52
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Anti-Infection of Oral Microorganisms from Herbal Medicine of Piper crocatum Ruiz & Pav

ORCID Icon, , , & ORCID Icon
Pages 2531-2553 | Received 19 Dec 2023, Accepted 20 May 2024, Published online: 24 Jun 2024

References

  • Erlyn P. Efektivitas Antibakteri Fraksi Aktif Serai (Cymbopogon citratus) Terhadap Bakteri Streptococcus mutans. Syifa’ Med J Kedokt Dan Kesehat. 2016;6(2):111. doi:10.32502/Sm.V6i2.1387
  • Ulina N, Turnip MB, Sirait NY, Aminah S, Purba N. Sosialisasi Pemanfaatan Ekstrak Daun Sawo Manila (Manilkara zapota) Sebagai Antibakteri Terhadap Bakteri Streptococcus mutans. Jurnal Pengmas Kestra. 2021;1(2):354–359. doi:10.35451/Jpk.V1i2.899
  • Peres MA, Macpherson LMD, Weyant RJ, Al E. Oral Diseases: a Global Public Health Challenge. Lancet. 2019;394(10194):249–260. doi:10.1016/S0140-6736(19)31146-8
  • Angga Prawira Kusuma AMT. Description Of Dental Caries In Second Class Students Of Public Elementary School 20 Sungaiselan. Jurnal Pengmas Kestra. 2020;8153:238–244.
  • Puspitasari N, Widians JA, Budiman E, Wati M, Ramadhan AE. Dayak Onion (Eleutherine palmifolia (L) Merr) As an Alternative Treatment In Early Detection Of Dental Caries Using Certainty Factor. Int Semin Res Inf Technol Intell Syst. 2020;2020(L):482–487. doi:10.1109/ISRITI51436.2020.9315469
  • Graham A, Javidi H, Stern M, Rogers HJ. The Impacts Of Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dysplasia (APECED) On The Oral Health Of Children And Young People: a Review And Case Report. J Adv Oral Res. 2022;13(1):29–37. doi:10.1177/23202068221075961
  • Al-Tamim M, Albalawi H, Isied W, Al E. Gram-Positive Bacterial Infections And Antibiotics Resistance In Jordan: current Status And Future Perspective. Jordan Med J. 2022;56(1):17–44. doi:10.35516/Jmj.V56i1.219
  • Zhi Y, Ji HJ, Jung JH, Al E. Molecular Characteristics Of IS 1216 Carrying Multidrug Resistance Gene Cluster In Serotype III/Sequence Type 19 Group B Streptococcus. Am Soc Microbiol. 2021;6(4):3–21. doi:10.1128/Msphere.00543-21
  • Chang HH, Cohen T, Grad YH, Hanage WP, O’Brien TF, Lipsitch M. Origin And Proliferation Of Multiple-Drug Resistance In Bacterial Pathogens. Microbiol Mol Biol Rev. 2015;79(1):101–116. doi:10.1128/Mmbr.00039-14
  • Geddes-Mcalister J, Shapiro RS. New Pathogens, New Tricks: emerging, Drug-Resistant Fungal Pathogens And Future Prospects For Antifungal Therapeutics. Ann N Y Acad Sci. 2019;1435(1):57–78. doi:10.1111/Nyas.13739
  • Spampinato C, Leonardi D. Candida Infections, Causes, Targets, And Resistance Mechanisms: traditional And Alternative Antifungal Agents. Biomed Res Int. 2013;2013:237. doi:10.1155/2013/204237
  • Bhattacharya S, Sae-Tia S, Fries BC. Candidiasis And Mechanisms Of Antifungal Resistance. Antibiotics. 2020;9(6):1–19. doi:10.3390/Antibiotics9060312
  • Ahmed S, Chandra S, Najam-Ul-Haq M, Younus M. Biochemistry of Drug Resistance. Biochem Drug Resistance. 2021. doi:10.1007/978-3-030-76320-6
  • Nurdeviyanti NN, Armiati IGK, Krisna P. Efficacy of Turmeric Extract (Curcuma domestica Val) 40%, 50%. AND 60% Concentrations in Inhibiting the Growth of Streptococcus Mutans. 2021;IX(Xii):898. doi:10.31364/SCIRJ/V9.I12.2021.P1221898
  • Omojate G. Mechanisms Of Antimicrobial Actions Of Phytochemicals Against Enteric Pathogens – a Review. China an Int J. 2014;7(1):161–175. doi:10.1142/S0219747209000302
  • Ahmad F. Antimicrobial And Anti-Inflammatory Activities Of Piper Porphyrophyllum (Fam. Piperaceae). Arab J Chem. 2014;7(6):1031–1033. doi:10.1016/J.Arabjc.2010.12.032
  • Juniarti DE, Kusumaningsih T, Juliastuti WS, Soetojo A, Wungsu ND. Phytochemical Analysis And Antibacterial Activity Of Purple Leaf Extract [Graptophyllum pictum (L.) Griff] Against Streptococcus mutans. Acta Med Philipp. 2021;55:802–806.
  • Safitri S, Rofiza Y, Eti M. Studi Etnobotani Tumbuhan Obat Di Kecamatan Rambah Kabupaten Rokan Hulu. Ejournal. 2015;2(2):2–3. doi:10.1182/Blood-2014-01-551671
  • A’tourrohman M, Ulfah M. Etnobotany Study On The Utilization Of Sirih Types (Famili: Piperaceae) In Kalijambe Village, Kecamatan Bener, Purworejo District. Biocelebes. 2020;14(3):268–278. doi:10.22487/Bioceb.V14i3.15239
  • Supiandi MI, Ege B, Julung H, Zubaidah S, Mahanal S. Ethnobotany Of Traditional Medicine In Dayak Jangkang Tribe, Sanggau District, West Kalimantan, Indonesia. Biodiversitas J Biol Divers. 2021;22(12):5417–5424. doi:10.13057/Biodiv/D221224
  • Mahmudah F L, Atun S. Antibacterial Activity Test of Ethanol Extract Temu Kunci (Boesenbergia pandurata) Against Streptococcus mutans Bacteria. Jurnal Penelitian Saintek. 2017,4;22(01):59–66. doi:10.21831/jps.v22i1.15380
  • Stokes JM, Lopatkin AJ, Lobritz MA, Collins JJ. Perspective Bacterial Metabolism And Antibiotic Efficacy. Cell Metab. 2020;30(2):251–259. doi:10.1016/J.Cmet.2019.06.009
  • Liu Y, Breukink E. The Membrane Steps Of Bacterial Cell Wall Synthesis As Antibiotic Targets. Antibiotics. 2016;5(3):28–50. doi:10.3390/Antibiotics5030028
  • Qiu W, Zhou Y, Li Z, Al E. Application-Of-Antibioticsantimicrobial-Agents-On-Dental-Cariesbiomed-Research-International.Pdf. Pharmacon. 2020;2020.
  • Liu Y, Ding S, Shen J, Zhu K. Nonribosomal Antibacterial Peptides That Target Multidrug-Resistant Bacteria. Nat Prod Rep. 2019;36(4):573–592. doi:10.1039/C8np00031j
  • Sharma B, Nonzom S. Superficial Mycoses, A Matter Of Concern: global And Indian Scenario-An Updated Analysis. Mycoses. 2021;64(8):890–908. doi:10.1111/Myc.13264
  • Carrasco-Zuber J.E, Navarrete-Dechent C, Bonifaz A, Fich, V. F Vial Letelier, Berroeta Mauriziano D Cutaneous involvement in the deep mycosesActas Dermosifiliogr. 2016107(10816–822. doi:10.1016/j.adengl.2016.05.027
  • Seyedmousavi S, Bosco S, De Hoog S, Ebel F. Fungal infections in animals: A patchwork of different situations. Med. Mycol. 2018;56():S165–S187. doi:10.1093/mmy/myx104
  • Hage C, Carmona E, Epelbaum O, Evans S E. Microbiological laboratory testing in the diagnosis of fungal infections in pulmonary and critical care practice: An official American thoracic society clinical practice guideline. American Journal of Respiratory and Critical Care Medicine. 2020 200 5;535–550. doi:10.1164/rccm.201906-1185ST
  • Begum J, Mir N, Lingaraju M, Buyamayum B. Recent advances in the diagnosis of dermatophytosis. Journal of Basic Microbiology. 2020;60(4):293–303. doi:10.1002/jobm.201900675
  • S. Álvarez-Pérez Gupta A Singh, N P Springer Fungal Diseases in Animals From Infections to Prevention 202133. doi:10.1007/978-3-030-69507-1
  • Ebrahimi M, Zarrinfar H, Naseri A, Najafzadeh M J. Epidemiology of dermatophytosis in northeastern Iran; A subtropical region. Current Medical Mycology. 2019,5 15;5(2):16–21. doi:10.18502/cmm.5.2.1156
  • Singh S. Diversity of Keratinophilic Fungi on Human Hair and Nails in Ujjain. International Journal for Modern Trends in Science and Technology. 2021,3 27;7(3):328–331. doi:10.46501/IJMTST0703051
  • Pinto E, Alves M J G, Cavaleiro C, Salgueiro L. Antifungal activity of thapsia villosa essential oil against candida, cryptococcus, malassezia, aspergillus and dermatophyte species. Molecules. 2017,9 22;22(10):1–11. doi:10.3390/molecules22101595
  • Noites A, Borges I, Araújo B, da Silva J C G E. Antimicrobial Activity of Some Medicinal Herbs to the Treatment of Cutaneous and Mucocutaneous Infections: Preliminary Research. Microorganisms. 2023,1 20;11(2):. doi:10.3390/microorganisms11020272
  • Vila T, Sultan A S, Montelongo-Jauregui D, Jabra-Rizk M A. Oral candidiasis: A disease of opportunity. Journal of Fungi. 2020,1 16;6(1):1–28. doi:10.3390/jof6010015
  • Brescini L, Fioriti S, Morroni G, Barchiesi F. Antifungal Combinations In Dermatophytes. J Fungi. 2021;7(9):1–16. doi:10.3390/Jof7090727
  • Ghule V D, Sarangapani R, Jadhav P M, Tewari S P. Theoretical studies on nitrogen rich energetic azoles. Journal of Molecular Modeling. 1507-1515,9 25;17:6 1507–1515. doi:10.1007/s00894-010-0848-8
  • Shafiei M, Peyton L, Hashemzadeh M, Foroumadi A. History of the development of antifungal azoles: A review on structures, SAR, and mechanism of action. Bioorganic Chemistry. 2020,8 28;():104240. doi:10.1016/j.bioorg.2020.104240
  • Li S, Tan Y, Zhang L, Zhou C. Comprehensive Insights into Medicinal Research on Imidazole-Based Supramolecular Complexes. pharmaceutics. 2023,4 27;15(5):1348. doi:10.3390/pharmaceutics15051348
  • Khurana A, Sardana K, Chowdhary A. Antifungal resistance in dermatophytes: Recent trends and therapeutic implications. Chowdhary. 2019,7 19;132():103255. doi:10.1016/j.fgb.2019.103255
  • Zhang L, -Mei Peng X, Damu, G L V, Xia Geng, R, He Zhou, C. Comprehensive Review in Current Developments ofImidazole-Based Medicinal Chemistry. Wiley Online Library (wileyonlinelibrary.com). 2013,6 5;34(2):340–437. doi:10.1002/med.21290
  • Makvandi P, Josic U, Delfi M, Pinelli, F, Jahed, V. Drug Delivery (Nano)Platforms for Oral and Dental Applications: Tissue Regeneration, Infection Control, and Cancer Management. Advanced Science. 2021;8(8):1–28. doi:10.1002/advs.202004014
  • Teixeira MM, Carvalho DT, Sousa E, Pinto E. New Antifungal Agents With Azole Moieties. Pharmaceuticals. 2022;15(11):427. doi:10.3390/Ph15111427
  • Haro-Reyes T, Díaz-Peralta L, Galván-Hernández 1, A, Rodríguez-López A, Rodríguez-Fragoso L, Ortega-Blake, I. Polyene Antibiotics Physical Chemistry and Their Effect on Lipid Membranes; Impacting Biological Processes and Medical Applications. Membranes. 2022,6 30;12(7):681. doi:10.3390/membranes12070681
  • Baghirova A A, Kasumov Kh M. Antifungal Macrocycle Antibiotic Amphotericin B—Its Present and Future. Multidisciplinary Perspective for the Use in the Medical Practice. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry. 2022;16(1):1–12. doi:10.1134/S1990750822010024
  • D. Lenz K, E. Klosterman K, Mukundan H, Kubicek-Sutherland J Z. Macrolides: From toxins to therapeutics. Toxins. 2021,5 12;13(5):1–8. doi:10.3390/toxins13050347
  • Dong P T, Zong, C, Dagher Z, Hui, J. Polarization-sensitive stimulated Raman scattering imaging resolves amphotericin B orientation in Candida membrane. Science Advances. 2021,1 6;7(2):1–11 doi:10.1126/sciadv.abd5230.
  • Dick CF, Meyer-Fernandes JR, Vieyra A. The Functioning Of Na+-Atpases From Protozoan Parasites: are These Pumps Targets For Antiparasitic Drugs? Cells. 2020;9(10):1–12. doi:10.3390/Cells9102225
  • Nagy-Bota MC, Man A, Santacroce L, Al E. Essential Oils as Alternatives for Root-Canal Treatment And Infection Control Against Enterococcus faecalis— a Preliminary Study. Appl Sci. 2021;11(4):1–13. doi:10.3390/App11041422
  • Hammoudi Halat D, Younes S, Mourad N, Rahal M. Allylamines, Benzylamines, and Fungal Cell Permeability: A Review of Mechanistic Effects and Usefulness against Fungal Pathogens. Membranes. 2022,11 22;12(12):1171. doi:10.3390/membranes12121171
  • Sagatova A A. Strategies to better target fungal squalene monooxygenase. Journal of Fungi. 2021,1 13;7(1):1–13 doi:10.3390/jof7010049.
  • Abuthakir M H S, Hemamalini V, Alahmadi R M, Ahamed A. Evaluation of Compounds from Balanites aegyptiaca against Squalene Epoxidase of Micropsorum gypseum—In Vitro and In Silico Studies. Microbiology Research. 2023,9 4;14(3):1264–1278. doi:10.3390/microbiolres14030085
  • Vanreppelen G, Wuyts J, Van Dijck * P, Vandecruys KU P. Sources of Antifungal Drugs. Journal of Fungi. 2023,1 28;9(2):1–20. doi:10.3390/jof9020171
  • Hossain C M, Ryan L K, Gera M, Choudhuri S, Lyle, N. Antifungals and Drug Resistance. Encyclopedia. 2022,10 10;2(4):1722–1737. doi:10.3390/encyclopedia2040118
  • Carmo A, Rocha M, Pereirinha P, Tomé R, Costa E. Antifungals: From Pharmacokinetics to Clinical Practice. Antibiotics. 2023,5 9;12(5):1–26. doi:10.3390/antibiotics12050884
  • Paramasivan K, Muttur S. Recent advances in the microbial production of squalene. World Journal of Microbiology and Biotechnology. 2022,4 15;38(5):1–21. doi:10.1007/s11274-022-03273-w
  • Effro G G. Rezafungin—Mechanisms of Action, Susceptibility and Resistance: Similarities and Differences with the Other Echinocandins. Journal of Fungi. 2020,11 1;6(4):1–23 doi:10.3390/jof6040262.
  • Li T, Li L, Du F, Sun L. Activity and mechanism of action of antifungal peptides from microorganisms: A review. Molecules. 2021,6 5;26(11):1–18. doi:10.3390/molecules26113438
  • Farhadi Z, Farhadi T, Hashemian To S M. Virtual screening for potential inhibitors of β(1,3)-D-glucan synthase as drug candidates against fungal cell wall. ournal of Drug Assessment. 2020,3 11;9(1):52–59. doi:10.1080/21556660.2020.1734010
  • Downes KJ, Ellis D, Lavigne S, Bryan M, Zaoutis TE, Fisher BT. The Use Of Echinocandins In Hospitalized Children In The United States. Med Mycol. 2019;57(5):534–541. doi:10.1093/Mmy/Myy084
  • Zapata D A, Petraitiene R, Petraitis, V. Echinocandins: The Expanding Antifungal Armamentarium. Clinical Infectious Diseases. 2015;61 6 S604–S611 doi:10.1093/cid/civ814.
  • De Cândido E, Affonseca S, Cardoso MH, Franco OL. Echinocandins As Biotechnological Tools For Treating Candida Auris Infections. J Fungi. 2020;6(3):1–11. doi:10.3390/Jof6030185
  • Meliki, Linda R, Lovadi I. Etnobotani Tumbuhan Obat oleh Suku Dayak Iban Desa Tanjung Sari Kecamatan Ketungau Tengah Kabupaten Sintang. Protobiont. 2013;2(3):129–135. doi:10.26418/protobiont.v2i3.3881
  • A’tourrohman M, Ulfah, M. Etnobotany Study on The Utilization Of Sirih Types (Famili: Piperaceae) In Kalijambe Village, Kecamatan Bener, Purworejo District. Biocelebes. 2020,12;14(3):268–278. doi:10.22487/bioceb.v14i3.15239
  • ASTANA P R W, NISA U. Analysis of Traditional Medicine Formula for Hemorrhoid In Java Island; Ethnopharmacology Study RISTOJA. Jurnal Ilmu Kefarmasian Indonesi. 2018,10 5;16(2).115 doi:10.35814/jifi.v16i2.562
  • Zuhrotun R K B A. Potensi Khasiat Obat Tanaman Marga Piper : Piper nigrum L., Piper retrofractum Vahl., Piper betle Linn., Piper cubeba L. dan Piper crocatum Ruiz & Pav. Jurnal Farmaka. 2018,9 1;16(3):204–212. 10.24198/jf.v16i3.17699
  • Januarti I B, Wijayanti R, Wahyuningsih S, Nisa, Z, et al. Potensi Ekstrak Terpurifikasi Daun Sirih Merah (Piper crocatum Ruiz &Pav) Sebagai Antioksidan Dan Antibakteri. Journal of Pharmaceutical Science and Clinical Research. 2019;4(2):60–68. doi:10.20961/jpscr.v4i2.27206
  • Suri, M A, Azizah Z, Asra R. Traditional Use, Phytochemical and Pharmacological Review of Red Betel Leaves (Piper Crocatum Ruiz & Pav). Asian Journal of Pharmaceutical Research and Development. 2021,2 15;9():159–163. doi:10.22270/ajprd.v9i1.926
  • Arbain D, Ismed F, Yousuf S, Choudhary MI. Bicyclo [3.2.1] Octanoid Neolignans from Indonesian Red Betle Leaves (Piper crocatum Ruiz & Pav.). Phytochem Lett. 2018;24(2017):163–166. doi:10.1016/J.Phytol.2018.02.006
  • Emrizal FA, Yuliandari R, Al E. Cytotoxic Activities Of Fractions And Two Isolated Compounds From Sirih Merah (Indonesian Red Betel), Piper crocatum Ruiz & Pav. Procedia Chem. 2014;13:79–84. doi:10.1016/J.Proche.2014.12.009
  • Liu T, Liang Q, Zhang XM, Huang SY, Xu WH. A New Furofuran Lignan from Piper terminaliflorum Tseng. Nat Prod Res. 2018;32(3):335–340. doi:10.1080/14786419.2017.1350671
  • Li HX, Widowati W, Azis R, Yang SY, Kim YH, Li W. Chemical Constituents of The Piper crocatum Leaves and Their Chemotaxonomic Significance. Biochem Syst Ecol. 2019;86(March):103905. doi:10.1016/J.Bse.2019.05.013
  • Chai YJ, Go Y, Zhou HQ, Al E. Unusual Bicyclo [3.2.1] Octanoid Neolignans from Leaves of Piper crocatum And Their Effect on Pyruvate Dehydrogenase Activity. Plants. 2021;10(9):1–9. doi:10.3390/Plants10091855
  • Siswina T, Miranti Rustama M, Sumiarsa D, Kurnia D. Phytochemical Profiling Of Piper crocatum And Its Antifungal Activity As Lanosterol 14 Alpha Demethylase CYP51 Inhibitor: a Review. F1000Research. 2022;11:1115. doi:10.12688/F1000research.125645.1
  • Kusuma SAF, Hendriani R, Genta A. Antimicrobial Spectrum of Red Piper Betel Leaf Extract (Piper crocatum Ruiz & Pav) As Natural Antiseptics Against Airborne Pathogens. J Pharm Sci Res. 2017;9(5):583–587.
  • Rezeki S, Chismirina A Iski S. Pengaruh Ekstrak Daun Sirih Merah (Piper crocatum) Terhadap Pertumbuhan Candida albicans. J Syiah Kuala Dent Soc. 2017;2(1):52–62.
  • Rachmatiah T, Syafriana V, Elfira L, Al E. Aktivitas Daya Hambat Minyak Atsiri Dan Ekstrak Etanol Daun Sirih Merah (Piper crocatum Ruiz & Pav) Terhadap Candida albicans Inhibitory Activity Of Essential Oil And Ethanol Extract From Piper crocatum Leaves Against. Sainstech Farma. 2018;1–4.
  • Suri MA, Azizah Z, Asra R. A Review: traditional Use, Phytochemical And Pharmacological Review Of Red Betel Leaves (Piper crocatum Ruiz & Pav). Asian J Pharm Res Dev. 2021;9(1):159–163. doi:10.22270/Ajprd.V9i1.926
  • Aamir M, Singh VK, Dubey MK, Al E. In Silico Prediction, Characterization, Molecular Docking, And Dynamic Studies On Fungal SDRs As Novel Targets For Searching Potential Fungicides Against Fusarium Wilt In Tomato. Front Pharmacol. 2018;9(OCT):1–28. doi:10.3389/Fphar.2018.01038
  • Gholam GM, Firdausy IA. Molecular Docking Study Of Natural Compounds From Red Betel (Piper crocatum Ruiz & Pav) As Inhibitor Of Secreted Aspartic Proteinase 5 (Sap 5) In Candida Albicans. Sasambo J Pharm. 2022;3(2):97–104. doi:10.29303/Sjp.V3i2.145
  • Siswina T, Miranti Rustama M, Sumiarsa D, Apriyanti E, Dohi H. Antifungal Constituents of Piper crocatum And Their Activities Study Using ADMET And Drug-Likeness Analysis. Molecules. 2023;28:26.
  • Dhea Ayu Sawitri N, Novita Nurhidayati Mahmuda I. Potential Anti-Bacterial Extract Of Red Belt (Piper crocatum Ruiz & Pav.) Against Staphylococcus epidermidis. KESANS Int J Heal Sci. 2022;1(11):972–978. doi:10.54543/Kesans.V1i11.102
  • Fernanda C, Mega Safithri MB. Antibacterial Activity of Ethanol Extract of Red Betel Leaves (Piper crocatum) And Its Fractions Against Escherichia coli Pbr322. Curr Biochem. 2022;9(1):1–15.
  • Syahrul Ramadhan A, Lesmana D, Onggowidjaja P. Antibacterial Potential Of Red Betel Leaf (Piper crocatum Ruiz & Pav) Against Fusobacterium nucleatum ATCC 25586. Makassar Dent J. 2022;11(3):315–318. doi:10.35856/Mdj.V11i3.649
  • Puspita PJ, Safithri M, Sugiharti NP. Antibacterial Activities of Sirih Merah (Piper crocatum) Leaf Extracts. Curr Biochem. 2019;5(3):1–10. doi:10.29244/Cb.5.3.1-10
  • Wurlina MDK, Putu Anom Adnyana I D, Sasmita R, Putri C. Biological Study Of Piper crocatum Leaves Ethanol Extract Improving The Skin Histopathology of Wistar Rat Wound Infected By Staphylococcus aureus. Eurasian J Biosci. 2019;13(1):2019.
  • Soleha F. Pengaruh Metode Ekstraksi Maserasi Terhadap Aktivitas Antibakteri Daun Sirih Merah (Piper crocatum Ruiz & Pav) Pada Bakteri Staphylococcus Aureus Menggunakan Metode Sumur Difusi. J Anal Farm. 2018;3(1):63–70. doi:10.33024/Jaf.V3i1.2778
  • Pujiastuti P, Lestari S, Fakultas P, Al E. Perbedaan Efektifitas Antibakteri Ekstrak Daun Sirih Merah (Piper Crocatum) Pada Porphyromonas Gingivalis Dan Streptococcus viridans. JKG Unej. 2015;12(1):1–4.
  • Carrillo W, Lucio A, Gaibor J, Morales D, Vásquez G. Isolation Of Antibacterial Hydrolysates From Hen Egg White Lysozyme And Identification Of Antibacterial Peptides. J Med Food. 2018;21(8):808–818. doi:10.1089/Jmf.2017.0134
  • Hidanah S, Sabdoningrum EK, Rachmawati K, Al E. The Activity Of Meniran (Phyllanthus niruri Linn.) Extract On Salmonella Pullorum Infected Broilers. Vet World. 2022;15(5):1373–1382. doi:10.14202/Vetworld.2022.1373-1382
  • Alibi S, Crespo D, Navas J. Plant-Derivatives Small Molecules With Antibacterial Activity. Antibiotics. 2021;10(3):231. doi:10.3390/Antibiotics10030231
  • Arun SD, Minal MK, Karibasappa GN, Prashanth VK, Girija AD, Harish CJ. Comparative Assessment Of Antibacterial Efficacy Of Aqueous Extract of Commercially available Black, Green, And Lemon Tea: an In Vitro Study. Int J Health Sci (Qassim). 2017;11(4):42–46.
  • Pendit PACD, Zubaidah E, Sriherfyna FH. Karakteristik Fisik-Kimia Dan Aktivitas Antibakteri Ekstrak Daun Belimbing Wuluh (Averrhoa bilimbi L.). J Pangan Dan Agroindustri. 2016;4(1):400–409.
  • Shamsudin NF, Ahmed QU, Mahmood S, Al E. Antibacterial Effects Of Flavonoids And Their Structure-Activity Relationship Study: a Comparative Interpretation. Molecules. 2022;27(4):1149. doi:10.3390/Molecules27041149
  • Anggraini W, Nisa SC. Antibacterial Activity Of 96% Ethanol Extract of Cantaloupe Fruit (Cucumis melo L. Var. Cantalupensis) Against the Growth of Escherichia coli Bacteria. Pharm J Indones. 2019;5(1):61–66.
  • Huang W, Wang Y, Tian W, Al E. Biosynthesis Investigations Of Terpenoid, Alkaloid, And Flavonoid Antimicrobial Agents Derived From Medicinal Plants. Antibiotics. 2022;11(10):1380. doi:10.3390/Antibiotics11101380
  • Dong S, Yang X, Zhao L, Zhang F, Hou Z, Xue P. Industrial Crops & Products Antibacterial Activity And Mechanism Of Action Saponins From Chenopodium quinoa Willd. Husks Against Foodborne Pathogenic Bacteria. Ind Crop Prod. 2020;149(2019):112350. doi:10.1016/J.Indcrop.2020.112350
  • Armansyah T, Siregar TN, Suhartono SA. Phytochemicals, Characterization And Antimicrobial Tests Of Red Betel Leaves On Three Solvent Fractions As Candidates For Endometritis Phytotherapy In Aceh Cattle, Indonesia. Biodiversitas. 2022;23(4):2111–2117. doi:10.13057/Biodiv/D230446
  • Rizkita AD, Cahyono E, Mursiti S. Uji Antibakteri Minyak Daun Sirih Hijau Dan Merah Terhadap Streptococcus mutans. J Chem Sci. 2017;6(3):279–286.
  • Akbar NA, Amin S, Wulandari WT. Studi in Silico Senyawa Yang Terkandung Dalam Tanaman Daun Sirih Merah (Piper crocatum RUIZ & PAV) Sebagai Kandidat Anti SARS Cov-2. Ejurnal Univ Bth. 2022;2:378–391.
  • Badshah SL, Faisal S, Muhammad A, Poulson BG, Emwas AH, Jaremko M. Antiviral Activities of Flavonoids. Biomed Pharmacother. 2021;140(March):111596. doi:10.1016/J.Biopha.2021.111596
  • Diniatik KAM, Purwaningrum O. Uji Aktivitas Antivirus Eksrak Etanol Daun Sirih Merah (Piper crocatum Ruitz & Pav) Terhadap Virus NewcastledDisease Dan Profil Kromatografi Lapis Tipisnya. Pharmacy. 2011;08(01):51–70.
  • Larsen T, Fiehn N, Erik E. Dental Biofilm Infections - An Update. APMIS. 2017;125(4):376–384. doi:10.1111/Apm.12688
  • Cui T, Luo W, Xu L, Yang B, Zhao W, Cang H. Progress of antimicrobial discovery against the major cariogenic pathogen streptococcus mutans. Current Issues in Molecular Biology. 2019;32():601–644. doi:10.21775/CIMB.032.601
  • Marin L M, Xiao Y, Xiao J A, Siqueira W L. Modulation of Streptococcus mutans Adherence to Hydroxyapatite by Engineered Salivary Peptides. Microorganisms. 2022,1 20;10:2 1–13. doi:10.3390/microorganisms10020223
  • Paqué PN, Herz C, Wiedemeier DB, Mitsakakis K. Salivary Biomarkers for Dental Caries Detection and Personalized Monitoring. ournal of Personalized Medicine. 2021,3 23;11(3):235. doi:10.3390/jpm11030235
  • Iwabuchi Y, Nakamura T, Kusumoto Y, Nakao 2 R. Effects of ph on the properties of membrane vesicles including glucosyltransferase in streptococcus mutans. Microorganisms. 2021,11 6;9(11):1–18. doi:10.3390/microorganisms9112308
  • Juntarachot N, Sirilun, S, Kantachote, D, Sittiprapaporn, P. Anti- Streptococcus mutans and anti-biofilm activities of dextranase and its encapsulation in alginate beads for application in toothpaste. IPeerJ. 2020 8;. doi:10.7717/peerj.10165
  • Zhang Q, Ma Q, Wang Y, Wu H, Zou, J. Molecular mechanisms of inhibiting glucosyltransferases for biofilm formation in Streptococcus mutans. International Journal of Oral Science. 2021,9 30;13(1):1–8. doi:10.1038/s41368-021-00137-1
  • Moye ZD, Son M, Rosa-Alberty AE, Al E. Effects Of Carbohydrate Source On Genetic Competence In Streptococcus mutans. Appl Environ Microbiol. 2016;82(15):4821–4834. doi:10.1128/AEM.01205-16
  • Wang C, van der Mei HC, Busscher HJ, Ren Y. Streptococcus mutans adhesion force sensing in multi-species oral biofilms. npj Biofilms and Microbiomes. 2020;6(1):1–9. doi:10.1038/s41522-020-0135-0
  • Zhu B, Macleod LC, Kitten T, Xu, P. Streptococcus Sanguinis Biofilm Formation & Interaction with Oral Pathogens. Future Microbiology. 2018,6 8;13(8):915–932. doi:10.2217/fmb-2018-0043
  • Heliawati L, Lestari S, Hasanah U, Ajiati D, Kurnia, D. Phytochemical Profile of Antibacterial Agents from Red Betel Leaf (Piper crocatum Ruiz and Pav) against Bacteria in Dental Caries. Molecules. 2022,4 30;27(9):2861. doi:10.3390/molecules27092861
  • Salehi B, Kregiel D, Mahady, G, Sharifi-Ra, J, Martins, N, Rodrigues, C F. Management of Streptococcus mutans-Candida spp. Oral Biofilms’ Infections: Paving the Way for Effective Clinical Interventions. Journal of Clinical Medicine. 2020;9(2):517. doi:10.3390/jcm9020517
  • Okahashi N, Nakata M, Kuwata H, Kawabata S. Oral mitis group streptococci: A silent majority in our oral cavity. Microbiology and Immunology. 2022,9 12;66(12):539–551. doi:10.1111/1348-0421.13028
  • Inagaki S, Fujit K, Takashima Y, Nagayama K, Ardin A C, Matsumi Y, Matsumoto-Nakano, M. Regulation of Recombination between gtfB/gtfC Genes in Streptococcus mutans by Recombinase A. The Scientific World Journal. 2013;():1–7. doi:10.1155/2013/405075
  • Kozmos M, Virant P, Rojko F, Abram A, Rudolf, R, Raspor, P, Zore, A, Bohinc, K. Bacterial adhesion of streptococcus mutans to dental material surfaces. Molecules. 2021,2 21;26(4):1–15. doi:10.3390/molecules26041152
  • Matsumi Y, Fujita K, Takashima Y, Yanagida, K, Morikawa, Y, Matsumoto-Nakano, M. Contribution of glucan-binding protein A to firm and stable biofilm formation by Streptococcus mutans. Molecular Oral Microbiology. 2015;30(3):217–226. doi:10.1111/omi.12085
  • Cheng X, Redanz S, Cullin N, Zhou X, Xu, X, Joshi, V, Koley, D, Merritt, J, Kreth, J. Plasticity of the Pyruvate Node Modulates Hydrogen Peroxide Production and Acid Tolerance in Multiple Oral Streptococci. Applied and Environmental Microbiology. 2018;84(2):1–15. doi:10.1128/AEM.01697-17
  • Moussa DG, Siqueira WL. Bioinspired Caries Preventive Strategy Via Customizable Pellicles Of Saliva-Derived Protein/Peptide Constructs. Sci Rep. 2021;11(1):1–13. doi:10.1038/S41598-021-96622-Y
  • Kreth J, Herzberg MC. Molecular Principles Of Adhesion And Biofilm Formation. Int J med. 2015;23–53. doi:10.1007/978-3-662-47415-0_2
  • Yumoto H, Hirota K, Hirao K, Ninomiya, M. The pathogenic factors from oral streptococci for systemic diseases. International Journal of Molecular Sciences. 2019;20:18 4571. doi:10.3390/ijms20184571
  • Kreve S, Reis, A C D. Bacterial adhesion to biomaterials: What regulates this attachment? A review. Japanese Dental Science Review. 2021;57():85–96. doi:10.1016/j.jdsr.2021.05.003
  • Pankratova G, Leech D, Gorton, Lo, Hederstedt, L. Extracellular Electron Transfer by the Gram-Positive Bacterium Enterococcus faecalis. Biochemistry. 2018;57(30):4597–4603. doi:10.1021/acs.biochem.8b00600
  • Hirt H, Hall JW, Larson E, Gorr, SU. A D-enantiomer of the antimicrobial peptide GL13K evades antimicrobial resistance in the Gram positive bacteria Enterococcus faecalis and Streptococcus gordonii. PLoS ONE. 2018;13(3):1–16. doi:10.1371/journal.pone.0194900
  • Portenier I, Waltimo T M T, Haapasalo M. Enterococcus faecalis- the root canal survivor and ‘star’ in post-treatment disease. Endodontic Topics. 2003;6(1):135–159. doi:10.1111/j.1601-1546.2003.00040.x
  • Suprewicz Ł, Tokajuk LG, Cieśluk M, Deptuła P, Sierpińska, T, Wolak, P. Bacteria residing at root canals can induce cell proliferation and alter the mechanical properties of gingival and cancer cells. International Journal of Molecular Sciences. 2020;21():1–22. doi:10.3390/ijms21217914
  • Moryl M, Palatyńska-Ulatowska A, Maszewska A, Grzejdziak I, Dias de Oliveira, S. Benefits and Challenges of the Use of Two Novel vB_Efa29212_2e and vB_Efa29212_3e Bacteriophages in Biocontrol of the Root Canal Enterococcus faecalis Infections. Journal of Clinical Medicine. 2022;11(21):. doi:10.3390/jcm11216494
  • Asmah N. Molecular aspects of Enterococcus faecalis virulence. Journal of Syiah Kuala Dentistry Society. 2022;5(2):89–94. doi:10.24815/jds.v5i2.20020
  • Chenicheri S, Usha, R, Ramachandran, R, Thomas, V, Wood, A. Insight into Oral Biofilm: Primary, Secondary and Residual Caries and Phyto-Challenged Solutions. The Open Dentistry Journal. 2017;11(1):312–333 doi:10.2174/1874210601711010312.
  • Soltani S, Hammami R, Cotter PD, Rebuffat S. Bacteriocins as a new generation of antimicrobials: Toxicity aspects and regulations. JPSCR J Pharm Sci Clin Res. 2021;45(1):1–24. doi:10.1093/femsre/fuaa039
  • Van Tyne D, Martin MJ, Gilmore MS. Structure, function, and biology of the Enterococcus faecalis cytolysin. Toxins. 2013;5(5):895–911. doi:10.3390/toxins5050895
  • Nasution A I. sVirulence Factor and Pathogenicity of Candida albicans in Oral Candidiasis. World Journal of Dentistry. 2013;4:4 267–271. doi:10.5005/jp-journals-10015-1243
  • Gunsalus KTW, Kumamoto CA. Chapter 2 Transcriptional Profi Ling Of Candida albicans. The Host. 2018;1356:17–29. doi:10.1007/978-1-4939-3052-4
  • Lohse MB, Gulati M, Johnson AD, Nobile CJ. Development and regulation of single-and multi-species Candida albicans biofilms. Nat Rev Microbiol. 2018;16(1):19–31. doi:10.1038/nrmicro.2017.107
  • Kadosh D, Mundod V. A re-evaluation of the relationship between morphology and pathogenicity in Candida species. Journal of Fungi. 2020;6(1).16–18 doi:10.3390/jof6010013
  • Cheng R, Xu Q, Hu, F, Li, H, Yang, B. Antifungal activity of MAF-1A peptide against Candida albicans. International Microbiology. 2021;24(2):233–242. doi:10.1007/s10123-021-00159-z
  • Bowman SM, Free, SJ. The structure and synthesis of the fungal cell wall. BioEssays. 2006;28(8):799–808. doi:10.1002/bies.20441
  • Chen H, Zhou X, Ren B, Cheng L. The Regulation of Hyphae Growth in Candida albicans. Virulence. 2020;11(1):337–348. doi:10.1080/21505594.2020.1748930
  • Lok B, Adam MAA, Kamal LZM, Chukwudi NA, Sandai R, Sandai D. The assimilation of different carbon sources in Candida albicans: Fitness and pathogenicity. Medical Mycology. 2021;59:2 115–125. doi:10.1093/mmy/myaa080
  • Köhler JR, Acosta-Zaldívar M, Qi W. Phosphate in virulence of candida albicans and candida glabrata. Journal of Fungi. 2020;8(2):. doi:10.3390/jof6020040
  • Van Ende M, Wijnants S, Van Dijck P. Sugar sensing and signaling in Candida albicans and Candida glabrata. Frontiers in Microbiology. 2019;10():1–16. doi:10.3389/fmicb.2019.00099
  • Silva S, Negri M, Henriques M, Oliveira R et al. Adherence and biofilm formation of non-Candida albicans Candida species. Trends in Microbiology. 2011;19(5):241–247. doi:10.1016/j.tim.2011.02.003
  • Wang JM, Woodruff AL, Dunn MJ, Fillinger RJ, Bennett RJ, Anderson MZ. Intraspecies Transcriptional Profiling Reveals Key Regulators of Candida albicans Pathogenic Traits. Mbio. 2021;12(2):21. doi:10.1128/Mbio.00586-21
  • Gunsalus KTW, Tornberg-Belanger SN, Matthan NR, Lichtenstein AH, Kumamoto CA. Manipulation Of Host Diet To Reduce Gastrointestinal Colonization By The. Msphere. 2015;1(1):1–16. doi:10.1128/Msphere.00020-15.Editor
  • Talapko J, Juzbašić M, Matijević T, Al E. Candida Albicans-The Virulence Factors And Clinical Manifestations Of Infection. J Fungi. 2021;7(2):1–19. doi:10.3390/Jof7020079
  • Koo H, Andes D R, Krysan, DJ. Candida–streptococcal interactions in biofilm-associated oral diseases. PLoS Pathogens. 2018 14 12;1–7. doi:10.1371/journal.ppat.1007342
  • Du Q, Ren B, Zhou X, Zhang L, Xu X. Cross-kingdom interaction between Candida albicans and oral bacteria. Front Microbiol. 2022;13:1–14. doi:10.3389/fmicb.2022.911623