35
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Exploring the Frontier of Biopolymer-Assisted Drug Delivery: Advancements, Clinical Applications, and Future Perspectives in Cancer Nanomedicine

ORCID Icon
Pages 2063-2087 | Received 06 Nov 2023, Accepted 21 May 2024, Published online: 02 Jul 2024

References

  • Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249. doi:10.3322/caac.21660
  • Dy GW, Gore JL, Forouzanfar MH, Naghavi M, Fitzmaurice C. Global burden of urologic cancers, 1990-2013. Eur Urol. 2017;71(3):437–446. doi:10.1016/j.eururo.2016.10.008
  • Zamorano JL, Lancellotti P, Rodriguez Muñoz D, et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J. 2016;37(36):2768–2801. doi:10.1093/eurheartj/ehw211
  • Miller KD, Nogueira L, Mariotto AB, et al. Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin. 2019;69(5):363–385. doi:10.3322/caac.21565
  • Mukerjee N, Maitra S, Ghosh A, Sharma R. Impact of CAR-T cell therapy on treating viral infections: unlocking the door to recovery. Hum Cell. 2023;36(5):1839–1842. doi:10.1007/s13577-023-00942-2
  • Ventola CL. Progress in Nanomedicine: approved and investigational nanodrugs. P T. 2017;42(12):742–755. doi:10.1155/2015/123756
  • Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2(12):751–760. doi:10.1038/nnano.2007.387
  • Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33(9):941–951. doi:10.1038/nbt.3330
  • Vaid P, Raizada P, Saini AK, Saini RV. Biogenic silver, gold and copper nanoparticles - A sustainable green chemistry approach for cancer therapy. Sustain Chem Pharm. 2020;16:100247. doi:10.1016/j.scp.2020.100247
  • Barabadi H, Ovais M, Shinwari ZK, Saravanan M. Anticancer green bionanomaterials: present status and future prospects. Green Chem Lett Rev. 2017;10:285–314. doi:10.1080/17518253.2017.1385856
  • Manikandan R, Manikandan B, Raman T, et al. A. Biosynthesis of silver nanoparticles using ethanolic petals extract of Rosa indica and characterization of its antibacterial, anticancer and anti-inflammatory activities. Spectrochim Acta A Mol Biomol Spectrosc. 2015;138:120–129. doi:10.1016/j.saa.2014.10.043
  • Mishra RK, Ha SK, Verma K, Tiwari SK. Recent progress in selected bio-nanomaterials and their engineering applications: an overview. J Sci Adv Mater Dev. 2018;3:263–288.
  • Faridi Esfanjani A, Jafari SM. Biopolymer nanoparticles and natural nanocarriers for nano-encapsulation of phenolic compounds. Colloids Surf B. 2016;146:532–543. doi:10.1016/j.colsurfb.2016.06.053
  • Utreja P, Jain S, Tiwary AK. Novel drug delivery systems for sustained and targeted delivery of Anticancer drugs: current status and future prospects. Curr Drug Deliv. 2010;7(2):152–161. doi:10.2174/156720110791011783
  • Siddique S, Chow JCL. Application of Nanomaterials in Biomedical Imaging and Cancer Therapy. Nanomaterials. 2020;10:1700. doi:10.3390/nano10091700
  • Ovais M, Raza A, Naz S, et al. Current state and prospects of the phytosynthesized colloidal gold nanoparticles and their applications in cancer theranostics. Appl Microbiol Biotechnol. 2017;101(9):3551–3565. doi:10.1007/s00253-017-8250-4
  • Liu J, Cui L, Losic D. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater. 2013;9(12):9243–9257. doi:10.1016/j.actbio.2013.08.016
  • Rigg A, Champagne P, Cunningham MF. Polysaccharide-based nanoparticles as Pickering emulsifiers in emulsion formulations and heterogenous polymerization systems. Macromol Rapid Commun. 2022;43(3):e2100493. doi:10.1002/marc.202100493
  • Gopi S, Amalraj A, Sukumaran NP, Haponiuk JT, Thomas S. Biopolymers and their composites for drug delivery: a brief review. Macromol Symp. 2018;380(1):1800114. doi:10.1002/masy.201800114
  • Song H, Liu X, Jiang L, Li F, Zhang R, Wang P. Current status and prospects of camrelizumab, a humanized antibody against programmed cell death receptor 1. Recent Pat Anticancer Drug Discov. 2021;16(3):312–332. doi:10.2174/22123970MTE09MDYg0
  • Calzoni E, Cesaretti A, Polchi A, Di Michele A, Tancini B, Emiliani C. Biocompatible polymer nanoparticles for drug delivery applications in cancer and neurodegenerative disorder therapies. J Funct Biomater. 2019;10(1):4. doi:10.3390/jfb10010004
  • Shen S, Wu Y, Liu Y, Wu D. High drug-loading nanomedicines: progress, current status, and prospects. Int J Nanomed. 2017;12:4085–4109. doi:10.2147/IJN.S132780
  • Ahmad MZ, Akhter S, Rahman Z, et al. Nanometric gold in cancer nanotechnology: current status and future prospect. J Pharm Pharmacol. 2013;65(5):634–651. doi:10.1111/jphp.12017
  • Kim CS, Tonga GY, Solfiell D, Rotello VM. Inorganic nanosystems for therapeutic delivery: status and prospects. Adv Drug Deliv Rev. 2013;65(1):93–99. doi:10.1016/j.addr.2012.08.011
  • Abdel-Fattah WI, Ali GW. On the anticancer activities of silver nanoparticles. J Appl Biotechnol Bioeng. 2018;5(1):43–46.
  • Luo SH, Wu YC, Cao L, et al. Direct metal‐free preparation of functionalizable polylactic acid‐ethisterone conjugates in a one‐pot approach. Macromol Chem Phys. 2019;220:1800475. doi:10.1002/macp.201800475
  • Andleeb A, Andleeb A, Asghar S, et al. A systematic review of biosynthesized metallic nanoparticles as a promising Anticancer strategy. Cancers (Basel). 2021;13(11):2818. doi:10.3390/cancers13112818
  • Barua S, Mitragotri S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: a review of current status and future prospects. Nano Today. 2014;9(2):223–243. doi:10.1016/j.nantod.2014.04.008
  • Preetam S, Nahak BK, Patra S, et al. Emergence of microfluidics for next generation biomedical devices. Biosens Bioelectron. 2022;10:100106.
  • Otto T, Sicinski P. Cell cycle proteins as promising targets in cancer therapy. Nat Rev Cancer. 2017;17(2):93–115. doi:10.1038/nrc.2016.138
  • Leal-Esteban LC, Fajas L. Cell cycle regulators in cancer cell metabolism. Biochim Biophys Acta Mol Basis Dis. 2020;1866(5):165715. doi:10.1016/j.bbadis.2020.165715
  • Kontomanolis EN, Koutras A, Syllaios A, et al. Role of oncogenes and tumor-suppressor genes in carcinogenesis: a review. Anticancer Res. 2020;40(11):6009–6015. doi:10.21873/anticanres.14622
  • Lipsick J. A history of cancer research: tumor suppressor genes. Cold Spring Harb Perspect Biol. 2020;12(2):a035907. doi:10.1101/cshperspect.a035907
  • Kaptain S, Tan LK, Chen B. Her-2/Neu and Breast Cancer. Diagn Mol Pathol. 2001;10:139–152. doi:10.1097/00019606-200109000-00001
  • Chen L, Liu S, Tao Y. Regulating tumor suppressor genes: post-translational modifications. Signal Transduct Target Ther. 2020;5(1):90. doi:10.1038/s41392-020-0196-9
  • Nahak BK, Mishra A, Preetam S, Tiwari A. Advances in organ-on-A-chip materials and devices. ACS Appl Bio Mater. 2022;5(8):3576–3607. doi:10.1021/acsabm.2c00041
  • Preetam S, Dash L, Sarangi SS, Sahoo MM, Pradhan AK. Application of nanobiosensor in health care sector. In: Arakha M, Pradhan AK, Jha S, editors. Bio-Nano Interface. Singapore: Springer; 2022:251–270.
  • Slavin YN, Asnis J, Häfeli UO, Bach H. Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnol. 2017;15(1):65. doi:10.1186/s12951-017-0308-z
  • Singh AK. Comparative therapeutic effects of plant-extract synthesized and traditionally synthesized gold nanoparticles on alcohol-induced inflammatory activity in SH-SY5Y cells in vitro. Biomedicines. 2017;5(4):70. doi:10.3390/biomedicines5040070
  • Barabadi H, Alizadeh A, Ovais M, Ahmadi A, Shinwari ZK, Saravanan M. Efficacy of green nanoparticles against cancerous and normal cell lines: a systematic review and meta-analysis. IET Nanobiotechnol. 2018;12(4):377–391. doi:10.1049/iet-nbt.2017.0120
  • Rosenblum D, Joshi N, Tao W, Karp JM, Peer D. Progress and. challenges towards targeted delivery of cancer therapeutics. Nat Commun. 2018;9(1):1410. doi:10.1038/s41467-018-03705-y
  • Song R, Murphy M, Li C, Ting K, Soo C, Zheng Z. Current development of biodegradable polymeric materials for biomedical applications. Drug Des Dev Ther. 2018;12:3117–3145. doi:10.2147/DDDT.S165440
  • Sharma K, Porat ZE, Gedanken A. Designing natural polymer-based capsules and spheres for biomedical applications—a review. Polymers (Basel). 2021;13(24):4307. doi:10.3390/polym13244307
  • Chahal A, Saini AK, Chhillar AK, Saini RV. Natural antioxidants as defense system against cancer. Asian J Pharm Clin Res. 2018;11(5):38–44. doi:10.22159/ajpcr.2018.v11i5.24119
  • Abdalla AME, Xiao L, Ullah MW, Yu M, Ouyang C, Yang G. current challenges of cancer anti-angiogenic therapy and the promise of nanotherapeutics. Theranostics. 2018;8(2):533–548. doi:10.7150/thno.21674
  • Subbiah R, Veerapandian M, Yun KS. Nanoparticles: functionalization and multifunctional applications in biomedical sciences. Curr Med Chem. 2010;17(36):4559–4577. doi:10.2174/092986710794183024
  • Ulbricht M. Design and synthesis of organic polymers for molecular separation membranes. Curr Opin Chem Eng. 2020;28:60–65. doi:10.1016/j.coche.2020.02.002
  • Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol. 2018;16(1):71. doi:10.1186/s12951-018-0392-8
  • Salehi S, Shandiz SA, Ghanbar F, et al. Phytosynthesis of silver nanoparticles using Artemisia marschalliana Sprengel aerial part extract and assessment of their antioxidant, anticancer, and antibacterial properties. Int J Nanomed. 2016;11:1835–1846. doi:10.2147/IJN.S99882
  • Khanra K, Panja S, Choudhuri I, Chakraborty A, Bhattacharyya N. Evaluation of antibacterial activity and cytotoxicity of green synthesized silver nanoparticles using Scoparia dulcis. Nano Biomed Eng. 2015;7(3):128–133. doi:10.5101/nbe.v7i3.p128-133
  • Venugopal K, Rather H, Rajagopal K, et al. Synthesis of silver nanoparticles (Ag NPs) for anticancer activities (MCF 7 breast and A549 lung cell lines) of the crude extract of Syzygium aromaticum. J Photochem Photobiol B. 2017;167:282–289. doi:10.1016/j.jphotobiol.2016.12.013
  • Kanipandian N, Thirumurugan R. A feasible approach to phyto-mediated synthesis of silver nanoparticles using industrial crop Gossypium hirsutum (cotton) extract as stabilizing agent and assessment of its in vitro biomedical potential. Ind Crops Prod. 2014;55:1–10. doi:10.1016/j.indcrop.2014.01.042
  • Lee MK. Liposomes for enhanced bioavailability of water-insoluble drugs: in vivo evidence and recent approaches. Pharmaceutics. 2020;12(3):264. doi:10.3390/pharmaceutics12030264
  • Weiss VM, Lucas H, Mueller T, et al. Intended and unintended targeting of polymeric nanocarriers: the case of modified poly(glycerol adipate) nanoparticles. Macromol Biosci. 2018;18(1):10. doi:10.1002/mabi.201700240
  • Sverdlov Arzi R, Sosnik A. Electrohydrodynamic atomization and spray-drying for the production of pure drug nanocrystals and co-crystals. Adv Drug Deliv Rev. 2018;131:79–100. doi:10.1016/j.addr.2018.07.012
  • Zhen G, Hinton TM, Muir BW, et al. Glycerol monooleate-based nanocarriers for siRNA delivery in vitro. Mol Pharm. 2012;9(9):2450–2457. doi:10.1021/mp200662f
  • Nahire R, Haldar MK, Paul S, et al. Polymer-coated echogenic lipid nanoparticles with dual release triggers. Biomacromolecules. 2013;14(3):841–853. doi:10.1021/bm301894z
  • Scioli Montoto SS, Muraca G, Ruiz ME. Solid lipid nanoparticles for drug delivery: pharmacological and biopharmaceutical aspects. Front Mol Biosci. 2020;7:587997. doi:10.3389/fmolb.2020.587997
  • Schnorenberg MR, Yoo SP, Tirrell MV, LaBelle JL. Synthesis and purification of homogeneous lipid-based peptide nanocarriers by overcoming phospholipid ester hydrolysis. ACS Omega. 2018;3(10):14144–14150. doi:10.1021/acsomega.8b01772
  • Dehsorkhi A, Castelletto V, Hamley IW. Self-assembling amphiphilic peptides. J Pept Sci. 2014;20(7):453–467. doi:10.1002/psc.2633
  • Cui H, Webber MJ, Stupp SI. Self-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. Biopolymers. 2010;94(1):1–18. doi:10.1002/bip.21328
  • Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev. 2016;116(4):2602–2663. doi:10.1021/acs.chemrev.5b00346
  • Stolzoff M, Ekladious I, Colby AH, Colson YL, Porter TM, Grinstaff MW. Synthesis and characterization of hybrid polymer/lipid expansile nanoparticles: imparting surface functionality for targeting and stability. Biomacromolecules. 2015;16(7):1958–1966. doi:10.1021/acs.biomac.5b00336
  • Kang B, Okwieka P, Schöttler S, et al. carbohydrate-based nanocarriers exhibiting specific cell targeting with minimum influence from the protein Corona. Angew Chem Int Ed Engl. 2015;54(25):7436–7440. doi:10.1002/anie.201502398
  • Begines B, Ortiz T, Pérez-Aranda M, et al. Polymeric nanoparticles for drug delivery: recent developments and future prospects. Nanomaterials. 2020;10(7):1403. doi:10.3390/nano10071403
  • Angayarkanny S, Baskar G, Mandal AB. Nanocarriers of solid lipid from micelles of amino acids surfactants coated with polymer nanoparticles. Langmuir. 2013;29(23):6805–6814. doi:10.1021/la400605v
  • Telrandhe R. Anticancer potential of green synthesized silver nanoparticles-A review. Asian J Pharm Technol. 2019;9(4):260–266. doi:10.5958/2231-5713.2019.00043.6
  • Jurj A, Braicu C, Pop LA, Tomuleasa C, Gherman CD, Berindan-Neagoe I. The new era of nanotechnology, an alternative to change cancer treatment. Drug Des Dev Ther. 2017;11:2871–2890. doi:10.2147/DDDT.S142337
  • Hira I, Kumar A, Kumari R, Saini AK, Saini RV. Pectin-guar gum-zinc oxide nanocomposite enhances human lymphocytes cytotoxicity towards lung and breast carcinomas. Mater Sci Eng C Mater Biol Appl. 2018;90:494–503. doi:10.1016/j.msec.2018.04.085
  • Seib FP, Jones GT, Rnjak-Kovacina J, Lin Y, Kaplan DL. pH-dependent anticancer drug release from silk nanoparticles. Adv Healthc Mater. 2013;2(12):1606–1611. doi:10.1002/adhm.201300034
  • Namazi H, Belali S. Starch-g-lactic acid/montmorillonite nanocomposite: synthesis, characterization and controlled drug release study. Starch – Stärke. 2015;68:177–187. doi:10.1002/star.201400226
  • Suarasan S, Focsan M, Potara M, et al. Doxorubicin-incorporated nanotherapeutic delivery system based on gelatin-coated gold nanoparticles: formulation, drug release, and multimodal imaging of cellular internalization. ACS Appl Mater Interfaces. 2016;8(35):22900–22913. doi:10.1021/acsami.6b07583
  • Sharma H, Dormidontova EE. Lipid nanodisc-templated self-assembly of gold nanoparticles into strings and rings. ACS Nano. 2017;11(4):3651–3661. doi:10.1021/acsnano.6b08043
  • Pushpamalar J, Meganathan P, Tan HL, et al. Development of a polysaccharide-based hydrogel drug delivery system (DDS): an update. Gels. 2021;7(4):153. doi:10.3390/gels7040153
  • Qi SS, Sun JH, Yu HH, Yu SQ. Co-delivery nanoparticles of Anticancer drugs for improving chemotherapy efficacy. Drug Deliv. 2017;24(1):1909–1926. doi:10.1080/10717544.2017.1410256
  • Wang Z, Zhang RX, Zhang T, et al. In Situ proapoptotic peptide-generating rapeseed protein-based nanocomplexes synergize chemotherapy for cathepsin-B overexpressing breast cancer. ACS Appl Mater Interfaces. 2018;10(48):41056–41069. doi:10.1021/acsami.8b14001
  • Alvarez-Lorenzo C, Blanco-Fernandez B, Puga AM, Concheiro A. Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery. Adv Drug Deliv Rev. 2013;65(9):1148–1171. doi:10.1016/j.addr.2013.04.016
  • Kim DH, Kim KN, Kim KM, Lee YK. Targeting carcinoma cells with chitosan- and starch-coated magnetic nanoparticles for magnetic hyperthermia. J Biomed Mater Res A. 2009;88(1):1–11. doi:10.1002/jbm.a.31775
  • Alkanawati MS, Wurm FR, Thérien‐Aubin H, Landfester K. Large‐scale preparation of polymer nanocarriers by high‐pressure microfluidization. Macromol Mater Eng. 2018;303:1700505. doi:10.1002/mame.201700505
  • Ren G, Jiang M, Xue P, et al. A unique highly hydrophobic anticancer prodrug self-assembled nanomedicine for cancer therapy. Nanomedicine. 2016;12(8):2273–2282. doi:10.1016/j.nano.2016.06.012
  • Barbera V, Leonardi G, Valerio AM, et al. Environmentally friendly and regioselective one-pot synthesis of imines and oxazolidines serinol derivatives and their use for rubber cross-linking. ACS Sustainable Chem Eng. 2020;8(25):9356–9366. doi:10.1021/acssuschemeng.0c01603
  • Wu Y, MacKay JA, McDaniel JR, Chilkoti A, Clark RL. Fabrication of elastin-like polypeptide nanoparticles for drug delivery by electrospraying. Biomacromolecules. 2009;10(1):19–24. doi:10.1021/bm801033f
  • Ntoukam DH, Mutlu H, Theato P. Post-polymerization modification of poly(vinylcyclopropanes): a potential route to periodic copolymers. Eur Polym J. 2020;122:109319. doi:10.1016/j.eurpolymj.2019.109319
  • Pulingam T, Foroozandeh P, Chuah JA, Sudesh K. Exploring various techniques for the chemical and biological synthesis of polymeric nanoparticles. Nanomaterials. 2022;12(3):576. doi:10.3390/nano12030576
  • Senapati S, Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther. 2018;3(1):7. doi:10.1038/s41392-017-0004-3
  • Yasuhara T, Suzuki T, Katsura M, Miyagawa K. Rad54B serves as a scaffold in the DNA damage response that limits checkpoint strength. Nat Commun. 2014;5:5426. doi:10.1038/ncomms6426
  • Dhar R, Mukerjee N, Mukherjee D, Devi A, Jha SK, Gorai S. Plant-derived exosomes: a new dimension in cancer therapy. Phytother Res. 2024;38:1721–1723. doi:10.1002/ptr.7828
  • Kar R, Dhar R, Mukherjee S, et al. Exosome-based smart drug delivery tool for cancer theranostics. ACS Biomater Sci Eng. 2023;9(2):577–594. doi:10.1021/acsbiomaterials.2c01329
  • Chitkara D, Shikanov A, Kumar N, Domb AJ. Biodegradable injectable in situ depot-forming drug delivery systems. Macromol Biosci. 2006;6(12):977–990. doi:10.1002/mabi.200600129
  • Witika BA, Makoni PA, Matafwali SK, et al. Biocompatibility of biomaterials for nanoencapsulation: current approaches. Nanomaterials. 2020;10(9):1649. doi:10.3390/nano10091649
  • George A, Shah PA, Shrivastav PS. Natural biodegradable polymers based nano-formulations for drug delivery: a review. Int J Pharm. 2019;561:244–264. doi:10.1016/j.ijpharm.2019.03.011
  • Alp E, Damkaci F, Guven E, Tenniswood M. Starch nanoparticles for delivery of the histone deacetylase inhibitor CG-1521 in breast cancer treatment. Int J Nanomed. 2019;14:1335–1346. doi:10.2147/IJN.S191837
  • Paleos CM, Sideratou Z, Theodossiou TA, Tsiourvas D. Carboxylated hydroxyethyl starch: a novel polysaccharide for the delivery of doxorubicin. Chem Biol Drug Des. 2015;85(5):653–658. doi:10.1111/cbdd.12447
  • Gulfam M, Kim JE, Lee JM, Ku B, Chung BH, Chung BG. Anticancer drug-loaded gliadin nanoparticles induce apoptosis in breast cancer cells. Langmuir. 2012;28(21):8216–8223. doi:10.1021/la300691n
  • Baharlouei P, Rahman A. Chitin and chitosan: prospective biomedical applications in drug delivery, cancer treatment, and wound healing. Mar Drugs. 2022;20(7):460. doi:10.3390/md20070460
  • Uchegbu IF, Carlos M, McKay C, Hou X, Schätzlein AG. Chitosan amphiphiles provide new drug delivery opportunities. Polym Int. 2014;63(7):1145–1153. doi:10.1002/pi.4721
  • Tian Y, Jiang X, Chen X, Shao Z, Yang W. Doxorubicin-loaded magnetic silk fibroin nanoparticles for targeted therapy of multidrug-resistant cancer. Adv Mater. 2014;26(43):7393–7398. doi:10.1002/adma.201403562
  • Mohapatra A, Harris MA, LeVine D, et al. Magnetic stimulus responsive vancomycin drug delivery system based on chitosan microbeads embedded with magnetic nanoparticles. J Biomed Mater Res B Appl Biomater. 2018;106(6):2169–2176. doi:10.1002/jbm.b.34015
  • Sun Q, Zhou Z, Qiu N, Shen Y. Rational design of cancer nanomedicine: nanoproperty integration and synchronization. Adv Mater. 2017;29(14). doi:10.1002/adma.201606628
  • Simon J, Christmann S, Mailänder V, Wurm FR, Landfester K. Protein Corona mediated stealth properties of biocompatible carbohydrate‐based nanocarriers. Isr J Chem. 2019;58(12):1363–1372. doi:10.1002/ijch.201800166
  • Wei G, Wang Y, Huang X, Hou H, Zhou S. Peptide‐based nanocarriers for cancer therapy. Small Methods. 2018;2(9):1700358. doi:10.1002/smtd.201700358
  • Lee JH, Yeo Y. Controlled drug release from pharmaceutical nanocarriers. Chem Eng Sci. 2015;125:75–84. doi:10.1016/j.ces.2014.08.046
  • Din FU, Aman W, Ullah I, et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomed. 2017;12:7291–7309. doi:10.2147/IJN.S146315
  • Pećina-šlaus N, Kafka A, Salamon I, Bukovac A. Mismatch repair pathway, genome stability and cancer. Front Mol Biosci. 2020;7(122). doi:10.3389/fmolb.2020.00122
  • Ruggiano A, Ramadan K. DNA–protein crosslink proteases in genome stability. Commun Biol. 2021;4(1):11. doi:10.1038/s42003-020-01539-3
  • Ui A, Chiba N, Yasui A. Relationship among DNA double-strand break (DSB), DSB Repair, and transcription prevents genome instability and cancer. Cancer Sci. 2020;111(5):1443–1451. doi:10.1111/cas.14404
  • Lohcharoenkal W, Wang L, Chen YC, Rojanasakul Y. Protein nanoparticles as drug delivery carriers for cancer therapy. BioMed Res Int. 2014;2014:180549. doi:10.1155/2014/180549
  • Wang S, Kim G, Lee YE, et al. Multifunctional biodegradable polyacrylamide nanocarriers for cancer theranostics - A “See and Treat” strategy. ACS Nano. 2012;6(8):6843–6851. doi:10.1021/nn301633m
  • Taurin S, Nehoff H, Greish K. Anticancer nanomedicine and tumor vascular permeability; where is the missing link? J Control Release. 2012;164(3):265–275. doi:10.1016/j.jconrel.2012.07.013
  • Wu J. The Enhanced permeability and retention (EPR) effect: the significance of the concept and methods to enhance its application. J Pers Med. 2021;11(8):771. doi:10.3390/jpm11080771
  • Zhang M, Gao S, Yang D, et al. Influencing factors and strategies of enhancing nanoparticles into tumors in vivo. Acta Pharm Sin B. 2021;11(8):2265–2285. doi:10.1016/j.apsb.2021.03.033
  • Andey T, Sudhakar G, Marepally S, Patel A, Banerjee R, Singh M. Lipid nanocarriers of a lipid-conjugated estrogenic derivative inhibit tumor growth and enhance cisplatin activity against triple-negative breast cancer: pharmacokinetic and efficacy evaluation. Mol Pharm. 2015;12(4):1105–1120. doi:10.1021/mp5008629
  • Date T, Nimbalkar V, Kamat J, Mittal A, Mahato RI, Chitkara D. Lipid-polymer hybrid nanocarriers for delivering cancer therapeutics. J Control Release. 2018;271:60–73. doi:10.1016/j.jconrel.2017.12.016
  • Dai W, Wang X, Song G, et al. Combination antitumor therapy with targeted dual-nanomedicines. Adv Drug Deliv Rev. 2017;115:23–45. doi:10.1016/j.addr.2017.03.001
  • Dong P, Rakesh KP, Manukumar HM, et al. Innovative nanocarriers in anticancer drug delivery-A comprehensive review. Bioorg Chem. 2019;85:325–336. doi:10.1016/j.bioorg.2019.01.019
  • Padmakumar S, Parayath NN, Nair SV, Menon D, Amiji MM. Enhanced Antitumor efficacy and safety with metronomic intraperitoneal chemotherapy for metastatic ovarian cancer using biodegradable nanotextile implants. J Control Release. 2019;305:29–40. doi:10.1016/j.jconrel.2019.05.022
  • Dheer D, Nicolas J, Shankar R. Cathepsin-sensitive nanoscale drug delivery systems for cancer therapy and other diseases. Adv Drug Deliv Rev. 2019;151:130–151. doi:10.1016/j.addr.2019.01.010
  • Rabiee N, Yaraki MT, Garakani SM, et al. Recent advances in porphyrin-based nanocomposites for effective targeted imaging and therapy. Biomaterials. 2020;232:119707. doi:10.1016/j.biomaterials.2019.119707
  • Alander JT, Kaartinen I, Laakso A, et al. A review of indocyanine green fluorescent imaging in surgery. Int J Biomed Imaging. 2012;2012:940585. doi:10.1155/2012/940585
  • Tan H, Wang T, Shao Y, Yu C, Hu L. Crucial breakthrough of functional persistent luminescence materials for biomedical and information technological applications. Front Chem. 2019;7:387. doi:10.3389/fchem.2019.00387
  • Sheng Z, Hu D, Xue M, He M, Gong P, Cai L. Indocyanine green nanoparticles for theranostic applications. Nano Micro Lett. 2013;5:145–150. doi:10.1007/BF03353743
  • Liang Z, Khawar MB, Liang J, Sun H. Bio-conjugated quantum dots for cancer research: detection and imaging. Front Oncol. 2021;11:749970. doi:10.3389/fonc.2021.749970
  • Rhee JK, Park OK, Lee A, Yang DH, Park K. Glycol chitosan-based fluorescent theranostic nanoagents for cancer therapy. Mar Drugs. 2014;12(12):6038–6057. doi:10.3390/md12126038
  • Li Y, Yang HY, Thambi T, Park JH, Lee DS. Charge-convertible polymers for improved tumor targeting and enhanced therapy. Biomaterials. 2019;217:119299. doi:10.1016/j.biomaterials.2019.119299
  • Gunaydin G, Gedik ME, Ayan S. photodynamic therapy-current limitations and novel approaches. Front Chem. 2021;9:691697. doi:10.3389/fchem.2021.691697
  • Kwiatkowski S, Knap B, Przystupski D, et al. Photodynamic therapy – mechanisms, photosensitizers and combinations. Biomed Pharmacother. 2018;106:1098–1107. doi:10.1016/j.biopha.2018.07.049
  • Siddique S, Chow JCL. Recent Advances in Functionalized Nanoparticles in Cancer Theranostics. Nanomaterials. 2022;12:2826. doi:10.3390/nano12162826
  • Santiago CA, Chow JCL. Variations in Gold Nanoparticle Size on DNA Damage: a Monte Carlo Study Based on a Multiple-Particle Model Using Electron Beams. Appl Sci. 2023;13:4916. doi:10.3390/app13084916
  • Jabeen M, Chow JCL. Gold Nanoparticle DNA Damage by Photon Beam in a Magnetic Field: a Monte Carlo Study. Nanomaterials. 2021;11:1751. doi:10.3390/nano11071751
  • Wang Y, Li P, Truong-Dinh Tran T, Zhang J, Kong L. Manufacturing techniques and surface engineering of polymer-based nanoparticles for targeted drug delivery to cancer. Nanomaterials. 2016;6(2):26. doi:10.3390/nano6020026
  • Swierczewska M, Han HS, Kim K, Park JH, Lee S. Polysaccharide-based nanoparticles for theranostic nanomedicine. Adv Drug Deliv Rev. 2016;99(Pt A):70–84. doi:10.1016/j.addr.2015.11.015
  • Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev. 2014;66:2–25. doi:10.1016/j.addr.2013.11.009
  • Pan UN, Khandelia R, Sanpui P, Das S, Paul A, Chattopadhyay A. Protein-Based Multifunctional Nanocarriers for Imaging, Photothermal Therapy, and Anticancer Drug Delivery. ACS Appl Mater Interfaces. 2017;9(23):19495–19501. doi:10.1021/acsami.6b06099
  • Wang C, Tao H, Cheng L, Liu Z. Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles. Biomaterials. 2011;32(26):6145–6154. doi:10.1016/j.biomaterials.2011.05.007
  • Mukerjee N, Maitra S, Ghosh A, Subramaniyan V, Sharma R. Exosome-mediated PROTACs delivery to target viral infections. Drug Dev Res. 2023;84(6):1031–1036. doi:10.1002/ddr.22091
  • Mukerjee N, Maitra S, Gorai S, Ghosh A, Alexiou A, Thorat ND. Revolutionizing Human papillomavirus (HPV)-related cancer therapies: unveiling the promise of Proteolysis Targeting Chimeras (PROTACs) and Proteolysis Targeting Antibodies (PROTABs) in cancer nano-vaccines. J Med Virol. 2023;95(10):e29135. doi:10.1002/jmv.29135