58
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Magnolia Officinalis Alcohol Extract Alleviates the Intestinal Injury Induced by Polygala Tenuifolia Through Regulating the PI3K/AKT/NF-κB Signaling Pathway and Intestinal Flora

, , , , , , , & ORCID Icon show all
Pages 1695-1710 | Received 16 Mar 2024, Accepted 08 May 2024, Published online: 23 May 2024

References

  • Wang L, Jin G, Yu H, et al. Protective effects of tenuifolin isolated from Polygala tenuifolia Willd roots on neuronal apoptosis and learning and memory deficits in mice with Alzheimer’s disease. Food Funct. 2019;10(11):7453–7460.
  • Zhang L, Yong Y, Deng L, et al. Therapeutic potential of Polygala saponins in neurological diseases. Phytomedicine. 2023;108:154483.
  • Cui Y, Zhao X, Tang Y, Zhang Y, Sun L, Zhang X. Comparative Study on the Chemical Components and Gastrointestinal Function on Rats of the Raw Product and Licorice-Simmered Product of Polygala tenuifolia. Evid Based Complement Alternat Med. 2021;2021:8855536.
  • Wang R, Wu T, Liu Y, Yu MX, Tao XJ, Wang HB. The effect of Radix Polygala and honey stir-baking Radix Polygala on acute gastrointestinal toxicity of mice. Chine Med Modern Distance Educ China. 2018;16(08):88–90.
  • Wang J, Guo J, Liu XW, Yang CM. Effects of raw Polygala tenuifolia and different compatibility ratios with Glycyrrgizae Radix on gastrointestinal motility in mice. Pharmacol Clin Chin Mater Med. 2002;1(5):27–28.
  • Tian H, Wu Y, Wang J, Xia HL. Study on acute toxicity of total saponins, alkaloids, ketones and fatty oils in shengyuanzhi. Pharmacol Clin Chin Mater Med. 2005;1(4):50–51.
  • Guan SJ, Yan XP, Lin JK, Li L. Study on acute toxicity test of different processed products of Radix polygalae. Chin J Integr Tradit West Med Intensive Crit Care. 2012;32(03):398–401.
  • Wen L, Xia N, Tang P, et al. The gastrointestinal irritation of polygala saponins and its potential mechanism in vitro and in vivo. Biomed Res Int. 2015;2015:918048.
  • Min-Soo K, Jungim K, Kang-In L, et al. Magnolia officinalis bark extract improves depressive-like behavior in DSS-induced colitis mice. J Funct Foods. 2023;108.
  • Ma R, Xie Q, Wang J, Huang L, Guo X, Fan Y. Combination of urine and faeces metabolomics to reveal the intervention mechanism of Polygala tenuifolia compatibility with Magnolia officinalis on gastrointestinal motility disorders. J Pharm Pharmacol. 2020;73(2):247–262.
  • Zhang ZH, Wen L, Chen HY, et al. Common combinations of Polygalae Radix. Chin J Exp Tradit Med Formulae. 2016;22(12):224–228.
  • Tremaroli V, Bäckhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489(7415):242–249.
  • Nobuhiko K, Sang-Uk S, Cg Y, Gabriel N. Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol. 2013;13(5):321–335.
  • Li Z, Wen Q, Pi J, et al. An inulin-type fructan isolated from Serratula chinensis alleviated the dextran sulfate sodium-induced colitis in mice through regulation of intestinal barrier and gut microbiota. Carbohydr Polym. 2023;320:121206.
  • Wen X, Wan F, Wu Y, et al. Caffeic acid supplementation ameliorates intestinal injury by modulating intestinal microbiota in LPS-challenged piglets. Food Funct. 2023;14(16):7705–7717.
  • Fan Q, Du E, Chen F, et al. Maternal Magnolol Supplementation during Pregnancy and Lactation Promotes Antioxidant Capacity, Improves Gut Health, and Alters Gut Microbiota and Metabolites of Weanling Piglets. Metabolites. 2023;13(7):797.
  • Chen F, Zhang H, Du E, et al. Supplemental magnolol or honokiol attenuates adverse effects in broilers infected with Salmonella pullorum by modulating mucosal gene expression and the gut microbiota. J Anim Sci Biotechnol. 2021;12(1):87.
  • Huang B, Gui M, An H, et al. Babao Dan alleviates gut immune and microbiota disorders while impacting the TLR4/MyD88/NF-кB pathway to attenuate 5-Fluorouracil-induced intestinal injury. Biomed Pharmacother. 2023;166:115387.
  • Feng W, Liu J, Huang L, Tan Y, Peng C. Gut microbiota as a target to limit toxic effects of traditional Chinese medicine: implications for therapy. Biomed Pharmacother. 2021;133:111047.
  • Lemme-Dumit JM, Song Y, Lwin HW, et al. Altered Gut Microbiome and Fecal Immune Phenotype in Early Preterm Infants With Leaky Gut. Front Immunol. 2022;13:815046.
  • Gong S, Zheng J, Zhang J, Han J. Arabinogalactan ameliorates benzo[a]pyrene-induced intestinal epithelial barrier dysfunction via AhR/MAPK signaling pathway. Int J Biol Macromol. 2023;242(Pt 4):124866.
  • Chen S, Li X, Wang Y, et al. Ginsenoside Rb1 attenuates intestinal ischemia/reperfusion‑induced inflammation and oxidative stress via activation of the PI3K/Akt/Nrf2 signaling pathway. Mol Med Rep. 2019;19(5):3633–3641.
  • Almoiliqy M, Wen J, Xu B, et al. Cinnamaldehyde protects against rat intestinal ischemia/reperfusion injuries by synergistic inhibition of NF-κB and p53. Acta Pharmacol Sin. 2020;41(9):1208–1222.
  • Zaghloul MS, Elshal M, Abdelmageed ME. Preventive empagliflozin activity on acute acetic acid-induced ulcerative colitis in rats via modulation of SIRT-1/PI3K/AKT pathway and improving colon barrier. Environ Toxicol Pharmacol. 2022;91:103833.
  • Cheng W, Wang X, Wu Y, et al. Huanglian-Houpo extract attenuates DSS-induced UC mice by protecting intestinal mucosal barrier and regulating macrophage polarization. J Ethnopharmacol. 2023;307:116181.
  • Shao R, Yang Z, Zhang W, et al. Pachymic acid protects against Crohn’s disease-like intestinal barrier injury and colitis in mice by suppressing intestinal epithelial cell apoptosis via inhibiting PI3K/AKT signaling. Nan Fang Yi Ke Da Xue Xue Bao. 2023;43(6):935–942.
  • Little D, Dean RA, Young KM, et al. PI3K signaling is required for prostaglandin-induced mucosal recovery in ischemia-injured porcine ileum. Am J Physiol Gastrointest Liver Physiol. 2003;284(1):G46–56.
  • Yan H, Ajuwon KM. Butyrate modifies intestinal barrier function in IPEC-J2 cells through a selective upregulation of tight junction proteins and activation of the Akt signaling pathway. PLoS One. 2017;12(6):e0179586.
  • Chen S, Huang J, Liu T, et al. PI3K/Akt signaling pathway mediates the effect of low-dose boron on barrier function, proliferation and apoptosis in rat intestinal epithelial cells. Sci Rep. 2024;14(1):393.
  • Li N, Neu J. Glutamine deprivation alters intestinal tight junctions via a PI3-K/Akt mediated pathway in Caco-2 cells. J Nutr. 2009;139(4):710–714.
  • Zhang B, Wei X, Ding M, Luo Z, Tan X, Zheng Z. Daidzein Protects Caco-2 Cells against Lipopolysaccharide-Induced Intestinal Epithelial Barrier Injury by Suppressing PI3K/AKT and P38 Pathways. Molecules. 2022;27(24):8928.
  • Guo H, Gao J, Qian Y, et al. miR-125b-5p inhibits cell proliferation by targeting ASCT2 and regulating the PI3K/AKT/mTOR pathway in an LPS-induced intestinal mucosa cell injury model. Exp Ther Med. 2021;22(2):838.
  • Li C, Wang L, Zhao J, et al. Lonicera rupicola Hook.f.et Thoms flavonoids ameliorated dysregulated inflammatory responses, intestinal barrier, and gut microbiome in ulcerative colitis via PI3K/AKT pathway. Phytomedicine. 2022;104:154284.
  • Gao HN, Hu H, Wen PC, et al. Yak milk-derived exosomes alleviate lipopolysaccharide-induced intestinal inflammation by inhibiting PI3K/AKT/C3 pathway activation. J Dairy Sci. 2021;104(8):8411–8424.
  • Li C, Gong L, Jiang Y, et al. Sanguisorba officinalis ethyl acetate extract attenuates ulcerative colitis through inhibiting PI3K-AKT/NF-κB/ STAT3 pathway uncovered by single-cell RNA sequencing. Phytomedicine. 2023;120:155052.
  • Wang Y, Du P, Jiang D. Berberine functions as a negative regulator in lipopolysaccharide -induced sepsis by suppressing NF-κB and IL-6 mediated STAT3 activation. Pathog Dis. 2020;78(7):ftaa047.
  • Li Y, Ding Q, Gao J, et al. Novel mechanisms underlying inhibition of inflammation-induced angiogenesis by dexamethasone and gentamicin via PI3K/AKT/NF-κB/VEGF pathways in acute radiation proctitis. Sci Rep. 2022;12(1):14116.
  • Chen J, Li M, Chen R, et al. Gegen Qinlian standard decoction alleviated irinotecan-induced diarrhea via PI3K/AKT/NF-κB axis by network pharmacology prediction and experimental validation combination. Chin Med. 2023;18(1):46.
  • Cheng X, Cao Z, Luo J, et al. Baicalin ameliorates APEC-induced intestinal injury in chicks by inhibiting the PI3K/AKT-mediated NF-κB signaling pathway. Poult Sci. 2022;101(1):101572.
  • Niu L, Hou Y, Jiang M, Bai G. The rich pharmacological activities of Magnolia officinalis and secondary effects based on significant intestinal contributions. J Ethnopharmacol. 2021;281:114524.
  • Qian X, Hongyan L, Rong M, et al. Effect of Coptis chinensis franch and Magnolia officinalis on intestinal flora and intestinal barrier in a TNBS-induced ulcerative colitis rats model. Phytomedicine. 2022;97:153927.
  • Shen P, Zhang Z, He Y, et al. Magnolol treatment attenuates dextran sulphate sodium-induced murine experimental colitis by regulating inflammation and mucosal damage. Life Sci. 2018;196:69–76.
  • Xia T, Zhang J, Han L, et al. Protective effect of magnolol on oxaliplatin-induced intestinal injury in mice. Phytother Res. 2019;33(4):1161–1172.
  • Wang N, Kong R, Han W, et al. Honokiol alleviates ulcerative colitis by targeting PPAR-γ-TLR4-NF-κB signaling and suppressing gasdermin-D-mediated pyroptosis in vivo and in vitro. Int Immunopharmacol. 2022;111:109058.
  • Yang J, Zou Y, Jiang D. Honokiol suppresses proliferation and induces apoptosis via regulation of the miR‑21/PTEN/PI3K/AKT signaling pathway in human osteosarcoma cells. Int J Mol Med. 2018;41(4):1845–1854.
  • Hu Z-C, Luo Z-C, Jiang B-J, et al. The Protective Effect of Magnolol in Osteoarthritis: in vitro and in vivo Studies. Front Pharmacol. 2019;10:393.
  • Wang T, Dai MZ, Liu FS, et al. Probiotics Modulate Intestinal Motility and Inflammation in Zebrafish Models. Zebrafish. 2020;17(6):382–393.
  • Zhou J, Guo SY, Zhang Y, Li CQ. Human prokinetic drugs promote gastrointestinal motility in zebrafish. Neurogastroenterol Motil. 2014;26(4):589–595.
  • Jiang N, Zhang Y, Yao C, et al. Tenuifolin ameliorates the sleep deprivation-induced cognitive deficits. Phytother Res. 2023;37(2):464–476.
  • Ren H, Gao S, Wang S, et al. Effects of Dangshen Yuanzhi Powder on learning ability and gut microflora in rats with memory disorder. J Ethnopharmacol. 2022;296:115410.
  • Zhou Y, Yan M, Pan R, et al. Radix Polygalae extract exerts antidepressant effects in behavioral despair mice and chronic restraint stress-induced rats probably by promoting autophagy and inhibiting neuroinflammation. J Ethnopharmacol. 2021;265:113317.
  • Xin Z, Yueli C, Peng W, et al. Polygalae Radix: a review of its traditional uses, phytochemistry, pharmacology, toxicology, and pharmacokinetics. Fitoterapia. 2020;147:104759.
  • Doron I, Leonardi I, Li XV, et al. Human gut mycobiota tune immunity via CARD9-dependent induction of anti-fungal IgG antibodies. Cell. 2021;184(4):1017–1031.e14.
  • Sender R, Fuchs S, Milo R. Are We Really Vastly Outnumbered? Revisiting the Ratio of Bacterial to Host Cells in Humans. Cell. 2016;164(3):337–340.
  • Matson V, Chervin C, Gajewski T. Cancer and the Microbiome-Influence of the Commensal Microbiota on Cancer, Immune Responses, and Immunotherapy. Gastroenterology. 2021;160(2):600–613.
  • Anhê FF, Barra NG, Cavallari JF, Henriksbo BD, Schertzer JD. Metabolic endotoxemia is dictated by the type of lipopolysaccharide. Cell Rep. 2021;36(11):109691.
  • Drolia R, Bhunia AK. Crossing the Intestinal Barrier via Listeria Adhesion Protein and Internalin A. Trends Microbiol. 2019;27(5):408–425.
  • Miller RA, Harbottle H, Aarestrup FM, Schwarz S, Shen J, Cavaco L. Antimicrobial Drug Resistance in Fish Pathogens. Microbiol Spectr. 2018;6(1).
  • Egerton S, Culloty S, Whooley J, Stanton C, Ross RP. The Gut Microbiota of Marine Fish. Front Microbiol. 2018;9:873.
  • Ardiani A, Higgins JP, Hodge JW. Vaccines based on whole recombinant Saccharomyces cerevisiae cells. FEMS Yeast Res. 2010;10(8):1060–1069.
  • Harry S, Valentin L, Hugues A, et al. Fungal microbiota dysbiosis in IBD. Gut. 2017;66(6):1039–1048.
  • Menezes AGT, Melo DS, Ramos CL, Moreira SI, Alves E, Schwan RF. Yeasts isolated from Brazilian fermented foods in the protection against infection by pathogenic food bacteria. Microb Pathog. 2020;140:103969.
  • Mukherjee PK, Chandra J, Retuerto M, et al. Oral mycobiome analysis of HIV-infected patients: identification of Pichia as an antagonist of opportunistic fungi. PLoS Pathog. 2014;10(3):e1003996.
  • Jiang N, Dai Q, Su X, Fu J, Feng X, Peng J. Role of PI3K/AKT pathway in cancer: the framework of malignant behavior. Mol Biol Rep. 2020;47(6):4587–4629.
  • Yan S, Hui Y, Li J, Xu X, Li Q, Wei H. Glutamine relieves oxidative stress through PI3K/Akt signaling pathway in DSS-induced ulcerative colitis mice. Iran J Basic Med Sci. 2020;23(9):1124–1129.
  • Li F, Yang Y, Ge J, et al. Multi-omics revealed the mechanisms of Codonopsis pilosula aqueous extract in improving UC through blocking abnormal activation of PI3K/Akt signaling pathway. J Ethnopharmacol. 2024;319(Pt 2):117220.
  • Yu C, Wang D, Tong Y, et al. Trans-Anethole Alleviates Subclinical Necro-Haemorrhagic Enteritis-Induced Intestinal Barrier Dysfunction and Intestinal Inflammation in Broilers. Front Microbiol. 2022;13:831882.
  • Liu B, Piao X, Niu W, et al. Kuijieyuan Decoction Improved Intestinal Barrier Injury of Ulcerative Colitis by Affecting TLR4-Dependent PI3K/AKT/NF-κB Oxidative and Inflammatory Signaling and Gut Microbiota. Front Pharmacol. 2020;11:1036.
  • Piao X, Liu B, Sui X, et al. Picroside II Improves Severe Acute Pancreatitis-Induced Intestinal Barrier Injury by Inactivating Oxidative and Inflammatory TLR4-Dependent PI3K/AKT/NF-κB Signaling and Improving Gut Microbiota. Oxid Med Cell Longev. 2020;2020:3589497.
  • Xu H, Wang Y, Jurutka PW, et al. 16α-Hydroxytrametenolic Acid from Poria cocos Improves Intestinal Barrier Function Through the Glucocorticoid Receptor-Mediated PI3K/Akt/NF-κB Pathway. J Agric Food Chem. 2019;67(39):10871–10879.
  • Gong S, Zheng J, Zhang J, et al. Taxifolin ameliorates lipopolysaccharide-induced intestinal epithelial barrier dysfunction via attenuating NF-kappa B/MLCK pathway in a Caco-2 cell monolayer model. Food Res Int. 2022;158:111502.
  • Wu Y, Cheng B, Ji L, et al. Dietary lysozyme improves growth performance and intestinal barrier function of weaned piglets. Anim Nutr. 2023;14:249–258.