204
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

An Integrative Approach to Study the Inhibition of Providencia vermicola FabD Using C2-Quaternary Indolinones

, , , , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 3325-3347 | Received 22 Jun 2023, Accepted 25 Oct 2023, Published online: 13 Nov 2023

References

  • Chinemerem Nwobodo D, Ugwu MC, Oliseloke Anie C, et al. Antibiotic resistance: the challenges and some emerging strategies for tackling a global menace. J Clin Lab Anal. 2022;36(9):e24655. doi:10.1002/jcla.24655
  • Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268–281. doi:10.1111/j.1469-0691.2011.03570.x
  • Dhingra S, Rahman NAA, Peile E, et al. Microbial resistance movements: an overview of global public health threats posed by antimicrobial resistance, and how best to counter. Front Public Health. 2020;8:535668. doi:10.3389/fpubh.2020.535668
  • Guchhait SK, Chaudhary V, Rana VA, Priyadarshani G, Kandekar S, Kashyap M. Oxidative dearomatization of Indoles via Pd-catalyzed C–H oxygenation: an entry to C2-quaternary indolin-3-ones. Org Lett. 2016;18(7):1534–1537. doi:10.1021/acs.orglett.6b00244
  • Bell R, Carmeli S, Sar N. Vibrindole A, a metabolite of the marine bacterium, Vibrio parahaemolyticus, isolated from the toxic mucus of the boxfish Ostracion cubicus. J Nat Prod. 1994;57(11):1587–1590. doi:10.1021/np50113a022
  • Cai SX, Li DH, Zhu TJ, Wang FP, Xiao X, Gu QQ. Two new Indole alkaloids from the marine-derived bacterium Aeromonas sp. CB101. Helv Chim Acta. 2010;93(4):791–795. doi:10.1002/hlca.200900360
  • Cheng LT, Luo SQ, Hong BC, Chen CL, Li WS, Lee GH. Oxidative trimerization of indoles via water-assisted visible-light photoredox catalysis and the study of their anti-cancer activities. Org Biomol Chem. 2020;18(32):6247–6252. doi:10.1039/D0OB01298J
  • McClay K, Mehboob S, Yu J, et al. Indole trimers with antibacterial activity against Gram-positive organisms produced using combinatorial biocatalysis. AMB Express. 2015;5(1):125. doi:10.1186/s13568-015-0125-4
  • Wu C, Liu Y, Yang Y, et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B. 2020;10(5):766–788. doi:10.1016/j.apsb.2020.02.008
  • Jiang X, Zhu B, Lin K, Wang G, Su WK, Yu C. Metal-free synthesis of 2,2-disubstituted indolin-3-ones. Org Biomol Chem. 2019;17(8):2199–2203. doi:10.1039/C8OB03057J
  • Chakrabarty M, Sarkar S, Basak R. Reaction of indole and alkylindoles with ceric ammonium nitrate on silica gel. J Chem Res. 2003;2003(10):664–665. doi:10.3184/030823403322656012
  • Rogers JL, MacMillan JB. A labeled substrate approach to discovery of biocatalytic reactions: a proof of concept transformation with N- methylindole. J Am Chem Soc. 2012;134(30):12378–12381. doi:10.1021/ja304767m
  • Xue J, Bao Y, Qin W, et al. Metal-Free–catalyzed oxidative trimerization of indoles using NaNO 2 to construct quaternary carbon centers: synthesis of 2-(1 H -Indol-3-yl)-2,3′-biindolin-3-ones. Synth Commun. 2014;44(15):2215–2221. doi:10.1080/00397911.2014.891743
  • Shukla G, Dahiya A, Alam T, Patel BK. Visible light‐mediated C2‐Quaternarization of N‐alkyl indoles through oxidative dearomatization using Ir(III) catalyst. Asian J Org Chem. 2019;8(12):2243–2248. doi:10.1002/ajoc.201900604
  • Takeshige Y, Egami Y, Wakimoto T, Abe I. Production of indole antibiotics induced by exogenous gene derived from sponge metagenomes. Mol Biosyst. 2015;11(5):1290–1294. doi:10.1039/C5MB00131E
  • Ganachaud C, Garfagnoli V, Tron T, Iacazio G. Trimerisation of indole through laccase catalysis. Tetrahedron Lett. 2008;49(15):2476–2478. doi:10.1016/j.tetlet.2008.02.021
  • Azimi M, Nafissi-Varcheh N, Mogharabi M, Faramarzi MA, Aboofazeli R. Study of laccase activity and stability in the presence of ionic and non-ionic surfactants and the bioconversion of indole in laccase-TX-100 system. J Mol Catal B Enzym. 2016;126:69–75. doi:10.1016/j.molcatb.2016.02.001
  • Gohain SB, Basumatary M, Boruah PK, Das MR, Thakur AJ. Nano Au/Pd-catalysed ‘on-water’ synthesis of C3–C3′ diaryl-oxindole scaffolds via N 2 -selective dearomatization of indole. Green Chem. 2020;22(1):170–179. doi:10.1039/C9GC02370D
  • Deng Z, Peng X, Huang P, Jiang L, Ye D, Liu L. A multifunctionalized strategy of indoles to C2-quaternary indolin-3-ones via a TEMPO/Pd-catalyzed cascade process. Org Biomol Chem. 2017;15(2):442–448. doi:10.1039/C6OB02285E
  • Baruah MJ, Dutta A, Biswas S, et al. Fe 2 O 3 Nanocatalysts Supported on Zeolite-Y for the Selective Synthesis of C2 Di-Indolyl Indolones and Isatins. ACS Appl Nano Mater. 2022;5(1):1446–1459. doi:10.1021/acsanm.1c03987
  • Gonelimali FD, Lin J, Miao W, et al. Antimicrobial properties and mechanism of action of some plant extracts against food pathogens and spoilage microorganisms. Front Microbiol. 2018;9:1639. doi:10.3389/fmicb.2018.01639
  • Manandhar S, Luitel S, Dahal RK. In vitro antimicrobial activity of some medicinal plants against human pathogenic bacteria. J Trop Med. 2019;2019:1–5. doi:10.1155/2019/1895340
  • Kuete V, Betrandteponno R, Mbaveng AT, et al. Antibacterial activities of the extracts, fractions and compounds from Dioscorea bulbifera. BMC Complement Altern Med. 2012;12:228. doi:10.1186/1472-6882-12-228
  • Origin: data analysis and graphing software. Available from: https://www.originlab.com/index.aspx?go=Products/Origin. Accessed October 31, 2023.
  • van de Waterbeemd H, Gifford E. ADMET in silico modelling: towards prediction paradise? Nat Rev Drug Discov. 2003;2(3):192–204. doi:10.1038/nrd1032
  • Breijyeh Z, Jubeh B, Karaman R. Resistance of gram-negative bacteria to current antibacterial agents and approaches to resolve it. Mol Basel Switz. 2020;25(6):E1340. doi:10.3390/molecules25061340
  • Rock CO, Cronan JE. Escherichia coli as a model for the regulation of dissociable (type II) fatty acid biosynthesis. Biochim Biophys Acta. 1996;1302(1):1–16. doi:10.1016/0005-2760(96)00056-2
  • Andolfo G, Schuster C, Gharsa HB, Ruocco M, Leclerque A. Genomic analysis of the nomenclatural type strain of the nematode-associated entomopathogenic bacterium Providencia vermicola. BMC Genom. 2021;22(1):708. doi:10.1186/s12864-021-08027-w
  • Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–D613. doi:10.1093/nar/gky1131
  • Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–2504. doi:10.1101/gr.1239303
  • Bora N, Jha AN. In silico metabolic pathway analysis identifying target against leishmaniasis - A kinetic modeling approach. Front Genet. 2020;11:179. doi:10.3389/fgene.2020.00179
  • Udhaya Kumar S, Thirumal Kumar D, Siva R, et al. Dysregulation of signaling pathways due to differentially expressed genes from the B-cell transcriptomes of systemic lupus erythematosus patients – a bioinformatics approach. Front Bioeng Biotechnol. 2020;8:276. doi:10.3389/fbioe.2020.00276
  • Bader GD, Hogue CWV. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 2003;4:2. doi:10.1186/1471-2105-4-2
  • Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;8(Suppl 4):S11. doi:10.1186/1752-0509-8-S4-S11
  • Sabidussi G. The centrality index of a graph. Psychometrika. 1966;31(4):581–603. doi:10.1007/BF02289527
  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547–1549. doi:10.1093/molbev/msy096
  • Li KB. ClustalW-MPI: clustalW analysis using distributed and parallel computing. Bioinforma Oxf Engl. 2003;19(12):1585–1586. doi:10.1093/bioinformatics/btg192
  • Efron B. The Jackknife, the Bootstrap and Other Resampling Plans. Society for Industrial and Applied Mathematics; 1982. doi:10.1137/1.9781611970319
  • Felsenstein J. Confidence limits on Phylogenies: an approach using the Bootstrap. Evol Int J Org Evol. 1985;39(4):783–791. doi:10.1111/j.1558-5646.1985.tb00420.x
  • Chakraborty R. Molecular evolution and phylogenetics, Masatoshi Nei and Sudhir Kumar. Oxford University Press, Oxford, England/New York, USA, 2000, xiv+333 pages (hardback) $75; (paperback) $35.00. Mol Phylogenet Evol. 2002;25(3):569–570. doi:10.1016/S1055-7903(02)00245-2
  • Boutet E, Lieberherr D, Tognolli M, Schneider M, Bairoch A. UniProtKB/Swiss-Prot. Methods Mol Biol. 2007;406:89–112. doi:10.1007/978-1-59745-535-0_4
  • Berman HM, Westbrook J, Feng Z, et al. The protein data bank. Nucleic Acids Res. 2000;28(1):235–242. doi:10.1093/nar/28.1.235
  • Waterhouse A, Bertoni M, Bienert S, et al. Swiss-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46(W1):W296–W303. doi:10.1093/nar/gky427
  • Kozakov D, Grove LE, Hall DR, et al. The FTMap family of web servers for determining and characterizing ligand-binding hot spots of proteins. Nat Protoc. 2015;10(5):733–755. doi:10.1038/nprot.2015.043
  • Tian W, Chen C, Lei X, Zhao J, Liang J. CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res. 2018;46(W1):W363–W367. doi:10.1093/nar/gky473
  • BIOVIA Discovery Studio - BIOVIA - Dassault Systèmes®. Available from: https://www.3ds.com/products-services/biovia/products/molecular-modeling-simulation/biovia-discovery-studio/. Accessed November 9, 2022.
  • Wu G, Robertson DH, Brooks CL, Vieth M. Detailed analysis of grid-based molecular docking: a case study of CDOCKER?A CHARMm-based MD docking algorithm. J Comput Chem. 2003;24(13):1549–1562. doi:10.1002/jcc.10306
  • Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC. GROMACS: fast, flexible, and free. J Comput Chem. 2005;26(16):1701–1718. doi:10.1002/jcc.20291
  • Rajkhowa S, Pathak U, Patgiri H. Elucidating the interaction and stability of withanone and withaferin‐a with human serum albumin, lysozyme and hemoglobin using computational biophysical modeling. ChemistrySelect. 2022;7(12):12. doi:10.1002/slct.202103938
  • Kemmerer S, Voss JC, Faller R. Molecular dynamics simulation of dipalmitoylphosphatidylcholine modified with a MTSL nitroxide spin label in a lipid membrane. Biochim Biophys Acta BBA Biomembr. 2013;1828(11):2770–2777. doi:10.1016/j.bbamem.2013.07.030
  • Hünenberger PH. Thermostat algorithms for molecular dynamics simulations. In: Holm C, Kremer K, editors. Advanced Computer Simulation. Vol. 173. Springer Berlin Heidelberg; 2005:105–149. doi: 10.1007/b99427
  • Turner P XMGRACE, Version 5.1. 19. Cent Coast Land-Margin Res Or Grad Inst Sci Technol Beaverton OR; 2005:2.
  • Lupande-Mwenebitu D, Khedher MB, Khabthani S, et al. First genome description of providencia vermicola isolate bearing NDM-1 from blood culture. Microorganisms. 2021;9(8):1751. doi:10.3390/microorganisms9081751
  • Egan AF, Russell RR. Conditional mutations affecting the cell envelope of Escherichia coli K-12. Genet Res. 1973;21(2):139–152. doi:10.1017/s001667230001332x
  • Zhang Y, Cronan JE. Transcriptional analysis of essential genes of the Escherichia coli fatty acid biosynthesis gene cluster by functional replacement with the analogous Salmonella typhimurium gene cluster. J Bacteriol. 1998;180(13):3295–3303. doi:10.1128/JB.180.13.3295-3303.1998
  • Heath RJ, Rock CO. Fatty acid biosynthesis as a target for novel antibacterials. Curr Opin Investig Drugs. 2004;5(2):146–153.
  • Funahashi A, Morohashi M, Kitano H, Tanimura N. CellDesigner: a process diagram editor for gene-regulatory and biochemical networks. BIOSILICO. 2003;1(5):159–162. doi:10.1016/S1478-5382(03)02370-9
  • Rasti S, Vogiatzis C. A survey of computational methods in protein–protein interaction networks. Ann Oper Res. 2019;276(1–2):35–87. doi:10.1007/s10479-018-2956-2
  • Marcella AM, Barb AW. The R117A variant of the Escherichia coli transacylase FabD synthesizes novel acyl-(acyl carrier proteins). Appl Microbiol Biotechnol. 2017;101(23–24):8431–8441. doi:10.1007/s00253-017-8586-9
  • Whelan S, Goldman N. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol. 2001;18(5):691–699. doi:10.1093/oxfordjournals.molbev.a003851
  • Bauldry S. Structural equation modeling. In: International Encyclopedia of the Social & Behavioral Sciences. Elsevier; 2015:615–620. doi:10.1016/B978-0-08-097086-8.44055-9
  • Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci. 1992;8(3):275–282. doi:10.1093/bioinformatics/8.3.275
  • Gogoi D, Chaliha AK, Sarma D, Kakoti BB, Buragohain AK. Identification of potential type 4 cAMP phosphodiesterase inhibitors via 3D pharmacophore modeling, virtual screening, DFT and structural bioisostere design. Med Chem Res. 2017;26(11):3000–3014. doi:10.1007/s00044-017-1998-3
  • Gogoi D, Baruah VJ, Chaliha AK, Kakoti BB, Sarma D, Buragohain AK. 3D pharmacophore-based virtual screening, docking and density functional theory approach towards the discovery of novel human epidermal growth factor receptor-2 (HER2) inhibitors. J Theor Biol. 2016;411:68–80. doi:10.1016/j.jtbi.2016.09.016
  • Karplus M, McCammon JA. Molecular dynamics simulations of biomolecules. Nat Struct Biol. 2002;9(9):646–652. doi:10.1038/nsb0902-646
  • Kumar CV, Swetha RG, Anbarasu A, Ramaiah S. Computational analysis reveals the association of Threonine 118 methionine mutation in PMP22 resulting in CMT-1A. Adv Bioinforma. 2014;2014:1–10. doi:10.1155/2014/502618
  • Mahadevi AS, Sastry GN. Cation−π interaction: its role and relevance in chemistry, biology, and material science. Chem Rev. 2013;113(3):2100–2138. doi:10.1021/cr300222d
  • Kollman PA, Allen LC. Theory of the hydrogen bond. Chem Rev. 1972;72(3):283–303. doi:10.1021/cr60277a004
  • Jungwirth P. Biological water or rather water in biology? J Phys Chem Lett. 2015;6(13):2449–2451. doi:10.1021/acs.jpclett.5b01143
  • Balamurugan K, Pisabarro MT. Stabilizing role of water solvation on anion−π interactions in proteins. ACS Omega. 2021;6(39):25350–25360. doi:10.1021/acsomega.1c03264
  • Cronan JE, Thomas J. Chapter 17 Bacterial fatty acid synthesis and its relationships with polyketide synthetic pathways. In: Methods in Enzymology. Vol. 459. Elsevier; 2009:395–433. doi:10.1016/S0076-6879(09)04617-5
  • Gago G, Diacovich L, Arabolaza A, Tsai SC, Gramajo H. Fatty acid biosynthesis in actinomycetes. FEMS Microbiol Rev. 2011;35(3):475–497. doi:10.1111/j.1574-6976.2010.00259.x