118
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Immunoinformatics Prediction and Protective Efficacy of Vaccine Candidate PiuA-PlyD4 Against Streptococcus Pneumoniae

ORCID Icon, ORCID Icon, , ORCID Icon, , , , , , , , ORCID Icon & ORCID Icon show all
Pages 3783-3801 | Received 20 Sep 2023, Accepted 15 Dec 2023, Published online: 20 Dec 2023

References

  • O’Brien KL, Wolfson LJ, Watt JP, et al. Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: global estimates. Lancet. 2009;374(9693):893–902. doi:10.1016/S0140-6736(09)61204-6
  • Williams AE, Jose RJ, Brown JS, Chambers RC. Enhanced inflammation in aged mice following infection with Streptococcus pneumoniae is associated with decreased IL-10 and augmented chemokine production. Am J Physiol Lung Cell Mol Physiol. 2015;308(6):L539–49. doi:10.1152/ajplung.00141.2014
  • van de Garde MDB, Knol MJ, Rots NY, van Baarle D, van Els C. Vaccines to protect older adults against pneumococcal disease. Interdiscip Top Gerontol Geriatr. 2020;43:113–130. doi:10.1159/000504490
  • Berical AC, Harris D, Dela Cruz CS, Possick JD. Pneumococcal vaccination strategies. An update and perspective. Ann Am Thorac Soc. 2016;13(6):933–944. doi:10.1513/AnnalsATS.201511-778FR
  • Lagousi T, Basdeki P, De Jonge MI, Spoulou V. Understanding host immune responses to pneumococcal proteins in the upper respiratory tract to develop serotype-independent pneumococcal vaccines. Expert Rev Vaccines. 2020;19(10):959–972. doi:10.1080/14760584.2020.1843433
  • Colombo MJ, Sun G, Alugupalli KR. T-cell-independent immune responses do not require CXC ligand 13-mediated B1 cell migration. Infect Immun. 2010;78(9):3950–3956. doi:10.1128/IAI.00371-10
  • Prinz DM, Smithson SL, Westerink MA. Two different methods result in the selection of peptides that induce a protective antibody response to Neisseria meningitidis serogroup C. J Immunol Methods. 2004;285(1):1–14. doi:10.1016/j.jim.2003.08.005
  • Geno KA, Gilbert GL, Song JY, et al. Pneumococcal capsules and their types: past, present, and future. Clin Microbiol Rev. 2015;28(3):871–899. doi:10.1128/Cmr.00024-15
  • Josefsberg JO, Buckland B. Vaccine process technology. Biotechnol Bioeng. 2012;109(6):1443–1460. doi:10.1002/bit.24493
  • Tai SS. Streptococcus pneumoniae protein vaccine candidates: properties, activities and animal studies. Crit Rev Microbiol. 2006;32(3):139–153. doi:10.1080/10408410600822942
  • Alghofaili F, Najmuldeen H, Kareem BO, et al. Host stress signals stimulate pneumococcal transition from colonization to dissemination into the lungs. mBio. 2021;12(6):e0256921. doi:10.1128/mBio.02569-21
  • Jomaa M, Yuste J, Paton JC, Jones C, Dougan G, Brown JS. Antibodies to the iron uptake ABC transporter lipoproteins PiaA and PiuA promote opsonophagocytosis of Streptococcus pneumoniae. Infect Immun. 2005;73(10):6852–6859. doi:10.1128/IAI.73.10.6852-6859.2005
  • Chiu FF, Leng CH, Ding YJ, et al. Domain 4 of pneumolysin from Streptococcus pneumoniae is a multifunctional domain contributing TLR4 activating and hemolytic activity. Biochem Biophys Res Commun. 2019;517(4):596–602. doi:10.1016/j.bbrc.2019.07.063
  • Cui Y, Miao C, Chen W, et al. Construction and protective efficacy of a novel Streptococcus pneumoniae fusion protein vaccine NanAT1-TufT1-PlyD4. Front Immunol. 2022;13:1043293. doi:10.3389/fimmu.2022.1043293
  • Liu Y, Wang H, Zhang S, et al. Mucosal immunization with recombinant fusion protein DnaJ-DeltaA146Ply enhances cross-protective immunity against Streptococcus pneumoniae infection in mice via interleukin 17A. Infect Immun. 2014;82(4):1666–1675. doi:10.1128/IAI.01391-13
  • Guo X, Sun Q, Xi H, et al. Expression, purification, and characterization of pneumococcal PsaA-PspA fusion protein. Protein Expr Purif. 2021;178:105782. doi:10.1016/j.pep.2020.105782
  • Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 2003;31(13):3784–3788. doi:10.1093/nar/gkg563
  • Doytchinova IA, Flower DR. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinf. 2007;8:4. doi:10.1186/1471-2105-8-4
  • Dimitrov I, Flower DR, Doytchinova I. AllerTOP--a server for in silico prediction of allergens. BMC Bioinf. 2013;14(Suppl 6):S4. doi:10.1186/1471-2105-14-S6-S4
  • Sobolev OV, Afonine PV, Moriarty NW, et al. A global Ramachandran score identifies protein structures with unlikely stereochemistry. Structure. 2020;28(11):1249–1258. doi:10.1016/j.str.2020.08.005
  • Ponomarenko J, Bui HH, Li W, et al. ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinf. 2008;9:514. doi:10.1186/1471-2105-9-514
  • Reynisson B, Alvarez B, Paul S, Peters B, Nielsen M. NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res. 2020;48(W1):W449–W454. doi:10.1093/nar/gkaa379
  • Mukherjee S, Huda S, Sinha Babu SP. Toll-like receptor polymorphism in host immune response to infectious diseases: a review. Scand J Immunol. 2019;90(1):e12771. doi:10.1111/sji.12771
  • Mukherjee S, Karmakar S, Babu SP. TLR2 and TLR4 mediated host immune responses in major infectious diseases: a review. Braz J Infect Dis. 2016;20(2):193–204. doi:10.1016/j.bjid.2015.10.011
  • Yan Y, Tao H, He J, Huang SY. The HDOCK server for integrated protein-protein docking. Nat Protoc. 2020;15(5):1829–1852. doi:10.1038/s41596-020-0312-x
  • Kumari R, Kumar R. Open source drug discovery consortium, Lynn A. g_mmpbsa--a GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model. 2014;54(7):1951–1962. doi:10.1021/ci500020m
  • Mahmud S, Rafi MO, Paul GK, et al. Designing a multi-epitope vaccine candidate to combat MERS-CoV by employing an immunoinformatics approach. Sci Rep. 2021;11(1):15431. doi:10.1038/s41598-021-92176-1
  • Shafaghi M, Bahadori Z, Madanchi H, Ranjbar MM, Shabani AA, Mousavi SF. Immunoinformatics-aided design of a new multi-epitope vaccine adjuvanted with domain 4 of pneumolysin against Streptococcus pneumoniae strains. BMC Bioinf. 2023;24(1):67. doi:10.1186/s12859-023-05175-6
  • Gurung AB, Bhattacharjee A. Impact of a non-synonymous Q281R polymorphism on structure of human Lipoprotein-Associated Phospholipase A(2) (Lp-PLA(2)). J Cell Biochem. 2018;119(8):7009–7021. doi:10.1002/jcb.26909
  • Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007;35:W407–10. doi:10.1093/nar/gkm290
  • Messaoudi A, Belguith H, Ben Hamida J. Homology modeling and virtual screening approaches to identify potent inhibitors of VEB-1 beta-lactamase. Theor Biol Med Model. 2013;10:22. doi:10.1186/1742-4682-10-22
  • Yang Z, Bogdan P, Nazarian S. An in silico deep learning approach to multi-epitope vaccine design: a SARS-CoV-2 case study. Sci Rep. 2021;11(1):3238. doi:10.1038/s41598-021-81749-9
  • Yilmaz Colak C. Computational design of a multi-epitope vaccine against clostridium chauvoei: an immunoinformatics approach. Int J Pept Res Ther. 2021;27(4):2639–2649. doi:10.1007/s10989-021-10279-9
  • He Y, Li J, Mao W, et al. HLA common and well-documented alleles in China. HLA. 2018;92(4):199–205. doi:10.1111/tan.13358
  • Yan Y, Wen Z, Wang X, Huang SY. Addressing recent docking challenges: a hybrid strategy to integrate template-based and free protein-protein docking. Proteins. 2017;85(3):497–512. doi:10.1002/prot.25234
  • Weiser JN, Ferreira DM, Paton JC. Streptococcus pneumoniae: transmission, colonization and invasion. Nat Rev Microbiol. 2018;16(6):355–367. doi:10.1038/s41579-018-0001-8
  • Whalan RH, Funnell SG, Bowler LD, Hudson MJ, Robinson A, Dowson CG. PiuA and PiaA, iron uptake lipoproteins of Streptococcus pneumoniae, elicit serotype independent antibody responses following human pneumococcal septicaemia. FEMS Immunol Med Microbiol. 2005;43(1):73–80. doi:10.1016/j.femsim.2004.07.010
  • Zhang Y, Edmonds KA, Raines DJ, et al. The pneumococcal iron uptake protein a (PiuA) specifically recognizes Tetradentate Fe(III)bis- and mono-catechol complexes. J Mol Biol. 2020;432(19):5390–5410. doi:10.1016/j.jmb.2020.08.005
  • Dorosti H, Eslami M, Negahdaripour M, et al. Vaccinomics approach for developing multi-epitope peptide pneumococcal vaccine. J Biomol Struct Dyn. 2019;37(13):3524–3535. doi:10.1080/07391102.2018.1519460
  • Matthias KA, Roche AM, Standish AJ, Shchepetov M, Weiser JN. Neutrophil-toxin interactions promote antigen delivery and mucosal clearance of Streptococcus pneumoniae. J Immunol. 2008;180(9):6246–6254. doi:10.4049/jimmunol.180.9.6246
  • Chen X, Zaro JL, Shen WC. Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev. 2013;65(10):1357–1369. doi:10.1016/j.addr.2012.09.039
  • van de Garde MDB, van Westen E, Poelen MCM, Rots NY, van Els C. Prediction and validation of immunogenic domains of pneumococcal proteins recognized by human CD4(+) T cells. Infect Immun. 2019;87(6):e00098–19. doi:10.1128/IAI.00098-19
  • Das NC, Sen Gupta PS, Biswal S, Patra R, Rana MK, Mukherjee S. In-silico evidences on filarial cystatin as a putative ligand of human TLR4. J Biomol Struct Dyn. 2022;40(19):8808–8824. doi:10.1080/07391102.2021.1918252
  • Mukherjee S, Mukherjee S, Maiti TK, Bhattacharya S, Sinha Babu SP. A novel ligand of toll-like receptor 4 from the sheath of Wuchereria bancrofti microfilaria induces proinflammatory response in macrophages. J Infect Dis. 2017;215(6):954–965. doi:10.1093/infdis/jix067
  • Choudhury A, Sen Gupta PS, Panda SK, Rana MK, Mukherjee S. Designing AbhiSCoVac - a single potential vaccine for all ‘Corona culprits’: immunoinformatics and immune simulation approaches. J Mol Liq. 2022;351:118633. doi:10.1016/j.molliq.2022.118633
  • Das NC, Gupta PSS, Panda SK, Rana MK, Mukherjee S. Reverse vaccinology assisted design of a novel multi-epitope vaccine to target Wuchereria bancrofti cystatin: an immunoinformatics approach. Int Immunopharmacol. 2023;115:109639. doi:10.1016/j.intimp.2022.109639
  • Usmani SS, Kumar R, Bhalla S, Kumar V, Raghava GPS. In silico tools and databases for designing peptide-based vaccine and drugs. Adv Protein Chem Struct Biol. 2018;112:221–263. doi:10.1016/bs.apcsb.2018.01.006
  • Yu J, Li B, Chen X, et al. Comparison of immunogenicity and protection of two pneumococcal protein vaccines based on PsaA and PspA. Infect Immun. 2018;86(6):e00916–17. doi:10.1128/IAI.00916-17
  • Gil E, Noursadeghi M, Brown JS. Streptococcus pneumoniae interactions with the complement system. Front Cell Infect Microbiol. 2022;12:929483. doi:10.3389/fcimb.2022.929483
  • Chen X, Li B, Yu J, et al. Comparison of four adjuvants revealed the strongest protection against lethal pneumococcal challenge following immunization with PsaA-PspA fusion protein and AS02 as adjuvant. Med Microbiol Immunol. 2019;208(2):215–226. doi:10.1007/s00430-019-00579-9
  • Bogaert D, De Groot R, Hermans PW. Streptococcus pneumoniae colonisation: the key to pneumococcal disease. Lancet Infect Dis. 2004;4(3):144–154. doi:10.1016/S1473-3099(04)00938-7
  • Casadevall A. Antibody-based vaccine strategies against intracellular pathogens. Curr Opin Immunol. 2018;53:74–80. doi:10.1016/j.coi.2018.04.011
  • Platt HL, Cardona JF, Haranaka M, et al. A Phase 3 trial of safety, tolerability, and immunogenicity of V114, 15-valent pneumococcal conjugate vaccine, compared with 13-valent pneumococcal conjugate vaccine in adults 50 years of age and older (PNEU-AGE). Vaccine. 2022;40(1):162–172. doi:10.1016/j.vaccine.2021.08.049