57
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Population Pharmacokinetic Models of Venetoclax in Hematologic Malignancies: A Systematic Review

, , , , , , , & show all
Pages 1771-1784 | Received 19 Jan 2024, Accepted 13 May 2024, Published online: 28 May 2024

References

  • Lesniak M, Lipniarska J, Majka P, Lejman M, Zawitkowska J. Recent updates in venetoclax combination therapies in pediatric hematological malignancies. Int J Mol Sci. 2023;24(23). doi:10.3390/ijms242316708
  • Touzeau C, Dousset C, Le Gouill S, et al. The Bcl-2 specific BH3 mimetic ABT-199: a promising targeted therapy for t(11;14) multiple myeloma. Leukemia. 2014;28(1):210–212. doi:10.1038/leu.2013.216
  • Touzeau C, Dousset C, Bodet L, et al. ABT-737 induces apoptosis in mantle cell lymphoma cells with a Bcl-2high/Mcl-1 low profile and synergizes with other antineoplastic agents. Clin Cancer Res. 2011;17(18):5973–5981. doi:10.1158/1078-0432.CCR-11-0955
  • Valentin R, Grabow S, Davids MS. The rise of apoptosis: targeting apoptosis in hematologic malignancies. Blood. 2018;132(12):1248–1264. doi:10.1182/blood-2018-02-791350
  • Souers AJ, Leverson JD, Boghaert ER, et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med. 2013;19(2):202–208. doi:10.1038/nm.3048
  • Leverson JD, Sampath D, Souers AJ, et al. Found in translation: how preclinical research is guiding the clinical development of the BCL2-selective inhibitor venetoclax. Cancer Discov. 2017;7(12):1376–1393. doi:10.1158/2159-8290.CD-17-0797
  • Lever JR, Fergason-Cantrell EA. Allosteric modulation of sigma receptors by BH3 mimetics ABT-737, ABT-263 (Navitoclax) and ABT-199 (Venetoclax). Pharmacol Res. 2019;142:87–100. doi:10.1016/j.phrs.2019.01.040
  • Seymour JF, Kipps TJ, Eichhorst B, et al. Venetoclax-rituximab in relapsed or refractory chronic lymphocytic leukemia. N Engl J Med. 2018;378(12):1107–1120. doi:10.1056/NEJMoa1713976
  • Agarwal SK, Hu B, Chien D, Wong SL, Salem AH. Evaluation of rifampin’s transporter inhibitory and CYP3A inductive effects on the pharmacokinetics of venetoclax, a BCL-2 inhibitor: results of a single- and multiple-dose study. J Clin Pharmacol. 2016;56(11):1335–1343. doi:10.1002/jcph.730
  • Freise KJ, Jones AK, Eckert D, et al. Impact of venetoclax exposure on clinical efficacy and safety in patients with relapsed or refractory chronic lymphocytic leukemia. Clin Pharmacokinet. 2017;56(5):515–523. doi:10.1007/s40262-016-0453-9
  • Jones AK, Freise KJ, Agarwal SK, Humerickhouse RA, Wong SL, Salem AH. Clinical predictors of venetoclax pharmacokinetics in chronic lymphocytic leukemia and non-Hodgkin’s lymphoma patients: a pooled population pharmacokinetic analysis. AAPS J. 2016;18(5):1192–1202. doi:10.1208/s12248-016-9927-9
  • Salem AH, Agarwal SK, Dunbar M, Enschede SL, Humerickhouse RA, Wong SL. Pharmacokinetics of venetoclax, a novel BCL-2 inhibitor, in patients with relapsed or refractory chronic lymphocytic leukemia or non-Hodgkin lymphoma. J Clin Pharmacol. 2017;57(4):484–492. doi:10.1002/jcph.821
  • Waldron M, Winter A, Hill BT. Pharmacokinetic and pharmacodynamic considerations in the treatment of chronic lymphocytic leukemia: ibrutinib, idelalisib, and venetoclax. Clin Pharmacokinet. 2017;56(11):1255–1266. doi:10.1007/s40262-017-0529-1
  • Salem AH, Agarwal SK, Dunbar M, et al. Effect of low- and high-fat meals on the pharmacokinetics of venetoclax, a selective first-in-class BCL-2 inhibitor. J Clin Pharmacol. 2016;56(11):1355–1361. doi:10.1002/jcph.741
  • Deng R, Gibiansky L, Lu T, et al. Bayesian population model of the pharmacokinetics of venetoclax in combination with rituximab in patients with relapsed/refractory chronic lymphocytic leukemia: results from the phase III MURANO study. Clin Pharmacokinet. 2019;58(12):1621–1634. doi:10.1007/s40262-019-00788-8
  • Gong JQX, Suleiman AA, Menon R, Deng R, Mensing S, Salem AH. Pooled population pharmacokinetic analyses of venetoclax in patients across indications and healthy subjects from phase 1, 2, and 3 clinical trials. J Clin Pharmacol. 2023;63(8):950–960. doi:10.1002/jcph.2248
  • Minocha M, Zeng J, Medema JK, Othman AA. Pharmacokinetics of the B-Cell Lymphoma 2 (Bcl-2) inhibitor venetoclax in female subjects with systemic lupus erythematosus. Clin Pharmacokinet. 2018;57(9):1185–1198. doi:10.1007/s40262-017-0625-2
  • Samineni D, Gibiansky L, Wang B, et al. Pharmacokinetics and exposure-response analysis of venetoclax + obinutuzumab in chronic lymphocytic leukemia: phase 1b study and phase 3 CLL14 trial. Adv Ther. 2022;39(8):3635–3653. doi:10.1007/s12325-022-02170-w
  • Samineni D, Huang W, Gibiansky L, et al. Population pharmacokinetics and exposure-response analyses for venetoclax in combination with R-CHOP in relapsed/refractory and previously untreated patients with diffuse large B cell lymphoma. Adv Ther. 2022;39(1):598–618. doi:10.1007/s12325-021-01919-z
  • Health NIo. Quality assessment tool for observational cohort and cross-sectional studies; 2019. Available from: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools. Accessed May 17, 2024.
  • Shang J, Huang L, Huang J, Ren X, Liu Y, Feng Y. Population pharmacokinetic models of anti-PD-1 mAbs in patients with multiple tumor types: a systematic review. Front Immunol. 2022;13:871372. doi:10.3389/fimmu.2022.871372
  • Mukherjee D, Brackman DJ, Suleiman AA, Zha J, Menon RM, Salem AH. Impact of multiple concomitant CYP3A inhibitors on venetoclax pharmacokinetics: a PBPK and population PK-informed analysis. J Clin Pharmacol. 2023;63(1):119–125. doi:10.1002/jcph.2140
  • Inc. A. VENCLEXTA (venetoclax). U.S. Food and Drug Administration website; 2018. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/208573s009lbl.pdf. Accessed May 17, 2024.
  • Kobayashi M, Yasu T, Suzaki K, Kosugi N. Utility of therapeutic drug monitoring of venetoclax in acute myeloid leukemia. Med Oncol. 2022;39(12):259. doi:10.1007/s12032-022-01865-y
  • Roberts AW, Davids MS, Pagel JM, et al. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N Engl J Med. 2016;374(4):311–322. doi:10.1056/NEJMoa1513257
  • Jonas BA, Pollyea DA. How we use venetoclax with hypomethylating agents for the treatment of newly diagnosed patients with acute myeloid leukemia. Leukemia. 2019;33(12):2795–2804. doi:10.1038/s41375-019-0612-8
  • Cheung TT, Salem AH, Menon RM, Munasinghe WP, Bueno OF, Agarwal SK. Pharmacokinetics of the BCL-2 Inhibitor venetoclax in healthy Chinese subjects. Clin Pharmacol Drug Dev. 2018;7(4):435–440. doi:10.1002/cpdd.395
  • Reda G, Cassin R, Dovrtelova G, et al. Venetoclax penetrates in cerebrospinal fluid and may be effective in chronic lymphocytic leukemia with central nervous system involvement. Haematologica. 2019;104(5):e222–e3. doi:10.3324/haematol.2018.213157
  • Condorelli A, Matteo C, Leotta S, et al. Venetoclax penetrates in cerebrospinal fluid of an acute myeloid leukemia patient with leptomeningeal involvement. Cancer Chemother Pharmacol. 2022;89(2):267–270. doi:10.1007/s00280-021-04356-5
  • Zhang X, Chen J, Wang W, et al. Treatment of central nervous system relapse in acute promyelocytic leukemia by venetoclax: a case report. Front Oncol. 2021;11:693670. doi:10.3389/fonc.2021.693670
  • Badawi M, Menon R, Place AE, et al. Venetoclax penetrates the blood brain barrier: a pharmacokinetic analysis in pediatric leukemia patients. J Cancer. 2023;14(7):1151–1156. doi:10.7150/jca.81795
  • Freise KJ, Shebley M, Salem AH. Quantitative prediction of the effect of CYP3A inhibitors and inducers on venetoclax pharmacokinetics using a physiologically based pharmacokinetic model. J Clin Pharmacol. 2017;57(6):796–804. doi:10.1002/jcph.858
  • Bruggemann RJ, Verheggen R, Boerrigter E, et al. Management of drug-drug interactions of targeted therapies for haematological malignancies and triazole antifungal drugs. Lancet Haematol. 2022;9(1):e58–e72. doi:10.1016/S2352-3026(21)00232-5
  • Costa LJ, Davies FE, Monohan GP, et al. Phase 2 study of venetoclax plus carfilzomib and dexamethasone in patients with relapsed/refractory multiple myeloma. Blood Adv. 2021;5(19):3748–3759. doi:10.1182/bloodadvances.2020004146
  • Bazinet A, Bravo GM. New approaches to myelodysplastic syndrome treatment. Curr Treat Options Oncol. 2022;23(5):668–687. doi:10.1007/s11864-022-00965-1
  • Lasica M, Anderson MA. Review of Venetoclax in CLL, AML and Multiple Myeloma. J Pers Med. 2021;11(6). doi:10.3390/jpm11060463
  • Kaufman JL, Gasparetto C, Schjesvold FH, et al. Targeting BCL-2 with venetoclax and dexamethasone in patients with relapsed/refractory t(11;14) multiple myeloma. Am J Hematol. 2021;96(4):418–427. doi:10.1002/ajh.26083
  • Morschhauser F, Feugier P, Flinn IW, et al. A phase 2 study of venetoclax plus R-CHOP as first-line treatment for patients with diffuse large B-cell lymphoma. Blood. 2021;137(5):600–609. doi:10.1182/blood.2020006578
  • Yang YL, Qian ZY, Zhao Y, et al. LC-MS/MS methods for determination of venetoclax in human plasma and cerebrospinal fluid. Biomed Chromatogr. 2023;37:e5738. doi:10.1002/bmc.5738
  • Gibson A, Trabal A, McCall D, et al. Venetoclax for children and adolescents with acute lymphoblastic leukemia and lymphoblastic lymphoma. Cancers. 2021;14(1):150. doi:10.3390/cancers14010150
  • Lato MW, Przysucha A, Grosman S, Zawitkowska J, Lejman M. The new therapeutic strategies in pediatric T-cell acute lymphoblastic leukemia. Int J Mol Sci. 2021;22(9):4502. doi:10.3390/ijms22094502