations. Springer Science & Business Media; 2007.
  • Fischman S, Ofran Y. Computational design of antibodies. Curr Opin Struct Biol. 2018;45:156–162. doi:10.1016/j.sbi.2018.04.007.
  • Bulitta JB, Hope WW, Eakin AE, et al. Generating Robust and Informative Nonclinical In Vitro and In Vivo Bacterial Infection Model Efficacy Data To Support Translation to Humans. Antimicrob Agents Chemother. 2019;63(5):e02307–02318. doi:10.1128/AAC.02307-18
  • Harrison LI, Gibaldi M. Physiologically based pharmacokinetic model for digoxin disposition in dogs and its preliminary application to humans. J Pharm Sci. 1977;66(12):1679–1683. doi:10.1002/jps.2600661206
  • Hsu V, de LTV, Zhao M, et al. Towards quantitation of the effects of renal impairment and probenecid inhibition on kidney uptake and efflux transporters, using physiologically based pharmacokinetic modelling and simulations. Clin Pharmacokinet. 2014;53(3):283–293. doi:10.1007/s40262-013-0117-y
  • Mager DE, Woo S, Jusko WJ. Scaling pharmacodynamics from in vitro and preclinical animal studies to humans. Drug Metab Pharmacokinet. 2009;24(1):16–24. doi:10.2133/dmpk.24.16
  • Shroff T, Aina K, Maass C, et al. Studying metabolism with multi-organ chips new tools for disease modelling, pharmacokinetics and pharmacodynamics. Open Biol. 2022;12(3):210333. doi:10.1098/rsob.210333
  • Daryaee F, Tonge PJ. Pharmacokinetic-pharmacodynamic models that incorporate drug-target binding kinetics. Curr Opin Chem Biol. 2019;50:120–127. doi:10.1016/j.cbpa.2019.03.008
  • Sager JE, Yu J, Ragueneau-Majlessi I, Isoherranen N. Physiologically based pharmacokinetic (PBPK) modeling and simulation approaches A systematic review of published models, applications, and model verification. Drug Metab Dispos. 2015;43(11):1823–1837. doi:10.1124/dmd.115.065920
  • Liu X, Liu C, Huang R, et al. Long short-term memory recurrent neural network for pharmacokinetic-pharmacodynamic modeling. Int J Clin Pharmacol Ther. 2021;59(2):138–146. doi:10.5414/CP203800
  • Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/generally-accepted-scientific-knowledge-applications-drug-and-biological-products-nonclinical. Accessed July 10, 2023.
  • Liu Q, Huang R, Hsieh J, et al. Landscape analysis of the application of artificial intelligence and machine learning in regulatory submissions for drug development from 2016 to 2021. Clin Pharmacol Ther. 2022. doi:10.1002/cpt.2668
  • Wang Y, Liu S, Afzal N, et al. A Comparison of Word Embeddings for the Biomedical Natural Language Processing. J Biomed Inform. 2018;87:12–20. doi:10.1016/j.jbi.2018.09.008
  • Beam AL, Kohane IS. Big Data and Machine Learning in Health Care. JAMA. 2018;319(13):1317–1318. doi:10.1001/jama.2017.18391
  • Enticott J, Johnson A, Teede H, et al. Learning health systems using data to drive healthcare improvement and impact: a systematic review. BMC Health Serv Res. 2021;21(1):200. doi:10.1186/s12913-021-06215-8.
  • Demner-Fushman D, Elhadad N. Aspiring to Unintended Consequences of Natural Language Processing: a Review of Recent Developments in Clinical and Consumer-Generated Text Processing. IMIA Yearbook Med Informatics. 2016;25(01):224–233. doi:10.15265/IY-2016-017
  • Elki ME, Zhu X. Predictive modeling of clinical trial terminations using feature engineering and embedding learning. Sci Rep. 2021;11:3446. doi:10.1038/s41598-021-82840-x
  • Thall PF, Lee SJ. Practical model-based dose-finding in Phase I clinical trials: methods based on toxicity. Int J Radiation Oncol Biol Phys. 2015;61(3):691–698. doi:10.1046/j.1525-1438.2003.13202.x.
  • Dara S, Dhamercherla S, Jadav SS, et al. Machine Learning in Drug Discovery: A Review. Artificial Intelligence Rev. 2022;55(1):1947–1999. doi:10.1007/s10462-021-10058-4
  • Harrer S, Shah P, Antony B, Hu J. Artificial Intelligence for Clinical Trial Design. Trends Pharmacol Sci. 2019;40(8):577–591. doi:10.1016/j.tips.2019.05.005
  • Luo G, et al. Machine learning in patient recruitment and retention for clinical trials. Trials. 2020;21:934. doi:10.1186/s13063-020-04884-0
  • Aerts HJWL, Grossmann P, Tan Y, et al. Defining a Radiomic Response Phenotype A Pilot Study using targeted therapy in NSCLC. Sci Rep. 2016;6:33860. doi:10.1038/srep33860
  • Athreya AP, Neavin D, Carrillo‐Roa T, et al. Pharmacogenomics-Driven Prediction of Antidepressant Treatment Outcomes A Machine-Learning Approach With Multi-trial Replication. Clin Pharmacol Ther. 2019;106(4):855–865. doi:10.1002/cpt.1482
  • Dercle L, Fronheiser M, Lu L, et al. Identification of non-small cell lung cancer sensitive to systemic cancer therapies using radiomics. Clin Cancer Res. 2020;26(9):2151–2162. doi:10.1158/1078-0432.CCR-19-2942
  • Kawakami E, Tabata J, Yanaihara N, et al. Application of artificial intelligence for preoperative diagnostic and prognostic prediction in epithelial ovarian cancer based on blood biomarkers. Clin Cancer Res. 2019;25(10):3006–3015. doi:10.1158/1078-0432.CCR-18-3378
  • Wang Y, Carter BZ, Li Z, Huang X. Application of machine learning methods in clinical trials for precision medicine. JAMIA Open. 2022;5(1):ooab107. doi:10.1093/jamiaopen/ooab107
  • Luo J, et al. Automatically explaining machine learning prediction results: a demonstration on type 2 diabetes risk prediction. Health Inform Sci Systems. 2016;4:2. doi:10.1186/s13755-016-0015-4.
  • Char DS, Shah NH, Magnus D. Implementing Machine Learning in Health Care — Addressing Ethical Challenges. N Eng J Med. 2018;378(11):981–983. doi:10.1056/NEJMp1714229.
  • Pavelko RL, Myrick JG, Verghese RS, et al. Public reactions to celebrity cancer disclosures via social media: Implications for campaign message design and strategy. Health Educ J. 2017;76:492–506, doi:10.1177/0017896917696122.
  • Lu J, Deng K, Zhang X, Liu G, Guan Y. Neural-ODE for pharmacokinetics modeling and its advantage to alternative machine learning models in predicting new dosing regimens. iScience. 2021;24(7):102804. doi:10.1016/j.isci.2021.102804
  • Sheikh A, Cornford T, Barber N, et al. Implementation and adoption of nationwide electronic health records in secondary care in England: final qualitative results from prospective national evaluation in “early adopter” hospitals. BMJ. 2016;343(oct17 1):d6054. doi:10.1136/bmj.d6054
  • Mason M, Cho Y, Rayo J, Gong Y, Harris M, Jiang Y. Technologies for drug adherence monitoring and technology assessment criteria Narrative review. JMIR Mhealth Uhealth. 2022;10(3):e35157. doi:10.2196/35157
  • Angermueller C, Pärnamaa T, Parts L, et al. Deep learning for computational biology. Mol Syst Biol. 2016;12(7):878. doi:10.15252/msb.20156651
  • Dunn J, Runge R, Snyder M, et al. Wearables and the medical revolution. Per Med. 2018;15(5):429–448. doi:10.2217/pme-2018-0044
  • Labovitz DL, Shafner L, Reyes Gil M, et al. Using Artificial Intelligence to Reduce the Risk of Nonadherence in Patients on Anticoagulation Therapy. Stroke. 2017;48(5):1416–1419. doi:10.1161/STROKEAHA.116.016281.
  • The draft guidance for industry, investigators, and other stakeholders. Digital Health Technologies for Remote Data Acquisition in Clinical Investigations; 2021. When final, this guidance will represent FDA’s current thinking on this topic. Available from: https://www.fda.gov/media/155022/download. Accessed July 10, 2023.
  • Stehlik J, Schmalfuss C, Bozkurt B, et al. Continuous Wearable Monitoring Analytics Predict Heart Failure Hospitalization The LINK-HF Multicenter Study. Circ Heart Fail. 2020;13(3):e006513. doi:10.1161/circheartfailure.119.006513
  • Cohoon TJ, Bhavnani SP. Toward precision health applying artificial intelligence analytics to digital health biometric datasets. Per Med. 2020;17(4):307–316. doi:10.2217/pme-2019-0113
  • Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60–88. doi:10.1016/j.media.2017.07.005
  • Zhang X, Yan C, Gao C, Malin BA, Chen Y. Predicting Missing Values in Medical Data via XGBoost Regression. J Healthc Inform Res. 2020;4(4):383–394. doi:10.1007/s41666-020-00077-1
  • Pappalardo F, Russo G, Tshinanu FM, Viceconti M. In silico clinical trials concepts and early adoptions. Brief Bioinform. 2019;20(5):1699–1708. doi:10.1093/bib/bby043
  • European Drugs Agency. DRAFT Qualification opinion for Prognostic Covariate Adjustment (PROCOVA™). European Drugs Agency; 2022. Available from: https://www.ema.europa.eu/documents/other/draft-qualification-opinion-prognostic-covariate-adjustment-procovatm_en.pdf. Accessed July 10, 2023.
  • Laubenbacher R, Sluka JP, Glazier JA. Using digital twins in viral infection. Science. 2021;371(6534):1105–1106. doi:10.1126/science.abf3370
  • Schuler A, Walsh D, Hall D, Walsh J, Fisher C. Increasing the efficiency of randomized trial estimates via linear adjustment for a prognostic score. Int J Biostat. 2021. doi:10.1515/ijb-2021-0072
  • Kotsiantis SB. Supervised machine learning: A review of classification techniques. Informatica. 2007;31:249–268.
  • Weng SF, Bolton T, Di Angelantonio E, et al. Can machine-learning improve cardiovascular risk prediction using routine clinical data?. PLoS One. 2019;14(4):e0213653. doi:10.1371/journal.pone.0213653
  • Pierce CE, Bouri K, Pamer C, et al. Evaluation of Facebook and Twitter monitoring to detect safety signals for medical products. An analysis of recent FDA safety alerts. Drug Saf. 2017;40(4):317–331. doi:10.1007/s40264-016-0491-0
  • Routray R, Tetarenko N, Abu-Assal C, et al. Application of augmented intelligence for pharmacovigilance case seriousness determination. Drug Saf. 2020;43(1):57–66. doi:10.1007/s40264-019-00869-4
  • Bate A, Hobbiger SF. Artificial Intelligence, Real-World Automation and the Safety of Drugs. Drug Saf. 2021;44(2):125–132. doi:10.1007/s40264-020-01001-7
  • Sarker A, et al. A corpus for large-scale machine learning and microservices to generate daily Adverse Drug Event counts from Twitter. J Am Med Informatics Assoc. 2020;27(4):476–487.
  • Comfort S, Dorrell D, Meireis S, Fine J. MOdified NARanjo Causality Scale for ICSRs (MONARCSi) A Decision Support Tool for Safety Scientists. Drug Saf. 2018;41(11):1073–1085. doi:10.1007/s40264-018-0690-y
  • Negi K, Pavuri A, Patel L, Jain C. A novel method for drug-adverse event extraction using machine learning. Inform Med Unlocked. 2019;17. doi:10.1016/j.imu.2019.100190
  • Wang SV, Schneeweiss S, Berger ML, Brown J, de Vries F, Douglas I. Reporting to improve reproducibility and facilitate validity assessment for healthcare database studies V1.0. Pharmacoepidemiol Drug Saf. 2017;26(9):1018–1032. doi:10.1002/pds.4295
  • Abatemarco D, Perera S, Bao SH, et al. Training Augmented Intelligent Capabilities for Pharmacovigilance Applying Deep-learning Approaches to Individual Case Safety Report Processing. Pharmaceut Med. 2018;32(6):391–401. doi:10.1007/s40290-018-0251-9
  • Schmider J, Kumar K, LaForest C, Swankoski B, Naim K, Caubel PM. Innovation in pharmacovigilance. Use of artificial intelligence in adverse event case processing. Clin Pharmacol Ther. 2019;105(4):954–961. doi:10.1002/cpt.1255
  • Kassekert R, Grabowski N, Lorenz D, et al. Industry Perspective on Artificial Intelligence/Machine Learning in Pharmacovigilance. Drug Saf. 2022;45(5):439–448. doi:10.1007/s40264-022-01164-5
  • Ghosh R, Kempf D, Pufko A, Barrios Martinez LF, Davis CM, Sethi S. Automation opportunities in pharmacovigilance An industry survey. Pharmaceut Med. 2020;34(1):7–18. doi:10.1007/s40290-019-00320-0
  • Lewis DJ, McCallum JF. Utilizing advanced technologies to augment pharmacovigilance systems Challenges and opportunities. Ther Innov Regul Sci. 2020;54(4):888–899. doi:10.1007/s43441-019-00023-3
  • FDA Emerging Technology Program. Available from: https://www.fda.gov/about-fda/center-drug-evaluation-andresearch-cder/emerging-technology-program. Accessed July 10, 2023.
  • IBM: What is a Digital Twin. Available from: Https//www.ibm.com/topics/what-is-A-digital-twin. Accessed July 10, 2023.
  • Huang J, O’Connor T, Ahmed K, et al. AIChE PD2M Advanced Process Control workshop-moving APC forward in the pharmaceutical industry. J Adv Manufacturing Processing. 2021;3(1):e10071. doi:10.1002/amp2.10071
  • National Academies of Sciences, E., and Medicine. Innovations in Pharmaceutical Manufacturing on the Horizon Technical Challenges, Regulatory Issues, and Recommendations. National Academies of Sciences, E; 2021.
  • Arden NS, Fisher AC, Tyner K, Yu LX, Lee SL, Kopcha M. Industry 4.0 for pharmaceutical manufacturing. Preparing for the smart factories of the future. Int J Pharm. 2021;602:120554. doi:10.1016/j.ijpharm.2021.120554
  • Promoting Innovation in Medical Product Assessment. A Risk-based Framework for Evaluating Computational Models for Regulatory Decision-Making; 2020. Available from: https://www.fda.gov/drugs/news-events-human-drugs/promoting-innovation-medical-product-assessment-risk-based-framework-evaluating-computational-models. Accessed July 10, 2023.
  • A V&V 70 Subcommittee has been established for Verification and Validation of Machine Learning.
  • The draft guidance for industry and FDA staff. Assessing the Credibility of Computational Modelling Simulation in Medical Device Submissions; 2021. When final, this guidance will represent FDA’s current thinking on this topic. Available from: https://www.fda.gov/media/154985/download. Accessed July 10, 2023.
  • Good Machine Learning Practice for Medical Device Development Guiding Principles; 2021. Available from: https://www.fda.gov/medical-devices/software-medical-device-samd/good-machine-learning-practice-medical-device-development-guiding-principles. Accessed July 10, 2023.
  • Exec. Order No. 13859, Maintaining American Leadership in Artificial Intelligence. (2019- 02544). (February 11, 2019). 84 Fed. Reg. 3967 Available from: https://www.federalregister.gov/documents/2019/02/14/2019-02544/maintaining-american-leadership-in-artificial-intelligence. Accessed July 10, 2023.
  • Exec. Order No. 13960, Promoting the Use of Trustworthy Artificial Intelligence in the Federal Government. (2020-27065). (December 3, 2020). 85 Fed. Reg. 78939. Available from: https://www.federalregister.gov/documents/2020/12/08/2020-27065/promoting-The-use-of-trustworthy-artificial-intelligence-in-The-federal-government. Accessed July 10, 2023.
  • Lander E, Nelson A. ICYMI WIRED (Opinion) Americans Need a Bill of Rights for an AI-Powered World; 2021. Available from: https://www.whitehouse.gov/ostp/news-updates/2021/10/22/icymi-wired-opinion-americans-need-A-bill-of-rights-for-an-ai-powered-world/. Accessed July 10, 2023.
  • Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine Learning (AI/ML)- Based Software as a Medical Device (SaMD) – Discussion Paper and Request for Feedback; 2019. Available from: https://www.fda.gov/files/medical%20devices/published/US-FDA-Artificial-Intelligence-and-Machine-Learning-Discussion-Paper.pdf. Accessed July 10, 2023.
  • the Public Workshop – evolving Role of Artificial Intelligence in Radiological Imaging; 2020. Available from: https://www.fda.gov/medical-devices/workshops-conferences-medical-devices/public-workshop-evolving-role-artificial-intelligence-radiological-imaging-02252020-02262020. Accessed July 10, 2023.
  • the Virtual Public Workshop – Transparency of Artificial Intelligence/Machine Learning-enabled Medical Devices; 2021. Available from: https://www.fda.gov/medical-devices/workshops-conferences-medical-devices/virtual-public-workshop-transparency-artificial-intelligencemachine-learning-enabled-medical-devices. Accessed July 10, 2023.
  • The guidance for industry and FDA. staff Qualification Process for Drug Development Tools; 2020. Available from: https://www.fda.gov/media/133511/download. Accessed July 10, 2023.
  • the Model-Informed Drug Development Paired Meeting Program; 2022. Available from: https://www.fda.gov/drugs/development-resources/model-informed-drug-development-pilot-program. Accessed July 10, 2023.
  • FDA’s Sentinel Initiative; 2022. Available from: https://www.fda.gov/safety/fdas-sentinel-initiative. Accessed July 10, 2023.
  • The CBER Biologics Effectiveness and Safety (BEST) System; 2022. Available from: https://www.fda.gov/vaccines-blood-biologics/safety-availability-biologics/cber-biologics-effectiveness-. Accessed July 10, 2023.
  • the National Evaluation System for health Technology (NEST); 2019. Available from: https://www.fda.gov/about-fda/cdrh-reports/national-evaluation-system-health-technology-nest. Accessed July 10, 2023.
  • The FDA Sentinel System Five-Year Strategy; 2019. Available from: https://www.fda.gov/media/120333/download. Accessed July 10, 2023.
  • Desai RJ, Matheny ME, Johnson K, et al. Broadening the reach of the FDA Sentinel system. A roadmap for integrating electronic health record data in a causal analysis framework. NPJ Digit Med. 2021;4(1):170. doi:10.1038/s41746-021-00542-0
  • Balzer LB, Zheng W, van der Laan MJ, Petersen ML. A new approach to hierarchical data analysis. Targeted maximum likelihood estimation for the causal effect of a cluster-level exposure. Stat Methods Med Res. 2019;28(6):1761–1780. doi:10.1177/0962280218774936
  • the CBER BEST System; 2022. Available from: https://www.fda.gov/vaccines-blood-biologics/safety-availability-biologics/cber-biologics-effectiveness-and-safety-best-system. Accessed July 10, 2023.
  • Ball R, Dal Pan G. Artificial Intelligence for Pharmacovigilance Ready for Prime Time?. Drug Saf. 2022;45(5):429–438. doi:10.1007/s40264-022-01157-4
  • Kreimeyer K, Dang O, Spiker J, et al. Increased Confidence in Deduplication of Drug Safety Reports with Natural Language Processing of Narratives at the US Food and Drug Administration. Front Drug Safety Regulation. 2022;2. doi:10.3389/fdsfr.2022.918897
  • Kreimeyer K, Dang O, Spiker J, et al. Feature engineering and machine learning for causality assessment in pharmacovigilance Lessons learned from application to the FDA Adverse Event Reporting System. Comput Biol Med. 2021;135:104517. doi:10.1016/j.compbiomed.2021.104517
  • Spiker J, Kreimeyer K, Dang O, et al. Information visualization platform for postmarket surveillance decision support. Drug Saf. 2020;43(9):905–915. doi:10.1007/s40264-020-00945-0
  • Bayer S, Clark C, Dang O, et al. An Evaluation of Text Processing Systems for Adverse Event Extraction from Drug Labels for Pharmacovigilance. Drug Saf. 2021;44(1):83–94. doi:10.1007/s40264-020-00996-3
  • Ly T, Pamer C, Dang O, et al. Evaluation of Natural Language Processing (NLP) systems to annotate drug product labeling with MedDRA terminology. J Biomed Inform. 2018;83:73–86. doi:10.1016/j.jbi.2018.05.019
  • The Quality Metrics for Drug Manufacturing; 2022. Available from: https://www.fda.gov/drugs/pharmaceutical-quality-resources/quality-metrics-drug-manufacturing. Accessed July 10, 2023.
  • Available from: https://www.fda.gov/science-research/advancing-regulatory-science/regulatory-science-extramural-research-and-development-projects. Accessed July 10, 2023.
  • CPIM; 2022. Available from: https://www.fda.gov/drugs/new-drugs-fda-cders-new-molecular-entities-and-new-therapeutic-biological-products/critical-path-innovation-meetings-cpim. Accessed July 10, 2023.
  • the ISTAND Pilot Program; 2021. Available from: https://www.fda.gov/drugs/drug-development-tool-ddt-qualification-programs/innovative-science-and-technology-approaches-new-drugs-istand-pilot-program. Accessed July 10, 2023.
  • Emerging Technology Program; 2022. Available from: https://www.fda.gov/about-fda/center-drug-evaluation-and-research-cder/emerging-technology-program. Accessed July 10, 2023.
  • Framework for FDA’s Real World Evidence Program; 2020. Available from: Https:/fda.gov/media/120060/download. Accessed July 10, 2023.
  • Available from: https://www.fda.gov/media/75414/download. Accessed July 10, 2023.