219
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Understanding Sorafenib-Induced Cardiovascular Toxicity: Mechanisms and Treatment Implications

, , , , & ORCID Icon
Pages 829-843 | Received 25 Oct 2023, Accepted 09 Mar 2024, Published online: 18 Mar 2024

References

  • Burchert A, Bug G, Fritz LV, et al. Sorafenib Maintenance After Allogeneic Hematopoietic Stem Cell Transplantation for Acute Myeloid Leukemia With FLT3-Internal Tandem Duplication Mutation (SORMAIN). J Clin Oncol. 2020;38(26):2993–3002. doi:10.1200/JCO.19.03345
  • Rimassa L, Danesi R, Pressiani T, Merle P. Management of adverse events associated with tyrosine kinase inhibitors: improving outcomes for patients with hepatocellular carcinoma. Cancer Treat Rev. 2019;77:20–28. doi:10.1016/j.ctrv.2019.05.004
  • Fu M, Guo J, Zhao Y, et al. Characteristics of Fall-Related Fractures in Older Adults with Cerebrovascular Disease: a Cross-Sectional Study. Clin Interv Aging. 2021;16:1337–1346. doi:10.2147/CIA.S316739
  • Weinberg RA. The molecular basis of oncogenes and tumor suppressor genes. Ann N Y Acad Sci. 1995;758:331–338. doi:10.1111/j.1749-6632.1995.tb24838.x
  • Escalante CP, Chang YC, Liao K, et al. Meta-analysis of cardiovascular toxicity risks in cancer patients on selected targeted agents. Support Care Cancer. 2016;24(9):4057–4074. doi:10.1007/s00520-016-3310-3
  • Smith RA, Barbosa J, Blum CL, et al. Discovery of heterocyclic ureas as a new class of raf kinase inhibitors: identification of a second generation lead by a combinatorial chemistry approach. Bioorg Med Chem Lett. 2001;11(20):2775–2778. doi:10.1016/s0960-894x(01)00571-6
  • Wang L, Chen M, Ran X, Tang H, Cao D. Sorafenib-Based Drug Delivery Systems: applications and Perspectives. Polymers (Basel). 2023;15(12). doi:10.3390/polym15122638
  • Baek Moller N, Budolfsen C, Grimm D, et al. Drug-Induced Hypertension Caused by Multikinase Inhibitors (Sorafenib, Sunitinib, Lenvatinib and Axitinib) in Renal Cell Carcinoma Treatment. Int J Mol Sci. 2019;20(19). doi:10.3390/ijms20194712
  • Li Y, Li S, Zhu Y, et al. Incidence and risk of sorafenib-induced hypertension: a systematic review and meta-analysis. J Clin Hypertens (Greenwich). 2014;16(3):177–185. doi:10.1111/jch.12273
  • Jiang H, Wang C, Zhang A, et al. ATF4 protects against sorafenib-induced cardiotoxicity by suppressing ferroptosis. Biomed Pharmacother. 2022;153:113280. doi:10.1016/j.biopha.2022.113280
  • Saha D, Ryan KR, Lakkaniga NR, et al. Targeting Rearranged during Transfection in Cancer: a Perspective on Small-Molecule Inhibitors and Their Clinical Development. J Med Chem. 2021;64(16):11747–11773. doi:10.1021/acs.jmedchem.0c02167
  • Chen YT, Masbuchin AN, Fang YH, et al. Pentraxin 3 regulates tyrosine kinase inhibitor-associated cardiomyocyte contraction and mitochondrial dysfunction via ERK/JNK signalling pathways. Biomed Pharmacother. 2023;157:113962. doi:10.1016/j.biopha.2022.113962
  • Humphreys BD, Atkins MB. Rapid development of hypertension by sorafenib: toxicity or target? Clin Cancer Res. 2009;15(19):5947–5949. doi:10.1158/1078-0432.CCR-09-1717
  • Virani SS, Alonso A, Benjamin EJ, et al. Heart Disease and Stroke Statistics-2020 Update: a Report From the American Heart Association. Circulation. 2020;141(9):e139–e596. doi:10.1161/CIR.0000000000000757
  • Escudier B, Worden F, Kudo M. Sorafenib: key lessons from over 10 years of experience. Expert Rev Anticancer Ther. 2019;19(2):177–189. doi:10.1080/14737140.2019.1559058
  • Keating GM, Santoro A. Sorafenib: a review of its use in advanced hepatocellular carcinoma. Drugs. 2009;69(2):223–240. doi:10.2165/00003495-200969020-00006
  • Yamaguchi O, Watanabe T, Nishida K, et al. Cardiac-specific disruption of the c-raf-1 gene induces cardiac dysfunction and apoptosis. J Clin Invest. 2004;114(7):937–943. doi:10.1172/JCI20317
  • Sathishkumar K, Yallampalli U, Elkins R, Yallampalli C. Raf-1 kinase regulates smooth muscle contraction in the rat mesenteric arteries. J Vasc Res. 2010;47(5):384–398. doi:10.1159/000277726
  • Dong LH, Wen JK, Liu G, et al. Blockade of the Ras-extracellular signal-regulated kinase 1/2 pathway is involved in smooth muscle 22 alpha-mediated suppression of vascular smooth muscle cell proliferation and neointima hyperplasia. Arterioscler Thromb Vasc Biol. 2010;30(4):683–691. doi:10.1161/ATVBAHA.109.200501
  • Elaimy AL, Mercurio AM. Convergence of VEGF and YAP/TAZ signaling: implications for angiogenesis and cancer biology. Sci Signal. 2018;11(552). doi:10.1126/scisignal.aau1165
  • Li Y, Gao ZH, Qu XJ. The adverse effects of sorafenib in patients with advanced cancers. Basic Clin Pharmacol Toxicol. 2015;116(3):216–221. doi:10.1111/bcpt.12365
  • Zou J, Fei Q, Xiao H, et al. VEGF-A promotes angiogenesis after acute myocardial infarction through increasing ROS production and enhancing ER stress-mediated autophagy. J Cell Physiol. 2019;234(10):17690–17703. doi:10.1002/jcp.28395
  • Naito H, Iba T, Takakura N. Mechanisms of new blood-vessel formation and proliferative heterogeneity of endothelial cells. Int Immunol. 2020;32(5):295–305. doi:10.1093/intimm/dxaa008
  • Chirkov YY, Nguyen TH, Horowitz JD. Impairment of Anti-Aggregatory Responses to Nitric Oxide and Prostacyclin: mechanisms and Clinical Implications in Cardiovascular Disease. Int J Mol Sci. 2022;23(3):1042. doi:10.3390/ijms23031042
  • Tian M, Chen K, Huang J, et al. Asiatic acid inhibits angiogenesis and vascular permeability through the VEGF/VEGFR2 signaling pathway to inhibit the growth and metastasis of breast cancer in mice. Phytother Res. 2021;35(11):6389–6400. doi:10.1002/ptr.7292
  • Escudier B, Eisen T, Stadler WM, et al. Sorafenib for treatment of renal cell carcinoma: final efficacy and safety results of the Phase III treatment approaches in renal cancer global evaluation trial. J Clin Oncol. 2009;27(20):3312–3318. doi:10.1200/JCO.2008.19.5511
  • Totzeck M, Mincu RI, Mrotzek S, Schadendorf D, Rassaf T. Cardiovascular diseases in patients receiving small molecules with anti-vascular endothelial growth factor activity: a meta-analysis of approximately 29,000 cancer patients. Eur J Prev Cardiol. 2018;25(5):482–494. doi:10.1177/2047487318755193
  • Maraiki F, Aljubran A. Carotid and brachiocephalic arteries stenosis with long term use of sorafenib. Hematol Oncol Stem Cell Ther. 2014;7(1):53–55. doi:10.1016/j.hemonc.2013.06.005
  • Jensen BC, Parry TL, Huang W, et al. Effects of the kinase inhibitor sorafenib on heart, muscle, liver and plasma metabolism in vivo using non-targeted metabolomics analysis. Br J Pharmacol. 2017;174(24):4797–4811. doi:10.1111/bph.14062
  • Abdel-Rahman O, Fouad M. Risk of cardiovascular toxicities in patients with solid tumors treated with sorafenib: an updated systematic review and meta-analysis. Future Oncol. 2014;10(12):1981–1992. doi:10.2217/fon.14.42
  • Wu S, Chen JJ, Kudelka A, Lu J, Zhu X. Incidence and risk of hypertension with sorafenib in patients with cancer: a systematic review and meta-analysis. Lancet Oncol. 2008;9(2):117–123. doi:10.1016/S1470-2045(08)70003-2
  • Bellmunt J, Eisen T, Fishman M, Quinn D. Experience with sorafenib and adverse event management. Crit Rev Oncol Hematol. 2011;78(1):24–32. doi:10.1016/j.critrevonc.2010.03.006
  • Akutsu N, Sasaki S, Takagi H, et al. Development of hypertension within 2 weeks of initiation of sorafenib for advanced hepatocellular carcinoma is a predictor of efficacy. Int J Clin Oncol. 2015;20(1):105–110. doi:10.1007/s10147-014-0691-5
  • Carballo-Folgoso L, Alvarez-Velasco R, Lorca R, et al. Evaluation of cardiovascular events in patients with hepatocellular carcinoma treated with sorafenib in the clinical practice. The CARDIO-SOR study. Liver Int. 2021;41(9):2200–2211. doi:10.1111/liv.14941
  • Hall PS, Harshman LC, Srinivas S, Witteles RM. The frequency and severity of cardiovascular toxicity from targeted therapy in advanced renal cell carcinoma patients. JACC Heart Fail. 2013;1(1):72–78. doi:10.1016/j.jchf.2012.09.001
  • Fu Y, Wei X, Lin L, Xu W, Liang J. Adverse reactions of sorafenib, sunitinib, and imatinib in treating digestive system tumors. Thorac Cancer. 2018;9(5):542–547. doi:10.1111/1759-7714.12608
  • Santoni M, Conti A, Massari F, et al. Targeted therapy for solid tumors and risk of hypertension: a meta-analysis of 68077 patients from 93 phase III studies. Expert Rev Cardiovasc Ther. 2019;17(12):917–927. doi:10.1080/14779072.2019.1704626
  • Yang X, Pan X, Cheng X, Kuang Y, Cheng Y. Risk of Hypertension With Sorafenib Use in Patients With Cancer: a Meta-Analysis From 20,494 Patients. Am J Ther. 2017;24(1):e81–e101. doi:10.1097/MJT.0000000000000331
  • Brose MS, Frenette CT, Keefe SM, Stein SM. Management of sorafenib-related adverse events: a clinician’s perspective. Semin Oncol. 2014;41 Suppl 2:S1–S16. doi:10.1053/j.seminoncol.2014.01.001
  • Duran JM, Makarewich CA, Trappanese D, et al. Sorafenib cardiotoxicity increases mortality after myocardial infarction. Circ Res. 2014;114(11):1700–1712. doi:10.1161/CIRCRESAHA.114.303200
  • Yokoyama H, Shioyama W, Shintani T, et al. Vascular Endothelial Growth Factor Receptor Inhibitors Impair Left Ventricular Diastolic Functions. Int Heart J. 2021;62(6):1297–1304. doi:10.1536/ihj.21-307
  • Naib T, Steingart RM, Chen CL. Sorafenib-associated multivessel coronary artery vasospasm. Herz. 2011;36(4):348–351. doi:10.1007/s00059-011-3444-5
  • Arima Y, Oshima S, Noda K, et al. Sorafenib-induced acute myocardial infarction due to coronary artery spasm. J Cardiol. 2009;54(3):512–515. doi:10.1016/j.jjcc.2009.03.009
  • Touyz RM, Herrmann SMS, Herrmann J. Vascular toxicities with VEGF inhibitor therapies-focus on hypertension and arterial thrombotic events. J Am Soc Hypertens. 2018;12(6):409–425. doi:10.1016/j.jash.2018.03.008
  • Elice F, Rodeghiero F, Falanga A, Rickles FR. Thrombosis associated with angiogenesis inhibitors. Best Pract Res Clin Haematol. 2009;22(1):115–128. doi:10.1016/j.beha.2009.01.001
  • Das A, Mahapatra S, Bandyopadhyay D, et al. Bleeding with vascular endothelial growth factor tyrosine kinase inhibitor: a network meta-analysis. Crit Rev Oncol Hematol. 2021;157:103186. doi:10.1016/j.critrevonc.2020.103186
  • Je Y, Schutz FA, Choueiri TK. Risk of bleeding with vascular endothelial growth factor receptor tyrosine-kinase inhibitors sunitinib and sorafenib: a systematic review and meta-analysis of clinical trials. Lancet Oncol. 2009;10(10):967–974. doi:10.1016/S1470-2045(09)70222-0
  • Kloth JS, Pagani A, Verboom MC, et al. Incidence and relevance of QTc-interval prolongation caused by tyrosine kinase inhibitors. Br J Cancer. 2015;112(6):1011–1016. doi:10.1038/bjc.2015.82
  • Jang S, Zheng C, Tsai HT, et al. Cardiovascular toxicity after antiangiogenic therapy in persons older than 65 years with advanced renal cell carcinoma. Cancer. 2016;122(1):124–130. doi:10.1002/cncr.29728
  • Wang H, Sheehan RP, Palmer AC, et al. Adaptation of Human iPSC-Derived Cardiomyocytes to Tyrosine Kinase Inhibitors Reduces Acute Cardiotoxicity via Metabolic Reprogramming. Cell Syst. 2019;8(5):412–426 e417. doi:10.1016/j.cels.2019.03.009
  • Touyz RM, Herrmann J. Cardiotoxicity with vascular endothelial growth factor inhibitor therapy. NPJ Precis Oncol. 2018;2:13. doi:10.1038/s41698-018-0056-z
  • Mercurio V, Pirozzi F, Lazzarini E, et al. Models of Heart Failure Based on the Cardiotoxicity of Anticancer Drugs. J Card Fail. 2016;22(6):449–458. doi:10.1016/j.cardfail.2016.04.008
  • Tomita Y, Naito S, Sassa N, et al. Sunitinib Versus Sorafenib as Initial Targeted Therapy for mCC-RCC With Favorable/Intermediate Risk: multicenter Randomized Trial CROSS-J-RCC. Clin Genitourin Cancer. 2020;18(4):e374–e385. doi:10.1016/j.clgc.2020.01.001
  • Wu C, Shemisa K. Sorafenib-Associated Heart Failure Complicated by Cardiogenic Shock after Treatment of Advanced Stage Hepatocellular Carcinoma: a Clinical Case Discussion. Case Rep Cardiol. 2017;2017:7065759. doi:10.1155/2017/7065759
  • Sudasena D, Balanescu DV, Donisan T, et al. Fulminant Vascular and Cardiac Toxicity Associated with Tyrosine Kinase Inhibitor Sorafenib. Cardiovasc Toxicol. 2019;19(4):382–387. doi:10.1007/s12012-018-9499-2
  • Destere A, Merino D, Lavrut T, et al. Drug-induced cardiac toxicity and adverse drug reactions, a narrative review. Therapie. 2023. doi:10.1016/j.therap.2023.10.008
  • Roden DM. A current understanding of drug-induced QT prolongation and its implications for anticancer therapy. Cardiovasc Res. 2019;115(5):895–903. doi:10.1093/cvr/cvz013
  • Pabinger I, van Es N, Heinze G, et al. A clinical prediction model for cancer-associated venous thromboembolism: a development and validation study in two independent prospective cohorts. Lancet Haematol. 2018;5(7):e289–e298. doi:10.1016/S2352-3026(18)30063-2
  • Scheiner B, Northup PG, Gruber AB, et al. The impact of ABO blood type on the prevalence of portal vein thrombosis in patients with advanced chronic liver disease. Liver Int. 2020;40(6):1415–1426. doi:10.1111/liv.14404
  • Vanhoutte PM, Shimokawa H, Feletou M, Tang EH. Endothelial dysfunction and vascular disease - a 30th anniversary update. Acta Physiol (Oxf). 2017;219(1):22–96. doi:10.1111/apha.12646
  • Moslehi JJ. Cardiovascular Toxic Effects of Targeted Cancer Therapies. N Engl J Med. 2016;375(15):1457–1467. doi:10.1056/NEJMra1100265
  • Quintanilha JCF, Racioppi A, Wang J, et al. PIK3R5 genetic predictors of hypertension induced by VEGF-pathway inhibitors. Pharmacogenomics J. 2022;22(1):82–88. doi:10.1038/s41397-021-00261-5
  • Miller TW, Cherney MM, Lee AJ, et al. The effects of nitroxyl (HNO) on soluble guanylate cyclase activity: interactions at ferrous heme and cysteine thiols. J Biol Chem. 2009;284(33):21788–21796. doi:10.1074/jbc.M109.014282
  • Yu Q, Li K, Zhao A, et al. Sorafenib not only impairs endothelium-dependent relaxation but also promotes vasoconstriction through the upregulation of vasoconstrictive endothelin type B receptors. Toxicol Appl Pharmacol. 2021;414:115420. doi:10.1016/j.taap.2021.115420
  • Abdel-Samad D, Bkaily G, Magder S, Jacques D. ETA and ETB receptors contribute to neuropeptide Y-induced secretion of endothelin-1 in right but not left human ventricular endocardial endothelial cells. Neuropeptides. 2016;55:145–153. doi:10.1016/j.npep.2016.01.001
  • Clozel M, Gray GA, Breu V, Loffler BM, Osterwalder R. The endothelin ETB receptor mediates both vasodilation and vasoconstriction in vivo. Biochem Biophys Res Commun. 1992;186(2):867–873. doi:10.1016/0006-291x(92)90826-7
  • Houde M, Desbiens L, D’Orleans-Juste P. Endothelin-1: biosynthesis, Signaling and Vasoreactivity. Adv Pharmacol. 2016;77:143–175. doi:10.1016/bs.apha.2016.05.002
  • Van Leeuwen MT, Luu S, Gurney H, et al. Cardiovascular Toxicity of Targeted Therapies for Cancer: an Overview of Systematic Reviews. JNCI Cancer Spectr. 2020;4(6):pkaa076. doi:10.1093/jncics/pkaa076
  • Imran TF, Shah R, Ha AS, Thomas R, Joseph J. Heart failure associated with small molecule tyrosine kinase inhibitors. Int J Cardiol. 2016;206:110–111. doi:10.1016/j.ijcard.2016.01.059
  • Li Y, Xia J, Shao F, et al. Sorafenib induces mitochondrial dysfunction and exhibits synergistic effect with cysteine depletion by promoting HCC cells ferroptosis. Biochem Biophys Res Commun. 2021;534:877–884. doi:10.1016/j.bbrc.2020.10.083
  • Kawabata M, Umemoto N, Shimada Y, et al. Downregulation of stanniocalcin 1 is responsible for sorafenib-induced cardiotoxicity. Toxicol Sci. 2015;143(2):374–384. doi:10.1093/toxsci/kfu235
  • French KJ, Coatney RW, Renninger JP, et al. Differences in effects on myocardium and mitochondria by angiogenic inhibitors suggest separate mechanisms of cardiotoxicity. Toxicol Pathol. 2010;38(5):691–702. doi:10.1177/0192623310373775
  • Ma W, Liu M, Liang F, et al. Cardiotoxicity of sorafenib is mediated through elevation of ROS level and CaMKII activity and dysregulation of calcium homoeostasis. Basic Clin Pharmacol Toxicol. 2020;126(2):166–180. doi:10.1111/bcpt.13318
  • Bouitbir J, Panajatovic MV, Krahenbuhl S. Mitochondrial Toxicity Associated with Imatinib and Sorafenib in Isolated Rat Heart Fibers and the Cardiomyoblast H9c2 Cell Line. Int J Mol Sci. 2022;23(4). doi:10.3390/ijms23042282
  • Dai N, Ye R, He Q, Guo P, Chen H, Zhang Q. Capsaicin and sorafenib combination treatment exerts synergistic anti‑hepatocellular carcinoma activity by suppressing EGFR and PI3K/Akt/mTOR signaling. Oncol Rep. 2018;40(6):3235–3248. doi:10.3892/or.2018.6754
  • Yang Y, Zhou Q, Gao A, Chen L, Li L. Endoplasmic reticulum stress and focused drug discovery in cardiovascular disease. Clin Chim Acta. 2020;504:125–137. doi:10.1016/j.cca.2020.01.031
  • Ren J, Bi Y, Sowers JR, Hetz C, Zhang Y. Endoplasmic reticulum stress and unfolded protein response in cardiovascular diseases. Nat Rev Cardiol. 2021;18(7):499–521. doi:10.1038/s41569-021-00511-w
  • Wang H, Wang Y, Li J, et al. Three tyrosine kinase inhibitors cause cardiotoxicity by inducing endoplasmic reticulum stress and inflammation in cardiomyocytes. BMC Med. 2023;21(1):147. doi:10.1186/s12916-023-02838-2
  • Gatica D, Chiong M, Lavandero S, Klionsky DJ. The role of autophagy in cardiovascular pathology. Cardiovasc Res. 2022;118(4):934–950. doi:10.1093/cvr/cvab158
  • Zhang K, Zhang Q, Jia R, Xiang S, Xu L. A comprehensive review of the relationship between autophagy and sorafenib-resistance in hepatocellular carcinoma: ferroptosis is noteworthy. Front Cell Dev Biol. 2023;11:1156383. doi:10.3389/fcell.2023.1156383
  • Fornari F, Giovannini C, Piscaglia F, Gramantieri L. Elucidating the Molecular Basis of Sorafenib Resistance in HCC: current Findings and Future Directions. J Hepatocell Carcinoma. 2021;8:741–757. doi:10.2147/JHC.S285726
  • Booth LA, Roberts JL, Dent P. The role of cell signaling in the crosstalk between autophagy and apoptosis in the regulation of tumor cell survival in response to sorafenib and neratinib. Semin Cancer Biol. 2020;66:129–139. doi:10.1016/j.semcancer.2019.10.013
  • Liang F, Zhang K, Ma W, et al. Impaired autophagy and mitochondrial dynamics are involved in Sorafenib-induced cardiomyocyte apoptosis. Toxicology. 2022;481:153348. doi:10.1016/j.tox.2022.153348
  • Li DL, Hill JA. Cardiomyocyte autophagy and cancer chemotherapy. J Mol Cell Cardiol. 2014;71:54–61. doi:10.1016/j.yjmcc.2013.11.007
  • Li J, Cao F, Yin HL, et al. Ferroptosis: past, present and future. Cell Death Dis. 2020;11(2):88. doi:10.1038/s41419-020-2298-2
  • Xia Y, Wang G, Jiang M, et al. A Novel Biological Activity of the STAT3 Inhibitor Stattic in Inhibiting Glutathione Reductase and Suppressing the Tumorigenicity of Human Cervical Cancer Cells via a ROS-Dependent Pathway. Onco Targets Ther. 2021;14:4047–4060. doi:10.2147/OTT.S313507
  • Wu X, Li Y, Zhang S, Zhou X. Ferroptosis as a novel therapeutic target for cardiovascular disease. Theranostics. 2021;11(7):3052–3059. doi:10.7150/thno.54113
  • Li Y, Yan J, Zhao Q, Zhang Y, Zhang Y. ATF3 promotes ferroptosis in sorafenib-induced cardiotoxicity by suppressing Slc7a11 expression. Front Pharmacol. 2022;13:904314. doi:10.3389/fphar.2022.904314
  • Frontiers Editorial O. Retraction: overexpression of SERCA2a alleviates cardiac microvascular ischemic injury by suppressing Mfn2-mediated ER/mitochondrial calcium tethering. Front Cell Dev Biol. 2022;10:1006540. doi:10.3389/fcell.2022.1006540
  • Zaafar D, Khalil HMA, Rasheed RA, Eltelbany RFA, Zaitone SA. Hesperetin mitigates sorafenib-induced cardiotoxicity in mice through inhibition of the TLR4/NLRP3 signaling pathway. PLoS One. 2022;17(8):e0271631. doi:10.1371/journal.pone.0271631
  • Grabowska ME, Chun B, Moya R, Saucerman JJ. Computational model of cardiomyocyte apoptosis identifies mechanisms of tyrosine kinase inhibitor-induced cardiotoxicity. J Mol Cell Cardiol. 2021;155:66–77. doi:10.1016/j.yjmcc.2021.02.014
  • Abdelgalil AA, Mohamed OY, Ahamad SR, Al-Jenoobi FI. The protective effect of losartan against sorafenib induced cardiotoxicity: ex-vivo isolated heart and metabolites profiling studies in rat. Eur J Pharmacol. 2020;882:173229. doi:10.1016/j.ejphar.2020.173229
  • Lewinter C, Nielsen TH, Edfors LR, et al. A systematic review and meta-analysis of beta-blockers and renin-angiotensin system inhibitors for preventing left ventricular dysfunction due to anthracyclines or trastuzumab in patients with breast cancer. Eur Heart J. 2022;43(27):2562–2569. doi:10.1093/eurheartj/ehab843
  • Nagasawa T, Hye Khan MA, Imig JD. Captopril attenuates hypertension and renal injury induced by the vascular endothelial growth factor inhibitor sorafenib. Clin Exp Pharmacol Physiol. 2012;39(5):454–461. doi:10.1111/j.1440-1681.2012.05699.x
  • Szmit S, Zaborowska M, Wasko-Grabowska A, et al. Cardiovascular comorbidities for prediction of progression-free survival in patients with metastatic renal cell carcinoma treated with sorafenib. Kidney Blood Press Res. 2012;35(6):468–476. doi:10.1159/000338175
  • Chen Z, Yuan T, Yan F, et al. CT-707 overcomes hypoxia-mediated sorafenib resistance in Hepatocellular carcinoma by inhibiting YAP signaling. BMC Cancer. 2022;22(1):425. doi:10.1186/s12885-022-09520-5
  • Mendez-Blanco C, Fondevila F, Garcia-Palomo A, Gonzalez-Gallego J, Mauriz JL. Sorafenib resistance in hepatocarcinoma: role of hypoxia-inducible factors. Exp Mol Med. 2018;50(10):1–9. doi:10.1038/s12276-018-0159-1
  • Zhang Z, Tan X, Luo J, Yao H, Si Z, Tong JS. The miR-30a-5p/CLCF1 axis regulates sorafenib resistance and aerobic glycolysis in hepatocellular carcinoma. Cell Death Dis. 2020;11(10):902. doi:10.1038/s41419-020-03123-3
  • Xu R, Yuan W, Wang Z. Advances in Glycolysis Metabolism of Atherosclerosis. J Cardiovasc Transl Res. 2023;16(2):476–490. doi:10.1007/s12265-022-10311-3
  • Zhang X, Zheng B, Zhao L, et al. KLF4-PFKFB3-driven glycolysis is essential for phenotypic switching of vascular smooth muscle cells. Commun Biol. 2022;5(1):1332. doi:10.1038/s42003-022-04302-y
  • Schnitzler JG, Hoogeveen RM, Ali L, et al. Atherogenic Lipoprotein(a) Increases Vascular Glycolysis, Thereby Facilitating Inflammation and Leukocyte Extravasation. Circ Res. 2020;126(10):1346–1359. doi:10.1161/CIRCRESAHA.119.316206
  • Yu Q. Sorafenib Aggravates Atherosclerotic Progression Involving With Vascular Smooth Muscle Cell (VSMCs) Phenotypic Switching and Proliferation by PKM2-Mediated Glycolysis. Circulation. 2023;148(Suppl_1):10009–17322.
  • He Y, Wang X, Lu W, et al. PGK1 contributes to tumorigenesis and sorafenib resistance of renal clear cell carcinoma via activating CXCR4/ERK signaling pathway and accelerating glycolysis. Cell Death Dis. 2022;13(2):118. doi:10.1038/s41419-022-04576-4
  • Tan XP, Xiong BH, Zhang YX, Wang SL, Zuo Q, Li J. FXYD5 promotes sorafenib resistance through the Akt/mTOR signaling pathway in hepatocellular carcinoma. Eur J Pharmacol. 2022;931:175186. doi:10.1016/j.ejphar.2022.175186
  • Zhu Y, Xu J, Hu W, et al. TFAM depletion overcomes hepatocellular carcinoma resistance to doxorubicin and sorafenib through AMPK activation and mitochondrial dysfunction. Gene. 2020;753:144807. doi:10.1016/j.gene.2020.144807
  • Xu J, Ji L, Ruan Y, et al. UBQLN1 mediates sorafenib resistance through regulating mitochondrial biogenesis and ROS homeostasis by targeting PGC1beta in hepatocellular carcinoma. Signal Transduct Target Ther. 2021;6(1):190. doi:10.1038/s41392-021-00594-4
  • Tan W, Luo X, Li W, et al. TNF-alpha is a potential therapeutic target to overcome sorafenib resistance in hepatocellular carcinoma. EBioMedicine. 2019;40:446–456. doi:10.1016/j.ebiom.2018.12.047
  • Jiang Y, Chen P, Hu K, et al. Inflammatory microenvironment of fibrotic liver promotes hepatocellular carcinoma growth, metastasis and sorafenib resistance through STAT3 activation. J Cell Mol Med. 2021;25(3):1568–1582. doi:10.1111/jcmm.16256
  • Lo J, Lau EY, Ching RH, et al. Nuclear factor kappa B-mediated CD47 up-regulation promotes sorafenib resistance and its blockade synergizes the effect of sorafenib in hepatocellular carcinoma in mice. Hepatology. 2015;62(2):534–545. doi:10.1002/hep.27859
  • Neves KB, Montezano AC, Lang NN, Touyz RM. Vascular toxicity associated with anti-angiogenic drugs. Clin Sci (Lond). 2020;134(18):2503–2520. doi:10.1042/CS20200308
  • Abdel-Qadir H, Ethier JL, Lee DS, Thavendiranathan P, Amir E. Cardiovascular toxicity of angiogenesis inhibitors in treatment of malignancy: a systematic review and meta-analysis. Cancer Treat Rev. 2017;53:120–127. doi:10.1016/j.ctrv.2016.12.002
  • Jiang L, Ping L, Yan H, et al. Cardiovascular toxicity induced by anti-VEGF/VEGFR agents: a special focus on definitions, diagnoses, mechanisms and management. Expert Opin Drug Metab Toxicol. 2020;16(9):823–835. doi:10.1080/17425255.2020.1787986
  • Zhong L, Li Y, Xiong L, et al. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal Transduct Target Ther. 2021;6(1):201. doi:10.1038/s41392-021-00572-w
  • Brinda BJ, Viganego F, Vo T, Dolan D, Fradley MG. Anti-VEGF-Induced Hypertension: a Review of Pathophysiology and Treatment Options. Curr Treat Options Cardiovasc Med. 2016;18(5):33. doi:10.1007/s11936-016-0452-z