325
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Pharmacological and Clinical Studies of Medicinal Plants That Inhibit Dipeptidyl Peptidase-IV

, , & ORCID Icon
Pages 3473-3491 | Received 10 Jul 2023, Accepted 24 Oct 2023, Published online: 22 Nov 2023

References

  • Bellettiere J, LaMonte MJ, Evenson KR., et al. Sedentary behavior and cardiovascular disease in older women. Circulation. 2019;139(8):1036–1046. doi:10.1161/CIRCULATIONAHA.118.035312
  • Patterson R, McNamara E, Tainio M, et al. Sedentary behaviour and risk of all-cause, cardiovascular and cancer mortality, and incident type 2 diabetes: a systematic review and dose response meta-analysis. Eur J Epidemiol. 2018;33(9):811–829. doi:10.1007/s10654-018-0380-1
  • Lascar N, Brown J, Pattison H, Barnett AH, Bailey CJ, Bellary S. Type 2 diabetes in adolescents and young adults. Lancet Diabetes Endocrinol. 2018;6(1):69–80. doi:10.1016/S2213-8587(17)30186-9
  • Kao KT, Sabin MA. Type 2 diabetes mellitus in children and adolescents. Aust Fam Physician. 2016;45(6):401–406.
  • White JR. A brief history of the development of diabetes medications. Diabetes Spectr. 2014;27(2):82–86. doi:10.2337/diaspect.27.2.82
  • Chaudhury A, Duvoor C, Reddy Dendi VS, et al. Clinical review of antidiabetic drugs: implications for type 2 diabetes mellitus management. Front Endocrinol. 2017:8. doi:10.3389/fendo.2017.00006
  • Svendsen B, Pedersen J, Albrechtsen NJW, et al. An analysis of cosecretion and coexpression of gut hormones from male rat proximal and distal small intestine. Endocrinology. 2015;156(3):847–857. doi:10.1210/en.2014-1710
  • Egerod KL, Petersen N, Timshel PN, et al. Profiling of G protein-coupled receptors in vagal afferents reveals novel gut-to-brain sensing mechanisms. Mol Metab. 2018;12:62–75. doi:10.1016/j.molmet.2018.03.016
  • Richards P, Parker HE, Adriaenssens AE, et al. Identification and characterization of GLP-1 receptor–expressing cells using a new transgenic mouse model. Diabetes. 2014;63(4):1224–1233. doi:10.2337/db13-1440
  • Hjørne AP, Modvig IM, Holst JJ. The sensory mechanisms of nutrient-induced GLP-1 secretion. Metabolites. 2022;12(5):420. doi:10.3390/metabo12050420
  • Ezcurra M, Reimann F, Gribble FM, Emery E. Molecular mechanisms of incretin hormone secretion. Curr Opin Pharmacol. 2013;13(6):922–927. doi:10.1016/j.coph.2013.08.013
  • Reimann F, Williams L, da Silva Xavier G, Rutter GA, Gribble FM. Glutamine potently stimulates glucagon-like peptide-1 secretion from GLUTag cells. Diabetologia. 2004;47(9):1592–1601. doi:10.1007/s00125-004-1498-0
  • Diakogiannaki E, Pais R, Tolhurst G, et al. Oligopeptides stimulate glucagon-like peptide-1 secretion in mice through proton-coupled uptake and the calcium-sensing receptor. Diabetologia. 2013;56(12):2688–2696. doi:10.1007/s00125-013-3037-3
  • Lin HV, Efanov AM, Fang X, et al. GPR142 controls tryptophan-induced insulin and incretin hormone secretion to improve glucose metabolism. PLoS One. 2016;11(6):e0157298. doi:10.1371/journal.pone.0157298
  • Ekberg JH, Hauge M, Kristensen LV, et al. GPR119, a major enteroendocrine sensor of dietary triglyceride metabolites coacting in synergy with FFA1 (GPR40). Endocrinology. 2016;157(12):4561–4569. doi:10.1210/en.2016-1334
  • Belza A, Ritz C, Sørensen MQ, Holst JJ, Rehfeld JF, Astrup A. Contribution of gastroenteropancreatic appetite hormones to protein-induced satiety. Am J Clin Nutr. 2013;97(5):980–989. doi:10.3945/ajcn.112.047563
  • Müller TD, Finan B, Bloom SR, et al. Glucagon-like peptide 1 (GLP-1). Mol Metab. 2019;30:72–130. doi:10.1016/j.molmet.2019.09.010
  • Holt MK, Richards JE, Cook DR, et al. Preproglucagon neurons in the nucleus of the solitary tract are the main source of brain GLP-1, mediate stress-induced hypophagia, and limit unusually large intakes of food. Diabetes. 2019;68(1):21–33. doi:10.2337/db18-0729
  • Williams DL. Minireview: finding the sweet spot: peripheral versus central glucagon-like peptide 1 action in feeding and glucose homeostasis. Endocrinology. 2009;150(7):2997–3001. doi:10.1210/en.2009-0220
  • Kaku K. New concept of the glucagon‐like peptide‐1 signaling pathway on pancreatic insulin secretion. J Diabetes Investig. 2020;11(2):265–267. doi:10.1111/jdi.13136
  • Baggio LL, Drucker DJ. Biology of Incretins: GLP-1 and GIP. Gastroenterology. 2007;132(6):2131–2157. doi:10.1053/j.gastro.2007.03.054
  • Cho YM, Fujita Y, Kieffer TJ. Glucagon-Like Peptide-1: glucose homeostasis and beyond. Annu Rev Physiol. 2014;76(1):535–559. doi:10.1146/annurev-physiol-021113-170315
  • Holst JJ. The physiology of glucagon-like peptide 1. Physiol Rev. 2007;87(4):1409–1439. doi:10.1152/physrev.00034.2006
  • Shigeto M, Kaku K. Are both protein kinase A‐ and protein kinase C‐dependent pathways involved in glucagon‐like peptide‐1 action on pancreatic insulin secretion? J Diabetes Investig. 2014;5(4):347–348. doi:10.1111/jdi.12225
  • Shigeto M, Ramracheya R, Tarasov AI, et al. GLP-1 stimulates insulin secretion by PKC-dependent TRPM4 and TRPM5 activation. J Clin Invest. 2015;125(12):4714–4728. doi:10.1172/JCI81975
  • Ahrén B, Foley JE. Improved glucose regulation in type 2 diabetic patients with DPP-4 inhibitors: focus on alpha and beta cell function and lipid metabolism. Diabetologia. 2016;59(5):907–917. doi:10.1007/s00125-016-3899-2
  • Pospisilik JA, Martin J, Doty T, et al. Dipeptidyl peptidase IV inhibitor treatment stimulates β-cell survival and islet neogenesis in streptozotocin-induced diabetic rats. Diabetes. 2003;52(3):741–750. doi:10.2337/diabetes.52.3.741
  • Liu Z, Habener JF. Glucagon-like peptide-1 activation of TCF7L2-dependent wnt signaling enhances pancreatic beta cell proliferation. J Biol Chem. 2008;283(13):8723–8735. doi:10.1074/jbc.M706105200
  • Lawrence MC, Bhatt HS, Easom RA. NFAT regulates insulin gene promoter activity in response to synergistic pathways induced by glucose and glucagon-like peptide-1. Diabetes. 2002;51(3):691–698. doi:10.2337/diabetes.51.3.691
  • Jhala US, Canettieri G, Screaton RA, et al. cAMP promotes pancreatic β-cell survival via CREB-mediated induction of IRS2. Genes Dev. 2003;17(13):1575–1580. doi:10.1101/gad.1097103
  • Kim MJ, Kang JH, Park YG, et al. Exendin-4 induction of cyclin D1 expression in INS-1 β-cells: involvement of cAMP-responsive element. J Endocrinol. 2006;188(3):623–633. doi:10.1677/joe.1.06480
  • Buteau J, Foisy S, Joly E, Prentki M. Glucagon-like peptide 1 induces pancreatic β-cell proliferation via transactivation of the epidermal growth factor receptor. Diabetes. 2003;52(1):124–132. doi:10.2337/diabetes.52.1.124
  • Sebastián-Martín A, Sánchez BG, Mora-Rodríguez JM, Bort A, Díaz-Laviada I. Role of Dipeptidyl Peptidase-4 (DPP4) on COVID-19 Physiopathology. Biomedicines. 2022;10(8):2026. doi:10.3390/biomedicines10082026
  • Zhong J, Kankanala S, Rajagopalan S. Dipeptidyl peptidase-4 inhibition: insights from the bench and recent clinical studies. Curr Opin Lipidol. 2016;27(5):484–492. doi:10.1097/MOL.0000000000000340
  • Nabeno M, Akahoshi F, Kishida H, et al. A comparative study of the binding modes of recently launched dipeptidyl peptidase IV inhibitors in the active site. Biochem Biophys Res Commun. 2013;434(2):191–196. doi:10.1016/j.bbrc.2013.03.010
  • Arulmozhiraja S, Matsuo N, Ishitsubo E, Okazaki S, Shimano H, Tokiwa H. Comparative binding analysis of dipeptidyl peptidase IV (DPP-4) with antidiabetic drugs – an ab initio fragment molecular orbital study. PLoS One. 2016;11(11):e0166275. doi:10.1371/journal.pone.0166275
  • Aulifa DL, Adnyana IK, Sukrasno S, Levita J. Inhibitory activity of xanthoangelol isolated from Ashitaba (Angelica keiskei Koidzumi) towards α-glucosidase and dipeptidyl peptidase-IV: in silico and in vitro studies. Heliyon. 2022;8(5):e09501. doi:10.1016/j.heliyon.2022.e09501
  • Huang J, Jia Y, Sun S, Meng L. Adverse event profiles of dipeptidyl peptidase-4 inhibitors: data mining of the public version of the FDA adverse event reporting system. BMC Pharmacol Toxicol. 2020;21(1):68. PMID: 32938499; PMCID: PMC7493367. doi:10.1186/s40360-020-00447-w
  • Asmat U, Abad K, Ismail K. Diabetes mellitus and oxidative stress—A concise review. Saudi Pharm J. 2016;24(5):547–553. doi:10.1016/j.jsps.2015.03.013
  • Ghorbani A, Rashidi R, Shafiee-Nick R. Flavonoids for preserving pancreatic beta cell survival and function: a mechanistic review. Biomed Pharmacother. 2019;111:947–957. doi:10.1016/j.biopha.2018.12.127
  • Oh YS. Plant-derived compounds targeting pancreatic beta cells for the treatment of diabetes. Evidence-Based Complement Altern Med. 2015;2015:1–12. doi:10.1155/2015/629863
  • Singh AK, Yadav D, Sharma N, Jin JO. Dipeptidyl Peptidase (DPP)-IV inhibitors with antioxidant potential isolated from natural sources: a novel approach for the management of diabetes. Pharmaceuticals. 2021;14(6):586. doi:10.3390/ph14060586
  • Ekor M, Lee SA, Parra KJ. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol. 2014;5:4. doi:10.3389/fphar.2013.00177
  • Kalhotra P, Chittepu VCSR, Osorio-Revilla G, Gallardo-Velazquez T. Phytochemicals in garlic extract inhibit therapeutic enzyme DPP-4 and induce skeletal muscle cell proliferation: a possible mechanism of action to benefit the treatment of diabetes mellitus. Biomolecules. 2020;10(2):305. doi:10.3390/biom10020305
  • Purnomo Y, Soeatmadji DW, Sumitro SB, Widodo MA. Anti-diabetic potential of Urena lobata leaf extract through inhibition of dipeptidyl peptidase IV activity. Asian Pac J Trop Biomed. 2015;5(8):645–649. doi:10.1016/j.apjtb.2015.05.014
  • Yang Y, Shi CY, Xie J, Dai JH, He SL, Tian Y. Identification of potential dipeptidyl peptidase (DPP)-IV Inhibitors among moringa oleifera phytochemicals by virtual screening, molecular docking analysis, ADME/T-based prediction, and in vitro analyses. Molecules. 2020;25(1):189. doi:10.3390/molecules25010189
  • Chalichem NSS, Jupudi S, Yasam VR, Basavan D. Dipeptidyl peptidase-IV inhibitory action of Calebin A: an in silico and in vitro analysis. J Ayurveda Integr Med. 2021;12(4):663–672. doi:10.1016/j.jaim.2021.08.008
  • Huang PK, Lin SR, Chang CH, Tsai MJ, Lee DN, Weng CF. Natural phenolic compounds potentiate hypoglycemia via inhibition of Dipeptidyl peptidase IV. Sci Rep. 2019;9(1):15585. doi:10.1038/s41598-019-52088-7
  • Ram H, Kumar P, Purohit A, et al. Improvements in HOMA indices and pancreatic endocrinal tissues in type 2-diabetic rats by DPP-4 inhibition and antioxidant potential of an ethanol fruit extract of Withania coagulans. Nutr Metab. 2021;18(1):43. doi:10.1186/s12986-021-00547-2
  • Zabidi NA, Ishak NA, Hamid M, Ashari SE, Mohammad Latif MA. Inhibitory evaluation of Curculigo latifolia on α-glucosidase, DPP (IV) and in vitro studies in antidiabetic with molecular docking relevance to type 2 diabetes mellitus. J Enzyme Inhib Med Chem. 2021;36(1):109–121. doi:10.1080/14756366.2020.1844680
  • Quek A, Kassim NK, Lim PC, et al. α-Amylase and dipeptidyl peptidase-4 (DPP-4) inhibitory effects of Melicope latifolia bark extracts and identification of bioactive constituents using in vitro and in silico approaches. Pharm Biol. 2021;59(1):962–971. doi:10.1080/13880209.2021.1948065
  • Quek A, Kassim NK, Ismail A, et al. Identification of dipeptidyl peptidase-4 and α-amylase inhibitors from melicope glabra (Blume) T. G. Hartley (Rutaceae) using liquid chromatography tandem mass spectrometry, in vitro and in silico methods. Molecules. 2020;26(1):1. doi:10.3390/molecules26010001
  • Aulifa DL, Adnyana IK, Levita J, Sukrasno S. 4-hydroxyderricin isolated from the sap of angelica keiskei koidzumi: evaluation of its inhibitory activity towards dipeptidyl peptidase-IV. Sci Pharm. 2019;87(4):30. doi:10.3390/scipharm87040030
  • Shaikh S, Ali S, Lim JH, et al. Dipeptidyl peptidase-4 inhibitory potentials of Glycyrrhiza uralensis and its bioactive compounds licochalcone A and licochalcone B: an in silico and in vitro study. Front Mol Biosci. 2022:9. doi:10.3389/fmolb.2022.1024764
  • Perumal N, Nallappan M, Shohaimi S, Kassim NK, Tee TT, Cheah YH. Synergistic antidiabetic activity of Taraxacum officinale (L.) Weber ex F.H.Wigg and momordica charantia L. polyherbal combination. Biomed Pharmacother. 2022;145:112401. doi:10.1016/j.biopha.2021.112401
  • Ansari P, Flatt PR, Harriott P, Abdel-Wahab YHA. Anti-hyperglycaemic and insulin-releasing effects of Camellia sinensis leaves and isolation and characterisation of active compounds. Br J Nutr. 2021;126(8):1149–1163. doi:10.1017/S0007114520005085
  • Wang HJ, Chiang BH. Anti-diabetic effect of a traditional Chinese medicine formula. Food Funct. 2012;3(11):1161. doi:10.1039/c2fo30139c
  • Kosaraju J, Dubala A, Chinni S, Khatwal RB, Satish Kumar MN, Basavan D. A molecular connection of Pterocarpus marsupium, Eugenia jambolana and Gymnema sylvestre with dipeptidyl peptidase-4 in the treatment of diabetes. Pharm Biol. 2014;52(2):268–271. doi:10.3109/13880209.2013.823550
  • Al-masri IM, Mohammad MK, Tahaa MO. Inhibition of dipeptidyl peptidase IV (DPP IV) is one of the mechanisms explaining the hypoglycemic effect of berberine. J Enzyme Inhib Med Chem. 2009;24(5):1061–1066. doi:10.1080/14756360802610761
  • Al-Qattan KK, Thomson M, Ali M, Mansour MH. Garlic (Allium sativum) attenuate glomerular glycation in streptozotocin-induced diabetic rats: a possible role of insulin. Pathophysiology. 2013;20(2):147–152. doi:10.1016/j.pathophys.2013.04.001
  • Purnomo Y, Soeatmadji DW, Sumitro SB, Widodo MA. Incretin effect of Urena lobata leaves extract on structure and function of rats islet β-cells. J Tradit Complement Med. 2017;7(3):301–306. doi:10.1016/j.jtcme.2016.10.001
  • Ali AM, Moqbel MS, Al-Hizab FA. Effect of momordica charantia on insulin immune-reactive pancreatic beta cells and blood glucose levels in streptozotocin-induced diabetic rats. J Nutr Sci Vitaminol. 2022;68(5):438–445. doi:10.3177/jnsv.68.438
  • Villarruel-López A, López-de la Mora DA, Vázquez-Paulino OD, et al. Effect of Moringa oleifera consumption on diabetic rats. BMC Complement Altern Med. 2018;18(1):127. doi:10.1186/s12906-018-2180-2
  • Król E, Jeszka-Skowron M, Krejpcio Z, Flaczyk E, Wójciak RW. The effects of supplementary mulberry leaf (Morus alba) extracts on the trace element status (Fe, Zn and Cu) in relation to diabetes management and antioxidant indices in diabetic rats. Biol Trace Elem Res. 2016;174(1):158–165. doi:10.1007/s12011-016-0696-1
  • Kumar V, Bhandari U, Tripathi CD, Khanna G. Protective effect of gymnema sylvestre ethanol extract on high fat diet-induced obese diabetic Wistar rats. Indian J Pharm Sci. 2014;76(4):315–322.
  • Xu Y, Zhao Y, Sui Y, Lei X. Protective effect of Pterocarpus marsupium bark extracts against cataract through the inhibition of aldose reductase activity in streptozotocin-induced diabetic male albino rats. 3 Biotech. 2018;8(4):188. doi:10.1007/s13205-018-1210-6
  • Li JC, Shen XF, Shao JA, et al. The total alkaloids from Coptis chinensis Franch improve cognitive deficits in type 2 diabetic rats. Drug Des Devel Ther. 2018;12:2695–2706. doi:10.2147/DDDT.S171025
  • Zhang W, Jin Q, Luo J, Wu J, Wang Z. Phytonutrient and anti-diabetic functional properties of flavonoid-rich ethanol extract from Angelica Keiskei leaves. J Food Sci Technol. 2018;55(11):4406–4412. doi:10.1007/s13197-018-3348-y
  • Ashraf R, Khan RA, Ashraf I. Garlic (Allium sativum) supplementation with standard antidiabetic agent provides better diabetic control in type 2 diabetes patients. Pak J Pharm Sci. 2011;24(4):565–570.
  • Kim SK, Jung J, Jung JH, et al. Hypoglycemic efficacy and safety of Momordica charantia (bitter melon) in patients with type 2 diabetes mellitus. Complement Ther Med. 2020;52:102524. doi:10.1016/j.ctim.2020.102524
  • Leone A, Bertoli S, Di Lello S, et al. Effect of moringa oleifera leaf powder on postprandial blood glucose response: in vivo study on saharawi people living in refugee camps. Nutrients. 2018;10(10):1494. doi:10.3390/nu10101494
  • Thaipitakwong T, Supasyndh O, Rasmi Y, Aramwit P. A randomized controlled study of dose-finding, efficacy, and safety of mulberry leaves on glycemic profiles in obese persons with borderline diabetes. Complement Ther Med. 2020;49:102292. doi:10.1016/j.ctim.2019.102292
  • Majeed M, Majeed A, Nagabhusahnam K, Mundkur L, Paulose S. A randomized, double-blind clinical trial of a herbal formulation (GlycaCare-II) for the management of type 2 diabetes in comparison with metformin. Diabetol Metab Syndr. 2021;13(1):132. doi:10.1186/s13098-021-00746-0
  • Li Y, Zheng M, Zhai X, et al. Effect Of-Gymnema Sylvestre, Citrullus Colocynthis And Artemisia Absinthium On Blood Glucose And Lipid Profile In Diabetic Human. Acta Pol Pharm. 2015;72(5):981–985.
  • Hodaei H, Adibian M, Nikpayam O, Hedayati M, Sohrab G. The effect of curcumin supplementation on anthropometric indices, insulin resistance and oxidative stress in patients with type 2 diabetes: a randomized, double-blind clinical trial. Diabetol Metab Syndr. 2019;11(1):41. doi:10.1186/s13098-019-0437-7
  • Zhang Y, Gu Y, Ren H, et al. Gut microbiome-related effects of berberine and probiotics on type 2 diabetes (the PREMOTE study). Nat Commun. 2020;11(1):5015. doi:10.1038/s41467-020-18414-8
  • Tanwar RS, Sharma SB, Prabhu KM. In vivo assessment of antidiabetic and antioxidative activity of natural phytochemical isolated from fruit-pulp of Eugenia jambolana in streptozotocin-induced diabetic rats. Redox Rep. 2017;22(6):301–307. doi:10.1080/13510002.2016.1229892
  • Khan F, Sarker MMR, Ming LC, et al. Comprehensive review on phytochemicals, pharmacological and clinical potentials of gymnema sylvestre. Front Pharmacol. 2019:10. doi:10.3389/fphar.2019.01223
  • Wirngo FE, Lambert MN, Jeppesen PB. The physiological effects of dandelion (Taraxacum officinale) in type 2 diabetes. Rev Diabet Stud. 2016;13(2–3):113–131. doi:10.1900/RDS.2016.13.113
  • Chatterji S, Fogel D. Study of the effect of the herbal composition SR2004 on hemoglobin A1c, fasting blood glucose, and lipids in patients with type 2 diabetes mellitus. Integr Med Res. 2018;7(3):248–256. doi:10.1016/j.imr.2018.04.002
  • Karlowicz-Bodalska K, Han S, Freier J, Smolenski M, Bodalska A. Curcuma Longa As Medicinal Herb In The Treatment Of Diabet- IC Complications. Acta Pol Pharm. 2017;74(2):605–610.
  • Zhao MM, Lu J, Li S, et al. Berberine is an insulin secretagogue targeting the KCNH6 potassium channel. Nat Commun. 2021;12(1):5616. doi:10.1038/s41467-021-25952-2