127
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Integrated Network Pharmacology and in vivo Experimental Validation Approach to Explore the Potential Antioxidant Effects of Annao Pingchong Decoction in Intracerebral Hemorrhage Rats

, , , , , , , , & show all
Pages 699-717 | Received 05 Oct 2023, Accepted 19 Feb 2024, Published online: 04 Mar 2024

References

  • Feigin VL, Krishnamurthi RV, Parmar P, et al. Update on the Global Burden of Ischemic and Hemorrhagic Stroke in 1990-2013: the GBD 2013 Study. Neuroepidemiology. 2015;45(3):161–176. doi:10.1159/000441085
  • Poon MT, Fonville AF, Al-Shahi Salman R. Long-term prognosis after intracerebral haemorrhage: systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2014;85(6):660–667. doi:10.1136/jnnp-2013-306476
  • van Asch CJ, Luitse MJ, Rinkel GJ, van der Tweel I, Algra A, Klijn CJ. Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. Lancet Neurol. 2010;9(2):167–176. doi:10.1016/S1474-4422(09)70340-0
  • Zille M, Farr TD, Keep RF, Römer C, Xi G, Boltze J. Novel targets, treatments, and advanced models for intracerebral haemorrhage. EBioMedicine. 2022;76:103880. doi:10.1016/j.ebiom.2022.103880
  • Chen S, Li L, Peng C, et al. Targeting Oxidative Stress and Inflammatory Response for Blood-Brain Barrier Protection in Intracerebral Hemorrhage. Antioxid Redox Signal. 2022;37(1–3):115–134. doi:10.1089/ars.2021.0072
  • Zhang Y, Khan S, Liu Y, Wu G, Yong VW, Xue M. Oxidative Stress Following Intracerebral Hemorrhage: from Molecular Mechanisms to Therapeutic Targets. Front Immunol. 2022;13:847246. doi:10.3389/fimmu.2022.847246
  • Magid-Bernstein J, Girard R, Polster S, et al. Cerebral Hemorrhage: pathophysiology, Treatment, and Future Directions. Circ Res. 2022;130(8):1204–1229. doi:10.1161/CIRCRESAHA.121.319949
  • Yao Z, Bai Q, Wang G. Mechanisms of Oxidative Stress and Therapeutic Targets following Intracerebral Hemorrhage. Oxid Med Cell Longev. 2021;2021:8815441. doi:10.1155/2021/8815441
  • Han N, Ding SJ, Wu T, Zhu YL. Correlation of free radical level and apoptosis after intracerebral hemorrhage in rats. Neurosci Bull. 2008;24(6):351–358. doi:10.1007/s12264-008-0711-4
  • Nakamura T, Kuroda Y, Yamashita S, et al. Edaravone attenuates brain edema and neurologic deficits in a rat model of acute intracerebral hemorrhage. Stroke. 2008;39(2):463–469. doi:10.1161/STROKEAHA.107.486654
  • Guo C, Zhou X, Wang X, et al. Annao Pingchong decoction alleviate the neurological impairment by attenuating neuroinflammation and apoptosis in intracerebral hemorrhage rats. J Ethnopharmacol. 2023;310:116298. doi:10.1016/j.jep.2023.116298
  • Zhou D, Chen Y, Li X, et al. Effect of Annao Pingchong Pills on the expression of AQP-9 of peripheral tissue in rats after intracerebral hemorrhage. J Hunan Univ CM. 2013;33(05):30–33+55.
  • Guo C, Zhou X, Wang X. Effect of Annaopingchongtang on cerebral edema and the expression of MMP-2/9 after intracerebral hemorrhage. Chin J Diffic Compl Cas. 2011;10(02):129–131.
  • Zhou D, Chen Y, Hu H, et al. Influence of Annaopingchong Tang on cerebral edema and expression of AQP-4 after intracerebral hemorrhage in rat. Chin J Inf TCM. 2011;18(01):49–50.
  • Zhou D, Liu Q, Wang Q, Dai F. Clinical observation on the treatment of acute thalamic hemorrhage with combination of traditional Chinese and western medicine. J TCM Univ Hunan. 2003;1(4):41–43.
  • Zhou D, Liu Q, Dai F, et al. Clinical effect of Annao Pingchong decoction combined with western medicine on acute stage of thalamic hemorrhage. Chin J Integrat Med. 2003;2(7):406–407.
  • Kim DH, Kim S, Jeon SJ, et al. The effects of acute and repeated oroxylin A treatments on Abeta(25-35)-induced memory impairment in mice. Neuropharmacology. 2008;55(5):639–647. doi:10.1016/j.neuropharm.2008.05.019
  • Kushida H, Matsumoto T, Ikarashi Y. Properties, Pharmacology, and Pharmacokinetics of Active Indole and Oxindole Alkaloids in Uncaria Hook. Front Pharmacol. 2021;12:688670. doi:10.3389/fphar.2021.688670
  • Liang W, Huang X, Chen W. The Effects of Baicalin and Baicalein on Cerebral Ischemia: a Review. Aging Dis. 2017;8(6):850–867. doi:10.14336/AD.2017.0829
  • Lv S, Ding Y, Zhao H, Liu S, Zhang J, Wang J. Therapeutic Potential and Effective Components of the Chinese Herb Gardeniae Fructus in the Treatment of Senile Disease. Aging Dis. 2018;9(6):1153–1164. doi:10.14336/AD.2018.0112
  • Pan L, Cho KS, Yi I, To CH, Chen DF, Do CW. Baicalein, Baicalin, and Wogonin: protective Effects against Ischemia-Induced Neurodegeneration in the Brain and Retina. Oxid Med Cell Longev. 2021;2021:8377362. doi:10.1155/2021/8377362
  • Wang C, Zhang D, Ma H, Liu J. Neuroprotective effects of emodin-8-O-beta-D-glucoside in vivo and in vitro. Eur J Pharmacol. 2007;577(1–3):58–63. doi:10.1016/j.ejphar.2007.08.033
  • Yang W, Ip SP, Liu L, Xian YF, Lin ZX. Uncaria rhynchophylla and its Major Constituents on Central Nervous System: a Review on Their Pharmacological Actions. Curr Vasc Pharmacol. 2020;18(4):346–357. doi:10.2174/1570161117666190704092841
  • Zhao Q, Wang X, Chen A, et al. Rhein protects against cerebral ischemic-/reperfusion-induced oxidative stress and apoptosis in rats. Int J Mol Med. 2018;41(5):2802–2812. doi:10.3892/ijmm.2018.3488
  • Luo TT, Lu Y, Yan SK, Xiao X, Rong XL, Guo J. Network Pharmacology in Research of Chinese Medicine Formula: methodology, Application and Prospective. Chin J Integr Med. 2020;26(1):72–80. doi:10.1007/s11655-019-3064-0
  • Zhu T, Wang L, Wang LP, Wan Q. Therapeutic targets of neuroprotection and neurorestoration in ischemic stroke: applications for natural compounds from medicinal herbs. Biomed Pharmacother. 2022;148:112719. doi:10.1016/j.biopha.2022.112719
  • Nogales C, Mamdouh ZM, List M, Kiel C, Casas AI, Schmidt H. Network pharmacology: curing causal mechanisms instead of treating symptoms. Trends Pharmacol Sci. 2022;43(2):136–150. doi:10.1016/j.tips.2021.11.004
  • Zhang R, Zhu X, Bai H, Ning K. Network Pharmacology Databases for Traditional Chinese Medicine: review and Assessment. Front Pharmacol. 2019;10:123. doi:10.3389/fphar.2019.00123
  • Duan X, Wen Z, Shen H, Shen M, Chen G. Intracerebral Hemorrhage, Oxidative Stress, and Antioxidant Therapy. Oxid Med Cell Longev. 2016;2016:1203285. doi:10.1155/2016/1203285
  • Masomi-Bornwasser J, Kurz E, Frenz C, et al. The Influence of Oxidative Stress on Neurological Outcomes in Spontaneous Intracerebral Hemorrhage. Biomolecules. 2021;11(11):1615. doi:10.3390/biom11111615
  • Shao L, Chen S, Ma L. Secondary Brain Injury by Oxidative Stress After Cerebral Hemorrhage: recent Advances. Front Cell Neurosci. 2022;16:853589. doi:10.3389/fncel.2022.853589
  • Lorente L, Martín MM, González-Rivero AF, et al. High Serum DNA and RNA Oxidative Damage in Non-surviving Patients with Spontaneous Intracerebral Hemorrhage. Neurocrit Care. 2020;33(1):90–96. doi:10.1007/s12028-019-00864-8
  • Deng HJ, Zhou CH, Huang LT, Wen LB, Zhou ML, Wang CX. Activation of silent information regulator 1 exerts a neuroprotective effect after intracerebral hemorrhage by deacetylating NF-κB/p65. J Neurochem. 2021;157(3):574–585. doi:10.1111/jnc.15258
  • Liu H, Xu S, Wang C, et al. The Beneficial Role of Sirtuin 1 in Preventive or Therapeutic Options of Neurodegenerative Diseases. Neuroscience. 2022;504:79–92. doi:10.1016/j.neuroscience.2022.09.021
  • Zhou Y, Wang S, Li Y, Yu S, Zhao Y. SIRT1/PGC-1α Signaling Promotes Mitochondrial Functional Recovery and Reduces Apoptosis after Intracerebral Hemorrhage in Rats. Front Mol Neurosci. 2017;10:443. doi:10.3389/fnmol.2017.00443
  • Lee YS, Choi JY, Mankhong S, et al. Sirtuin 1-dependent regulation of high mobility box 1 in hypoxia-reoxygenated brain microvascular endothelial cells: roles in neuronal amyloidogenesis. Cell Death Dis. 2020;11(12):1072. doi:10.1038/s41419-020-03293-0
  • Fang C, Xu H, Yuan L, et al. Natural Compounds for SIRT1-Mediated Oxidative Stress and Neuroinflammation in Stroke: a Potential Therapeutic Target in the Future. Oxid Med Cell Longev. 2022;2022:1949718. doi:10.1155/2022/1949718
  • Klotz LO, Sánchez-Ramos C, Prieto-Arroyo I, Urbánek P, Steinbrenner H, Monsalve M. Redox regulation of FoxO transcription factors. Redox Biol. 2015;6:51–72. doi:10.1016/j.redox.2015.06.019
  • Xing YQ, Li A, Yang Y, Li XX. The regulation of FOXO1 and its role in disease progression. Life Sci. 2018;193:124–131. doi:10.1016/j.lfs.2017.11.030
  • Rius-Pérez S, Torres-Cuevas I, Millán I, Ortega ÁL, Pérez S. PGC-1α, Inflammation, and Oxidative Stress: an Integrative View in Metabolism. Oxid Med Cell Longev. 2020;2020:1452696. doi:10.1155/2020/1452696
  • Sivandzade F, Prasad S, Bhalerao A, Cucullo L. NRF2 and NF-қB interplay in cerebrovascular and neurodegenerative disorders: molecular mechanisms and possible therapeutic approaches. Redox Biol. 2019;21:101059. doi:10.1016/j.redox.2018.11.017
  • Singh V, Ubaid S. Role of Silent Information Regulator 1 (SIRT1) in Regulating Oxidative Stress and Inflammation. Inflammation. 2020;43(5):1589–1598. doi:10.1007/s10753-020-01242-9
  • Tossetta G, Fantone S, Montanari E, Marzioni D, Goteri G. Role of NRF2 in Ovarian Cancer. Antioxidants (Basel). 2022;11(4). doi:10.3390/antiox11040663
  • Gureev AP, Shaforostova EA, Popov VN. Regulation of Mitochondrial Biogenesis as a Way for Active Longevity: interaction Between the Nrf2 and PGC-1α Signaling Pathways. Front Genet. 2019;10:435. doi:10.3389/fgene.2019.00435
  • Jena AB, Samal RR, Bhol NK, Duttaroy AK. Cellular Red-Ox system in health and disease: the latest update. Biomed Pharmacother. 2023;162:114606. doi:10.1016/j.biopha.2023.114606
  • Nolfi-Donegan D, Braganza A, Shiva S. Mitochondrial electron transport chain: oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biol. 2020;37:101674. doi:10.1016/j.redox.2020.101674
  • Wang Y, Branicky R, Noë A, Hekimi S. Superoxide dismutases: dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol. 2018;217(6):1915–1928. doi:10.1083/jcb.201708007
  • Salihu AT, Muthuraju S, Idris Z, Izaini Ghani AR, Abdullah JM. Functional outcome after intracerebral haemorrhage - A review of the potential role of antiapoptotic agents. Rev Neurosci. 2016;27(3):317–327. doi:10.1515/revneuro-2015-0046
  • Ong A, Ramasamy TS. Role of Sirtuin1-p53 regulatory axis in aging, cancer and cellular reprogramming. Ageing Res Rev. 2018;43:64–80. doi:10.1016/j.arr.2018.02.004
  • Luo Q, Sun W, Wang YF, Li J, Li DW. Association of p53 with Neurodegeneration in Parkinson’s Disease. Parkinsons Dis. 2022;2022:6600944. doi:10.1155/2022/6600944
  • Zhang Y, Khan S, Liu Y, et al. Modes of Brain Cell Death Following Intracerebral Hemorrhage. Front Cell Neurosci. 2022;16:799753. doi:10.3389/fncel.2022.799753
  • Yin JY, Lu XT, Hou ML, Cao T, Tian Z. Sirtuin1-p53: a potential axis for cancer therapy. Biochem Pharmacol. 2023;212:115543. doi:10.1016/j.bcp.2023.115543
  • Zhou J, Yang Z, Shen R, et al. Resveratrol Improves Mitochondrial Biogenesis Function and Activates PGC-1α Pathway in a Preclinical Model of Early Brain Injury Following Subarachnoid Hemorrhage. Front Mol Biosci. 2021;8:620683. doi:10.3389/fmolb.2021.620683
  • Hees JT, Harbauer AB. Metabolic Regulation of Mitochondrial Protein Biogenesis from a Neuronal Perspective. Biomolecules. 2022;12(11):1595. doi:10.3390/biom12111595