39
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Unveiling the Pharmacological Mechanisms of Davidiin’s Anti-Diabetic Efficacy in Streptozotocin-Treated Rats: A Comprehensive Analysis of Serum Metabolome

, , , , , , , & show all
Pages 1981-1996 | Received 23 Feb 2024, Accepted 27 May 2024, Published online: 06 Jun 2024

References

  • Hu J, Ye M, Zhou Z. Aptamers: novel diagnostic and therapeutic tools for diabetes mellitus and metabolic diseases. J Mol Med. 2017;95:249–256. doi:10.1007/s00109-016-1485-1
  • Wang X, Lv S, Huang D, Chen W, Sun L. Hypoglycemic activity of extracts from leaves of Terminalia catappa. Chinese Traditional Patent Med. 2018;40:2531–2535. doi:10.3969/j.issn.1001-1528.2018.11.032
  • Zhou B, Lu Y, Hajifathalian K; NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet. 2016;387:1513–1530. doi:10.1016/S0140-6736(16)00618-8
  • Zheng L, Lu Y, Cao X, et al. Evaluation of the impact of Polygonum capitatum, a traditional Chinese herbal medicine, on rat hepatic cytochrome P450 enzymes by using a cocktail of probe drugs. J Ethnopharmacol. 2014;158:Pt A:276–82. PMID: 25446640. doi:10.1016/j.jep.2014.10.031
  • Zhou F, Chen X. Status of Traditional Chinese Medicine Constitutional Theory in Diabetes Mellitus. China J Chin Med. 2015;30:343–345+348. doi:10.16368/j.issn.1674-8999.2015.03.115
  • Chen B, Li C, Chang X, Kang W. Inhibitory activity of polygonum capitatum to α-Glucosidase. Chin J Exp Traditional Med Formulae. 2010;16:151–153. doi:10.13422/j.cnki.syfjx.2010.08.055
  • Tong N, Wu M, Wang J, Chen P, Huang S. Study on in vitro hypoglycemic effect and mechanism of Polygonum capitatum. Chin Traditional Herbal Drugs. 2017;48:3401–3407. doi:10.7501/j.issn.0253-2670.2017.16.024
  • Liu B, Tong N, Li Y, Huang S. Hypoglycemic mechanism of polygonum capitatum extract on spontaneous model of type 2 Diabetic db/db Mice. Chin Pharm J. 2017;52:384–390. doi:10.11669/cpj.2017.05.011
  • Ma J. Studies on Metabolism of FR429, a Bioactive Ellagitannin from Miao Herb Polygonum Capitatum. Peking Union Medical College; 2013.
  • Yang Y, Hong Q, Zhu B, Zhou Z, Yang J. Quality standard for Polygonum capitatum. Chinese Traditional Patent Med. 2020;42(2):408–415.
  • Wang Y, Ma J, Chow SC, et al. A potential antitumor ellagitannin, davidiin, inhib-ited hepatocellular tumor growth by targeting EZH2. Tumour Biol. 2014;35(1):205–212. doi:10.1007/s13277-013-1025-3
  • Takemoto M, Kawamura Y, Hirohama M, et al. Inhibition of protein SUMOylation by davidiin, an ellagitannin from Davidia involucrata. J Antibiot. 2014;67(4):335–338. doi:10.1038/ja.2013.142
  • Zhu M, Phillipson JD, Greengrass PM, Bowery NE, Cai Y. Plant polyphenols: biologically active compounds or non-selective binders to protein? Phytochemistry. 1997;44(3):441–447. doi:10.1016/s0031-9422(96)00598-5
  • Sun L, Huang D, Han J, et al. Application of beta-1,6-hexa-hydroxydibenzoyl-2,3,4-trigallate-D-glucose compound in medicine preparation, CN201610663093.5; 2018.
  • Wu J, Yan LJ. Streptozotocin-induced type 1 diabetes in rodents as a model for studying mitochondrial mechanisms of diabetic β cell glucotoxicity. Diabetes Metab Syndr Obes. 2015;8:181–188. PMID: 25897251; PMCID: PMC4396517. doi:10.2147/DMSO.S82272
  • Guo Y, Xiao Z, Wang Y, et al. Sodium Butyrate Ameliorates Streptozotocin-Induced Type 1 Diabetes in Mice by Inhibiting the HMGB1 Expression. Front Endocrinol. 2018;9:630. PMID: 30410469; PMCID: PMC6209660. doi:10.3389/fendo.2018.00630
  • Ghadge A, Harsulkar A, Karandikar M, Pandit V, Kuvalekar A. Comparative anti-inflammatory and lipid-normalizing effects of metformin and omega-3 fatty acids through modulation of transcription factors in diabetic rats. Genes Nutr. 2016;11:10. PMID: 27551311; PMCID: PMC4968436. doi:10.1186/s12263-016-0518-4
  • Xuan W. Study on Metabolomics of Davidiin Based on Diabetic Rat Model. Fujian University of Traditional Chinese Medicine; 2019.
  • Han H, Song F, Shu Z, Liu Z, Ren Y, Pi Z. An untargeted urinary metabolomics strategy for investigation of therapeutical mechanism of schisandra chinensis on complications of diabetes rats. Chin J Anal Chem. 2017;45:389–399. doi:10.11895/j.issn.0253-3820.160753
  • Zhao Y. Study on the preparation process of polyphenols from Polygonum capitatum and its metabolite identification in diabetes model. Naval Medical University. 2021. doi:10.26998/d.cnki.gjuyu.2020.000272
  • Zhang C, Xie G, Jiang Y, et al. Studying ofstreptozotocin in-ducing type2 diabetes rat mode. Anhui Med Pharm J. 2012;16(9):1241–1244.
  • Zhang B, Quan A, Fei M, et al. Studying ofstreptozotocin inducing type2 diabetesratmode. J Hubei Univer Sci Technol. 2012;26(6):468–469.
  • Srinivasan K, Viswanad B, Asrat L, Kaul CL, Ramarao P. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res. 2005;52(4):313–320. doi:10.1016/j.phrs.2005.05.004
  • Yang Y, Huang G, Wu Z, Han J, Liang F, Cheng W. Effect of Polygonum Capitatum Extract on Hypoglycemic Drugs. China: Inventor; Naval Medical University, assignee; 2015.
  • Xiang L, Wu Q, Osada H, Yoshida M, Pan W, Qi J. Peanut skin extract ameliorates the symptoms of type 2 diabetes mellitus in mice by alleviating inflammation and maintaining gut microbiota homeosta-sis. Aging. 2020;12(14):13991–14018. doi:10.18632/aging.103521
  • Xiang L, Li J, Wang Y, et al. Tetradecyl 2,3-dihydroxybenzoate improves the symptoms of diabetic mice by modulation of insulin and adiponectin signaling pathways. Front Pharmacol. 2017;8:806. doi:10.3389/fphar.2017.00806
  • Yang J, Zhao X, Lu X, Lin X, Xu G. A data preprocessing strategy for metabolomics to reduce the mask effect in data analysis. Front Mol Biosci. 2015;2. doi:10.3389/fmolb.2015.00004
  • Xia J, Sinelnikov IV, Han B, Wishart DS. MetaboAnalyst 3.0--making metabolomics more meaningful. Nucleic Acids Res. 2015;43:W251–257. doi:10.1093/nar/gkv380
  • Gotoh N, Nagao K, Ishida H, et al. Metabolism of natural highly unsaturated fatty acid, tetracosahexaenoic acid (24:6n-3), in C57BL/KsJ-db/db Mice. J Oleo Sci. 2018;67:1597–1607. doi:10.5650/jos.ess18167
  • Jia W, Xie G, Jia W. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastroenterol Hepatol. 2018;15:111–128. doi:10.1038/nrgastro.2017.119
  • Tianyue Xu. Research progress on the rat model of experimental type 2 diabetes induced by high-fat and high-sugar diet combined with streptozotocin. Diet Science. 2019;1(18):205.
  • Wang Z, Yang Y, Xiang X, Zhu Y, Men J, He M. Estimation of the normal range of blood glucose in rats. Wei Sheng Yan Jiu. 2010;39(2):133–7, 142.
  • Li Y, Lu Zhang Q, Hu W, Qu G, Hong Y. Roles and regulation of phosphatidic acid phosphatase in lipid metabolism and signaling. Plant Physiol J. 2017;53:897–904. doi:10.13592/j.cnki.ppj.2017.1010
  • Schlame M, Greenberg ML. Biosynthesis, remodeling and turnover of mitochondrial cardiolipin. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862(1):3–7. PMID: 27556952; PMCID: PMC5125896. doi:10.1016/j.bbalip.2016.08.010
  • van der Veen JN, Kennelly JP, Wan S, Vance JE, Vance DE, Jacobs RL. The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. Biochim Biophys Acta Biomembr. 2017;1859(9):1558–1572. PMID: 28411170. doi:10.1016/j.bbamem.2017.04.006
  • Xiaoke Z. Biochemistry. Beijing: People ‘s Health Publishing House; 2020:178–179.
  • Sampath H, Ntambi JM. The fate and intermediary metabolism of stearic acid. Lipids. 2005;40(12):1187–1191. PMID: 16477801. doi:10.1007/s11745-005-1484-z
  • D’Souza K, Paramel GV, Kienesberger PC. Lysophosphatidic acid signaling in obesity and insulin resistance. Nutrients. 2018;10(4):399. PMID: 29570618; PMCID: PMC5946184. doi:10.3390/nu10040399
  • El-Magd NF A, Ramadan NM, Eraky SM. The ameliorative effect of bromelain on STZ-induced type 1 diabetes in rats through Oxi-LDL/LPA/LPAR1 pathway. Life Sci. 2021;285:119982. PMID: 34592232. doi:10.1016/j.lfs.2021.119982
  • Bornfeldt KE. Adipocyte phosphatidylinositol biosynthesis via the Lands cycle protects against insulin resistance. J Lipid Res. 2023;64(6):100383. PMID: 37127068; PMCID: PMC10239062. doi:10.1016/j.jlr.2023.100383
  • Zhang X, Zhang J, Sun H, et al. Defective phosphatidylglycerol remodeling causes hepatopathy, linking mitochondrial dysfunction to hepatosteatosis. Cell Mol Gastroenterol Hepatol. 2019;7(4):763–781. PMID: 30831319; PMCID: PMC6463126. doi:10.1016/j.jcmgh.2019.02.002
  • He Q, Bo J, Shen R, et al. S1P Signaling Pathways in Pathogenesis of Type 2 Diabetes. J Diabetes Res. 2021;2021:1341750. PMID: 34751249; PMCID: PMC8571914. doi:10.1155/2021/1341750
  • Gundala NKV, Naidu VGM, Das UN. Amelioration of streptozotocin-induced type 2 diabetes mellitus in Wistar rats by arachidonic acid. Biochem Biophys Res Commun. 2018;496(1):105–113. PMID: 29309791. doi:10.1016/j.bbrc.2018.01.007
  • Wei C, Wang M, Wang X-J. Evolutionary conservation analysis of human arachidonic acid metabolism pathway genesJ. Life Medicine. 2023;2(2):9. doi:10.1093/lifemedi/lnad004
  • Pace-Asciak CR, Martin JM, Corey EJ. Hepoxilins, potential endogenous mediators of insulin release. Prog Lipid Res. 1986;25(1–4):625–628. PMID: 3321096. doi:10.1016/0163-7827(86)90127-x
  • Khan H, Gupta A, Singh TG, Kaur A. Mechanistic insight on the role of leukotriene receptors in ischemic-reperfusion injury. Pharmacol Rep. 2021;73(5):1240–1254. PMID: 33818747. doi:10.1007/s43440-021-00258-8
  • Chakrabarti SK, Cole BK, Wen Y, Keller SR, Nadler JL. 12/15-lipoxygenase products induce inflammation and impair insulin signaling in 3T3-L1 adipocytes. Obesity (Silver Spring). 2009;17(9):1657–1663. PMID: 19521344; PMCID: PMC2887741. doi:10.1038/oby.2009.192
  • Qureshi S, Ali G, Muhammad T, et al. Thiadiazine-thione derivatives ameliorate STZ-induced diabetic neuropathy by regulating insulin and neuroinflammatory signaling. Int Immunopharmacol. 2022;113(Pt B):109421. PMID: 36403520. doi:10.1016/j.intimp.2022.109421
  • Han PC, Hsiao FC, Chang HM, Wabitsch M, Hsieh PS. Importance of adipocyte cyclooxygenase-2 and prostaglandin E2-prostaglandin E receptor 3 signaling in the development of obesity-induced adipose tissue inflammation and insulin resistance. FASEB J. 2016;30(6):2282–2297. PMID: 26932930. doi:10.1096/fj.201500127
  • Chan PC, Liao MT, Hsieh PS. The Dualistic Effect of COX-2-mediated signaling in obesity and insulin resistance. Int J Mol Sci. 2019;20(13):3115. PMID: 31247902; PMCID: PMC6651192. doi:10.3390/ijms20133115
  • Abadpour S, Tyrberg B, Schive SW, et al. Inhibition of the prostaglandin D2-GPR44/DP2 axis improves human islet survival and function. Diabetologia. 2020;63(7):1355–1367. PMID: 32350565; PMCID: PMC7286861. doi:10.1007/s00125-020-05138-z
  • Maggi LB, Sadeghi H, Weigand C, Scarim AL, Heitmeier MR, Corbett JA. Anti-inflammatory actions of 15-deoxy-delta 12,14-prostaglandin J2 and troglitazone: evidence for heat shock-dependent and -independent inhibition of cytokine-induced inducible nitric oxide synthase expression. Diabetes. 2000;49(3):346–355. PMID: 10868955. doi:10.2337/diabetes.49.3.346
  • Souza SC, Yamamoto MT, Franciosa MD, Lien P, Greenberg AS. BRL 49653 blocks the lipolytic actions of tumor necrosis factor-alpha: a potential new insulin-sensitizing mechanism for thiazolidinediones. Diabetes. 1998;47(4):691–695. PMID: 9568706. doi:10.2337/diabetes.47.4.691
  • Thieringer R, Fenyk-Melody JE, Le Grand CB, et al. Activation of peroxisome proliferator-activated receptor gamma does not inhibit IL-6 or TNF-alpha responses of macrophages to lipopolysaccharide in vitro or in vivo. J Immunol. 2000;164(2):1046–1054. PMID: 10623855. doi:10.4049/jimmunol.164.2.1046
  • Lu L, Fan Z, Chai Y. Antipyretic effect and mechanism of relinqing granules on rats induced by dry yeast. J Hubei Minzu University. 2022. doi:10.13501/j.cnki.42-1590/r.2022.04.016
  • Chi PL, Liu CJ, Lee IT, Chen YW, Hsiao LD, Yang CM. HO-1 induction by CO-RM2 attenuates TNF-α-induced cytosolic phospholipase A2 expression via inhibition of PKCα-dependent NADPH oxidase/ROS and NF-κB. Mediators Inflamm. 2014;2014:279171. PMID: 24616552; PMCID: PMC3927740. doi:10.1155/2014/279171
  • Chen J, Zhao KN, Chen C. The role of CYP3A4 in the biotransformation of bile acids and therapeutic implication for cholestasis. Ann Transl Med. 2014;2(1):7. PMID: 25332983; PMCID: PMC4200650. doi:10.3978/j.issn.2305-5839.2013.03.02
  • Chiang JYL, Ferrell JM. Up to date on cholesterol 7 alpha-hydroxylase (CYP7A1) in bile acid synthesis. Liver Res. 2020;4(2):47–63. PMID: 34290896; PMCID: PMC8291349. doi:10.1016/j.livres.2020.05.001
  • Yan Y, Niu Z, Sun C, et al. Hepatic thyroid hormone signalling modulates glucose homeostasis through the regulation of GLP-1 production via bile acid-mediated FXR antagonism. Nat Commun. 2022;13(1):6408. PMID: 36302774; PMCID: PMC9613917. doi:10.1038/s41467-022-34258-w
  • Modica S, Gadaleta RM, Moschetta A. Deciphering the nuclear bile acid receptor FXR paradigm. Nucl Recept Signal. 2010;8:e005. PMID: 21383957; PMCID: PMC3049226. doi:10.1621/nrs.08005
  • Müllenbach R, Weber SN, Lammert F. Nuclear receptor variants in liver disease. J Lipids. 2012;2012:934707. PMID: 22523693; PMCID: PMC3317184. doi:10.1155/2012/934707
  • Chiang JY. Bile acid metabolism and signaling. Compr Physiol. 2013;3(3):1191–1212. PMID: 23897684; PMCID: PMC4422175. doi:10.1002/cphy.c120023
  • He L. Metformin and Systemic Metabolism. Trends Pharmacol Sci. 2020;41(11):868–881. doi:10.1016/j.tips.2020.09.001
  • Zhu H, Jia Z, Li YR, Danelisen I. Molecular mechanisms of action of metformin: latest advances and therapeutic implications. Clin Exp Med. 2023;23(7):2941–2951. doi:10.1007/s10238-023-01051-y
  • Agius L, Ford BE, Chachra SS. The metformin mechanism on gluconeogenesis and AMPK activation: the metabolite perspective. Int J Mol Sci. 2020;21(9):3240. doi:10.3390/ijms21093240
  • Galicia-Garcia U, Benito-Vicente A, Jebari S, et al. Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci. 2020;21(17):6275. doi:10.3390/ijms21176275
  • Ojo OA, Ibrahim HS, Rotimi DE, Ogunlakin AD, Ojo AB. Diabetes mellitus: from molecular mechanism to pathophysiology and pharmacology. Med Novel Technol Dev. 2023;19:100247. doi:10.1016/j.medntd.2023.100247
  • Banday MZ, Sameer AS, Nissar S. Pathophysiology of diabetes: an overview. Avicenna J Med. 2020;10(4):174–188. doi:10.4103/ajm.ajm_53_20