10
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Nanoparticle-Based Drug Delivery Systems for Inflammatory Bowel Disease Treatment

, , , &
Pages 2921-2949 | Received 20 Feb 2024, Accepted 25 Jun 2024, Published online: 15 Jul 2024

References

  • Maloy KJ, Powrie F. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature. 2011;474(7351):298–306. doi:10.1038/nature10208
  • Alatab S, Sepanlou SG, Ikuta K. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990-2017: a systematic analysis for the global burden of disease study 2017. Lancet Gastroenterol Hepatol. 2020;5(1):17–30. doi:10.1016/S2468-1253(19)30333-4
  • Ng SC, Shi HY, Hamidi N, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet. 2017;390(10114):2769–2778. doi:10.1016/S0140-6736(17)32448-0
  • Kaplan GG, Windsor JW. The four epidemiological stages in the global evolution of inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. 2021;18(1):56–66. doi:10.1038/s41575-020-00360-x
  • Podolsky DK. Inflammatory bowel disease. N Engl J Med. 2002;347(6):417–429. doi:10.1056/NEJMra020831
  • Ott C, Schoelmerich J. Extraintestinal manifestations and complications in IBD. Nat Rev Gastroenterol Hepatol. 2013;10(10):585–595. doi:10.1038/nrgastro.2013.117
  • Ardizzone S, Puttini PS, Cassinotti A, et al. Extraintestinal manifestations of inflammatory bowel disease. Digestive Liver Dis. 2008;40:S253–S259. doi:10.1016/S1590-8658(08)60534-4
  • Ganji-Arjenaki M, Rafieian-Kopaei M, Malekzadeh M. Phytotherapies in inflammatory bowel disease. J Res Med Sci. 2019;24:24. doi:10.4103/jrms.JRMS_363_18
  • Ananthakrishnan AN, Bernstein CN, Iliopoulos D, et al. Environmental triggers in IBD: a review of progress and evidence. Nat Rev Gastroenterol Hepatol. 2018;15(1):39–49. doi:10.1038/nrgastro.2017.136
  • Bruner LP, White AM, Proksell S. Inflammatory bowel disease. Prim Care. 2023;50(3):411–427. doi:10.1016/j.pop.2023.03.009
  • Zhang S, Langer R, Traverso G. Nanoparticulate drug delivery systems targeting inflammation for treatment of inflammatory bowel disease. Nano Today. 2017;16:82–96. doi:10.1016/j.nantod.2017.08.006
  • Turner D, Ricciuto A, Lewis A, et al. STRIDE-II: an Update on the Selecting Therapeutic Targets in Inflammatory Bowel Disease (STRIDE) Initiative of the International Organization for the Study of IBD (IOIBD): determining Therapeutic Goals for Treat-to-Target strategies in IBD. Gastroenterology. 2021;160(5):1570–1583. doi:10.1053/j.gastro.2020.12.031
  • Lautenschläger C, Schmidt C, Fischer D, et al. Drug delivery strategies in the therapy of inflammatory bowel disease. Adv Drug Delivery Rev. 2014;71:58–76. doi:10.1016/j.addr.2013.10.001
  • Coco R, Plapied L, Pourcelle V, et al. Drug delivery to inflamed colon by nanoparticles: comparison of different strategies. Int J Pharm. 2013;440(1):3–12. doi:10.1016/j.ijpharm.2012.07.017
  • Ghosh S, Ghosh S, Sil PC. Role of nanostructures in improvising oral medicine. Toxicol Rep. 2019;6:358–368. doi:10.1016/j.toxrep.2019.04.004
  • Kietzmann D, Moulari B, Béduneau A, et al. Colonic delivery of carboxyfluorescein by pH-sensitive microspheres in experimental colitis. Eur J Pharm Biopharm. 2010;76(2):290–295. doi:10.1016/j.ejpb.2010.06.013
  • Kruis W, Kiudelis G, Racz I, et al. Once daily versus three times daily mesalazine granules in active ulcerative colitis: a double-blind, double-dummy, randomised, non-inferiority trial. Gut. 2009;58(2):233–240. doi:10.1136/gut.2008.154302
  • Date AA, Halpert G, Babu T, et al. Mucus-penetrating budesonide nanosuspension enema for local treatment of inflammatory bowel disease. Biomaterials. 2018;185:97–105. doi:10.1016/j.biomaterials.2018.09.005
  • Jeevanandam J, Barhoum A, Chan YS, et al. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol. 2018;9:1050–1074. doi:10.3762/bjnano.9.98
  • Brakmane G, Winslet M, Seifalian AM. Systematic review: the applications of nanotechnology in gastroenterology. Aliment. Pharmacol Ther. 2012;36(3):213–221. doi:10.1111/j.1365-2036.2012.05179.x
  • Pontes AP, Welting TJM, Rip J, et al. Polymeric nanoparticles for drug delivery in osteoarthritis. Pharmaceutics. 2022;14(12):2639. doi:10.3390/pharmaceutics14122639
  • Marasini N, Er G, Fu C, et al. Development of a hyperbranched polymer-based methotrexate nanomedicine for rheumatoid arthritis. Acta Biomater. 2022;142:298–307. doi:10.1016/j.actbio.2022.01.054
  • Mai Y, Ouyang Y, Yu M, et al. Topical formulation based on disease-specific nanoparticles for single-dose cure of psoriasis. J Control Release. 2022;349:354–366. doi:10.1016/j.jconrel.2022.07.006
  • Brusini R, Varna M, Couvreur P. Advanced nanomedicines for the treatment of inflammatory diseases. Adv Drug Delivery Rev. 2020;157:161–178. doi:10.1016/j.addr.2020.07.010
  • Gazzaniga A, Maroni A, Sangalli ME, et al. Time-controlled oral delivery systems for colon targeting. Expert Opin Drug Delivery. 2006;3(5):583–597. doi:10.1517/17425247.3.5.583
  • Beloqui A, Coco R, Alhouayek M, et al. Budesonide-loaded nanostructured lipid carriers reduce inflammation in murine DSS-induced colitis. Int J Pharm. 2013;454(2):775–783. doi:10.1016/j.ijpharm.2013.05.017
  • Jakubiak P, Thwala LN, Cadete A, et al. Solvent-free protamine nanocapsules as carriers for mucosal delivery of therapeutics. Eur Polym J. 2017;93:695–705. doi:10.1016/j.eurpolymj.2017.03.049
  • El-Hady SM, AbouGhaly MH, El-Ashmoony MM, et al. Colon targeting of celecoxib nanomixed micelles using pulsatile drug delivery systems for the prevention of inflammatory bowel disease. Int J Pharm. 2020;576:118982.
  • Ali H, Weigmann B, Collnot E-M, et al. Budesonide loaded PLGA nanoparticles for targeting the inflamed intestinal mucosa-pharmaceutical characterization and fluorescence imaging. Pharm Res. 2016;33(5):1085–1092. doi:10.1007/s11095-015-1852-6
  • Vaezi Z, Aghdaei HA, Sedghi M, et al. Hemoglobin bio-adhesive nanoparticles as a colon-specific delivery system for sustained release of 5-aminosalicylic acid in the effective treatment of inflammatory bowel disease. Int J Pharm. 2022;616:121531.
  • Amaldoss MJN, Ahmed I, Kumar J, et al. Therapeutic efficacy of rifaximin loaded tamarind gum polysaccharide nanoparticles in TNBS induced IBD model Wistar rats. Rep Pract Oncol Radiother. 2021;26(5):712–729. doi:10.5603/RPOR.a2021.0100
  • Oh C, Lee W, Park J, et al. Development of spleen targeting H 2 s donor loaded liposome for the effective systemic immunomodulation and treatment of inflammatory bowel disease. ACS nano. 2023;17:4327–4345. doi:10.1021/acsnano.2c08898
  • Huguet-Casquero A, Xu Y, Gainza E, et al. Oral delivery of oleuropein-loaded lipid nanocarriers alleviates inflammation and oxidative stress in acute colitis. Int J Pharm. 2020;586:119515.
  • Kim JM, Kim DH, Park HJ, et al. Nanocomposites-based targeted oral drug delivery systems with infliximab in a murine colitis model. J Nanobiotechnol. 2020;18(1). doi:10.1186/s12951-020-00693-4
  • Li X, Hetjens L, Wolter N, et al. Charge-reversible and biodegradable chitosan-based microgels for lysozyme-triggered release of vancomycin. J Adv Res. 2023;43:87–96. doi:10.1016/j.jare.2022.02.014
  • Cheng S, Shen H, Zhao S, et al. Orally administered mesoporous silica capped with the cucurbit 8 uril complex to combat colitis and improve intestinal homeostasis by targeting the gut microbiota. Nanoscale. 2020;12(28):15348–15363. doi:10.1039/D0NR03037F
  • Moulari B, Pertuit D, Pellequer Y, et al. The targeting of surface modified silica nanoparticles to inflamed tissue in experimental colitis. Biomaterials. 2008;29(34):4554–4560. doi:10.1016/j.biomaterials.2008.08.009
  • Wang X, Yan -J-J, Wang L, et al. Rational design of polyphenol-poloxamer nanovesicles for targeting inflammatory bowel disease therapy. Chem Mater. 2018;30(12):4073–4080. doi:10.1021/acs.chemmater.8b01173
  • Penate Medina T, Pan J, Damoah C, et al. Utilizing sphingomyelinase sensitizing liposomes in imaging intestinal inflammation in dextran sulfate sodium-induced murine colitis. Biomedicines. 2022;10(2):413. doi:10.3390/biomedicines10020413
  • Priyam A, Shivhare K, Yadav S, et al. Enhanced solubility and self-assembly of amphiphilic sulfasalazine-PEG-OMe (S-PEG) conjugate into core-shell nanostructures useful for colonic drug delivery. Colloids Surfaces, A. 2018;547:157–167.
  • Ferri D, Gaviña P, Parra M, et al. Mesoporous silica microparticles gated with a bulky azo derivative for the controlled release of dyes/drugs in colon. Royal Soc Open Sci. 2018;5(8):180873. doi:10.1098/rsos.180873
  • Xu C, Chen S, Chen C, et al. Colon-targeted oral nanoparticles based on ROS-scavenging hydroxyethyl starch-curcumin conjugates for efficient inflammatory bowel disease therapy. Int J Pharm. 2022;623:121884.
  • Li S, Xie A, Li H, et al. A self-assembled, ROS-responsive Janus-prodrug for targeted therapy of inflammatory bowel disease. J Control Release. 2019;316:66–78. doi:10.1016/j.jconrel.2019.10.054
  • Zhang Q, Tao H, Lin Y, et al. A superoxide dismutase/catalase mimetic nanomedicine for targeted therapy of inflammatory bowel disease. Biomaterials. 2016;105:206–221. doi:10.1016/j.biomaterials.2016.08.010
  • Thu-Ha Thi N, Trinh N-T, Tran HN, et al. Improving silymarin oral bioavailability using silica-installed redox nanoparticle to suppress inflammatory bowel disease. J Control Release. 2021;331:515–524. doi:10.1016/j.jconrel.2020.10.042
  • Xu J, Shi T, Zhang Y, et al. Probiotic-inspired nanomedicine restores intestinal homeostasis in colitis by regulating redox balance, immune responses, and the gut microbiome. Adv Mater. 2022;35(3):2207890.
  • Zhang D, Wei Y, Chen K, et al. Biocompatible Reactive Oxygen Species (ROS)-responsive nanoparticles as superior drug delivery vehicles. Adv Healthcare Mater. 2015;4(1):69–76. doi:10.1002/adhm.201400299
  • Qelliny MR, Aly UF, Elgarhy OH, et al. Budesonide-loaded eudragit s 100 nanocapsules for the treatment of acetic acid-induced colitis in animal model. AAPS Pharm Sci Tech. 2019;20(6). doi:10.1208/s12249-019-1453-5
  • Zhang L, Li M, Zhang G, et al. Micro- and nanoencapsulated hybrid delivery system (MNEHDS): a novel approach for colon-targeted oral delivery of berberine. Mol Pharmaceut. 2021;18(4):1573–1581. doi:10.1021/acs.molpharmaceut.0c00970
  • Mutalik S, Suthar NA, Managuli RS, et al. Development and performance evaluation of novel nanoparticles of a grafted copolymer loaded with curcumin. Int J Biol Macromol. 2016;86:709–720. doi:10.1016/j.ijbiomac.2015.11.092
  • Cao J, Cheng J, Xi S, et al. Alginate/chitosan microcapsules for in-situ delivery of the protein, interleukin-1 receptor antagonist (IL-1Ra), for the treatment of dextran sulfate sodium (DSS)-induced colitis in a mouse model. Eur J Pharm Biopharm. 2019;137:112–121. doi:10.1016/j.ejpb.2019.02.011
  • Meissner Y, Pellequer Y, Lamprecht A. Nanoparticles in inflammatory bowel disease: particle targeting versus pH-sensitive delivery. Int J Pharm. 2006;316(1–2):138–143. doi:10.1016/j.ijpharm.2006.01.032
  • Jiang J, Xiao J, Zhao Z, et al. One-step prepared nano-in-micro microcapsule delivery vehicle with sequential burst-sustained drug release for the targeted treatment of inflammatory bowel disease. Mater Chem Front. 2021;5(16):6027–6040. doi:10.1039/D1QM00589H
  • Ali H, Weigmann B, Neurath MF, et al. Budesonide loaded nanoparticles with pH-sensitive coating for improved mucosal targeting in mouse models of inflammatory bowel diseases. J Control Release. 2014;183:167–177. doi:10.1016/j.jconrel.2014.03.039
  • Markam R, Bajpai J, Bajpai AK. Synthesis of ginger derived nanocarriers (GDNC) and study of in vitro release of 5-amino salicylic acid (5-ASA) as an anti inflammatory drug. J Drug Delivery Sci Technol. 2019;50:355–364. doi:10.1016/j.jddst.2019.01.039
  • Dong Y, Zhou Z, Ding H, et al. Preparation and properties of a pH sensitive carrier based on three kinds of polymer blend to control the release of 5-amino salicylic acid. Pharmaceut Develop Technol. 2014;19(8):960–967. doi:10.3109/10837450.2013.846372
  • Jacob EM, Borah A, Pillai SC, et al. Garcinol encapsulated ph-sensitive biodegradable nanoparticles: a novel therapeutic strategy for the treatment of inflammatory bowel disease. Polymers. 2021;13(6):862. doi:10.3390/polym13060862
  • Duan H, Lü S, Gao C, et al. Mucoadhesive microparticulates based on polysaccharide for target dual drug delivery of 5-aminosalicylic acid and curcumin to inflamed colon. Colloids Surf B Biointerfaces. 2016;145:510–519. doi:10.1016/j.colsurfb.2016.05.038
  • Qu Z, Wong KY, Moniruzzaman M, et al. One-pot synthesis of pH-responsive eudragit-mesoporous silica nanocomposites enable colonic delivery of glucocorticoids for the treatment of inflammatory bowel disease. Adv Ther. 2021;4(2). doi:10.1002/adtp.202000165
  • Kesharwani SS, Ahmad R, Bakkari MA, et al. Site-directed non-covalent polymer-drug complexes for inflammatory bowel disease (IBD): formulation development, characterization and pharmacological evaluation. J Control Release. 2018;290:165–179.
  • Kshirsagar SJ, Bhalekar MR, Patel JN, et al. Preparation and characterization of nanocapsules for colon-targeted drug delivery system. Pharmaceut Develop Technol. 2012;17(5):607–613. doi:10.3109/10837450.2011.557732
  • Nguyen CTH, Webb RI, Lambert LK, et al. Bifunctional succinylated epsilon-polylysine-coated mesoporous silica nanoparticles for pH-responsive and intracellular drug delivery targeting the colon. ACS Appl Mater Interfaces. 2017;9(11):9470–9483. doi:10.1021/acsami.7b00411
  • Naeem M, Kim W, Cao J, et al. Enzyme/pH dual sensitive polymeric nanoparticles for targeted drug delivery to the inflamed colon. Colloids Surf B Biointerfaces. 2014;123:271–278. doi:10.1016/j.colsurfb.2014.09.026
  • Gonzalez-Alvarez M, Coll C, Gonzalez-Alvarez I, et al. Gated mesoporous silica nanocarriers for a “two-step” targeted system to colonic tissue. Mol Pharmaceut. 2017;14(12):4442–4453. doi:10.1021/acs.molpharmaceut.7b00565
  • Bertoni S, Liu Z, Correia A, et al. pH and reactive oxygen species-sequential responsive nano-in-micro composite for targeted therapy of inflammatory bowel disease. Adv Funct Mater. 2018;28(50):1806175.
  • Wang X, Yan J, Wang L, et al. Oral delivery of anti-TNF antibody shielded by natural polyphenol-mediated supramolecular assembly for inflammatory bowel disease therapy. Theranostics. 2020;10(23):10808–10822. doi:10.7150/thno.47601
  • Teruel AH, Pérez-Esteve É, González-álvarez I, et al. Smart gated magnetic silica mesoporous particles for targeted colon drug delivery: new approaches for inflammatory bowel diseases treatment. J Control Release. 2018;281:58–69. doi:10.1016/j.jconrel.2018.05.007
  • Wachsmann P, Moulari B, Béduneau A, et al. Surfactant-dependence of nanoparticle treatment in murine experimental colitis. J Control Release. 2013;172(1):62–68. doi:10.1016/j.jconrel.2013.07.031
  • Zhang S, Cho WJ, Jin AT, et al. Heparin-coated albumin nanoparticles for drug combination in targeting inflamed intestine. Adv Healthcare Mater. 2020;9(16):2000536.
  • Zhao S, Li Y, Liu Q, et al. An Orally Administered CeO 2 @montmorillonite nanozyme targets inflammation for inflammatory bowel disease therapy. Adv Funct Mater. 2020;30(45). doi:10.1002/adfm.202004692
  • Shrestha N, Xu Y, Prévost JRC, et al. Impact of PEGylation on an antibody-loaded nanoparticle-based drug delivery system for the treatment of inflammatory bowel disease. Acta Biomater. 2022;140:561–572. doi:10.1016/j.actbio.2021.12.015
  • Li X, Yu M, Zhu Z, et al. Oral delivery of infliximab using nano-in-microparticles for the treatment of inflammatory bowel disease. Carbohydr Polym. 2021;273:118556. doi:10.1016/j.carbpol.2021.118556
  • Sunnap O, Subramanian S, Vemula PK, et al. Zingerone-encapsulated solid lipid nanoparticles as oral drug-delivery systems to potentially target inflammatory diseases. Chemnanomat. 2022;8(12). doi:10.1002/cnma.202200388
  • Zhang S, Ermann J, Succi MD, et al. An inflammation-targeting hydrogel for local drug delivery in inflammatory bowel disease. Sci, trans med. 2015;7(300). doi:10.1126/scitranslmed.aaa5657
  • Wang C, Guo Z, Liang J, et al. An oral delivery vehicle based on konjac glucomannan acetate targeting the colon for inflammatory bowel disease therapy. Front Bioeng Biotechnol. 2022;10:1025155.
  • Schilrreff P, Simioni YR, Jerez HE, et al. Superoxide dismutase in nanoarchaeosomes for targeted delivery to inflammatory macrophages. Colloids Surf B Biointerfaces. 2019;179:479–487. doi:10.1016/j.colsurfb.2019.03.061
  • Le Z, He Z, Liu H, et al. Antioxidant enzymes sequestered within lipid-polymer hybrid nanoparticles for the local treatment of inflammatory bowel disease. ACS Appl Mater Interfaces. 2021;13(47):55966–55977. doi:10.1021/acsami.1c19457
  • Vafaei SY, Esmaeili M, Amini M, et al. Self assembled hyaluronic acid nanoparticles as a potential carrier for targeting the inflamed intestinal mucosa. Carbohydr Polym. 2016;144:371–381. doi:10.1016/j.carbpol.2016.01.026
  • Gong W, Yu J, Zheng T, et al. CCL4-mediated targeting of spleen tyrosine kinase (Syk) inhibitor using nanoparticles alleviates inflammatory bowel disease. Clin Translat Med. 2021;11(2). doi:10.1002/ctm2.339
  • Zhang M, Viennois E, Prasad M, et al. Edible ginger-derived nanoparticles: a novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials. 2016;101:321–340. doi:10.1016/j.biomaterials.2016.06.018
  • Shabana S, Hamouda HI, Abdalla M, et al. Multifunctional nanoparticles based on marine polysaccharides for apremilast delivery to inflammatory macrophages: preparation, targeting ability, and uptake mechanism*. Int J Biol Macromol. 2022;222:1709–1722. doi:10.1016/j.ijbiomac.2022.09.225
  • Huang Z, Gan J, Jia L, et al. An orally administrated nucleotide-delivery vehicle targeting colonic macrophages for the treatment of inflammatory bowel disease. Biomaterials. 2015;48:26–36. doi:10.1016/j.biomaterials.2015.01.013
  • Sinhmar GK, Shah NN, Rawal SU, et al. Surface engineered lipid nanoparticle-mediated site-specific drug delivery system for the treatment of inflammatory bowel disease. Artif Cells Nanomed Biotechnol. 2018;46:565–578. doi:10.1080/21691401.2018.1463232
  • Mao Y, Han M, Chen C, et al. A biomimetic nanocomposite made of a ginger-derived exosome and an inorganic framework for high-performance delivery of oral antibodies. Nanoscale. 2021;13(47):20157–20169. doi:10.1039/D1NR06015E
  • Herminia Higa L, Schilrreff P, Briski AM, et al. Bacterioruberin from Haloarchaea plus dexamethasone in ultra-small macrophage-targeted nanoparticles as potential intestinal repairing agent. Colloids Surf B Biointerfaces. 2020;191:110961.
  • Higa LH, Jerez HE, de Farias MA, et al. Ultra-small solid archaeolipid nanoparticles for active targeting to macrophages of the inflamed mucosa. Nanomedicine. 2017;12(10):1165–1175. doi:10.2217/nnm-2016-0437
  • Qiu H, Gong H, Bao Y, et al. Reactive oxygen species-scavenging hollow MnO 2 nanozymes as carriers to deliver budesonide for synergistic inflammatory bowel disease therapy. Biomater. Sci. 2022;10(2):457–466. doi:10.1039/D1BM01525G
  • Bao M, Wang K, Li J, et al. ROS scavenging and inflammation-directed polydopamine nanoparticles regulate gut immunity and flora therapy in inflammatory bowel disease. Acta Biomater. 2023;161:250–264. doi:10.1016/j.actbio.2023.02.026
  • Naserifar M, Hosseinzadeh H, Abnous K, et al. Oral delivery of folate-targeted resveratrol-loaded nanoparticles for inflammatory bowel disease therapy in rats. Life Sci. 2020;262:118555. doi:10.1016/j.lfs.2020.118555
  • Huang Y, Guo J, Gui S. Orally targeted galactosylated chitosan poly(lactic-co-glycolic acid) nanoparticles loaded with TNF-alpha siRNA provide a novel strategy for the experimental treatment of ulcerative colitis. Eur J Pharm Sci. 2018;125:232–243. doi:10.1016/j.ejps.2018.10.009
  • Wei F, Lang Y, Shen Q, et al. Osteopontin-loaded PLGA nanoparticles enhance the intestinal mucosal barrier and alleviate inflammation via the NF-kappa B signaling pathway. Colloids Surf B Biointerfaces. 2020;190:110952.
  • Lee Y, Sugihara K, Gillilland MG, et al. Hyaluronic acid-bilirubin nanomedicine for targeted modulation of dysregulated intestinal barrier, microbiome and immune responses in colitis. Nature Mater. 2020;19(1):118. doi:10.1038/s41563-019-0462-9
  • Kotla NG, Burke O, Pandit A, et al. An orally administrated hyaluronan functionalized polymeric hybrid nanoparticle system for colon-specific drug delivery. Nanomaterials. 2019;9(9):1246. doi:10.3390/nano9091246
  • Du Y, Liu Y, Sun L, et al. cRGD peptide incorporated with patchouli alcohol loaded silk fibroin nanoparticles for enhanced targeting of inflammatory sites in colitis. Biomat Advan. 2022;140:101231.
  • Gan J, Liu Y, Sun L, et al. Orally administrated nucleotide-delivery particles from microfluidics for inflammatory bowel disease treatment. Appl Mater Today. 2021;25:101231.
  • Chen Y, Feng J, Chen Y, et al. ROS-responsive nano-medicine for navigating autophagy to enhance targeted therapy of inflammatory bowel disease. Int J Pharm. 2024;659:124117. doi:10.1016/j.ijpharm.2024.124117
  • Li X, Fang S, Yu Y, et al. Oral administration of inflammatory microenvironment-responsive carrier-free infliximab nanocomplex for the targeted treatment of inflammatory bowel disease. Chem Eng J. 2022;445:136438.
  • Sun Q, Arif M, Chi Z, et al. Macrophages-targeting mannosylated nanoparticles based on inulin for the treatment of inflammatory bowel disease (IBD). Int J Biol Macromol. 2021;169:206–215. doi:10.1016/j.ijbiomac.2020.12.094
  • Feng J, Wang Y, Lv Y, et al. XA pH-responsive and colitis-targeted nanoparticle loaded with shikonin for the oral treatment of inflammatory bowel disease in mice. Mol Pharmaceut. 2022;19(11):4157–4170. doi:10.1021/acs.molpharmaceut.2c00550
  • Lv Y, Ren M, Yao M, et al. Colon-specific delivery of methotrexate using hyaluronic acid modified pH-responsive nanocarrier for the therapy of colitis in mice. Int J Pharm. 2023;635:122741. doi:10.1016/j.ijpharm.2023.122741
  • Attia MF, Anton N, Wallyn J, et al. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J Pharm Pharmacol. 2019;71(8):1185–1198. doi:10.1111/jphp.13098
  • Lai SK, Wang -Y-Y, Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Delivery Rev. 2009;61(2):158–171. doi:10.1016/j.addr.2008.11.002
  • Lum H, Malik AB. Mechanisms of increased endothelial permeability. Can J Physiol Pharmacol. 1996;74(7):787–800. doi:10.1139/y96-081
  • Schulzke JD, Ploeger S, Amasheh M, et al. Epithelial tight junctions in intestinal inflammation. Molecu Struct Funct Tight Junct. 2009;1165:294–300.
  • Lamprecht A, Yamamoto H, Takeuchi H, et al. Nanoparticles enhance therapeutic efficiency by selectively increased local drug dose in experimental colitis in rats. J Pharmacol Exp Ther. 2005;315(1):196–202. doi:10.1124/jpet.105.088146
  • Lamprecht A. IBD Selective nanoparticle adhesion can enhance colitis therapy. Nat Rev Gastroenterol Hepatol. 2010;7(6):311–312. doi:10.1038/nrgastro.2010.66
  • Lamprecht A, Schafer U, Lehr CM. Size-dependent bioadhesion of micro- and nanoparticulate carriers to the inflamed colonic mucosa. Pharm Res. 2001;18(6):788–793. doi:10.1023/A:1011032328064
  • Mukherjee S, Ray S, Thakur RS. Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian J Pharm Sci. 2009;71(4):349–358. doi:10.4103/0250-474X.57282
  • Bondì ML, Montana G, Craparo EF, et al. Lipid nanoparticles as delivery vehicles for the Parietaria judaica major allergen Par j 2. Int J Nanomed. 2011;6:2953–2962. doi:10.2147/IJN.S24264
  • Harel-Adar T, Mordechai TB, Amsalem Y, et al. Modulation of cardiac macrophages by phosphatidylserine-presenting liposomes improves infarct repair. Proc Natl Acad Sci U S A. 2011;108(5):1827–1832. doi:10.1073/pnas.1015623108
  • Song W, Shen L, Wang Y, et al. Synergistic and low adverse effect cancer immunotherapy by immunogenic chemotherapy and locally expressed PD-L1 trap. Nat Commun. 2018;9. doi:10.1038/s41467-018-04605-x
  • Zwolinska-Wcislo M, Krzysiek-Maczka G, Ptak-Belowska A, et al. antibiotic treatment with ampicillin accelerates the healing of colonic damage impaired by aspirin and coxib in the experimental colitis. Importance of intestinal bacteria, colonic microcirculation and proinflammatory cytokines. J Physiol Pharmacol. 2011;62(3):357–368.
  • Ribeiro Paiotti AP, Miszputen SJ, Oshima CTF, et al. Effect of COX-2 inhibitor after TNBS-induced colitis in wistar rats. J Molec Histol. 2009;40(4):317–324. doi:10.1007/s10735-009-9243-0
  • Hong S, Choi DW, Kim HN, et al. Protein-based nanoparticles as drug delivery systems. Pharmaceutics. 2020;12(7):604. doi:10.3390/pharmaceutics12070604
  • Saptarshi SR, Duschl A, Lopata AL. Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. J Nanobiotechnol. 2013;11:11. doi:10.1186/1477-3155-11-11
  • Nayak AK, Pal D. Tamarind seed polysaccharide: an emerging excipient for pharmaceutical use. Indian J Pharm Educ Res. 2017;51(2):S136–S146. doi:10.5530/ijper.51.2s.60
  • Nakajima N, Ishihara K, Matsuura Y. Dietary-fiber-degrading enzymes from a human intestinal Clostridium and their application to oligosaccharide production from nonstarchy polysaccharides using immobilized cells. Appl Microbiol Biotechnol. 2002;59(2–3):182–189. doi:10.1007/s00253-002-1015-7
  • Ahn MY, Shin KH, Kim D-H, et al. Characterization of a Bacteroides species from human intestine that degrades glycosaminoglycans. Can J Microbiol. 1998;44(5):423–429. doi:10.1139/w98-027
  • Collins CE, Rampton DS. Review article: platelets in inflammatory bowel disease--pathogenetic role and therapeutic implications. Aliment Pharmacol Ther. 1997;11(2):237–247. doi:10.1046/j.1365-2036.1997.153328000.x
  • Ballongue J, Schumann C, Quignon P. Effects of lactulose and lactitol on colonic microflora and enzymatic activity. Scand J Gastroenterol Suppl. 1997;222:41–44. doi:10.1080/00365521.1997.11720716
  • Fahlgren A, Hammarström S, Danielsson Å, et al. Increased expression of antimicrobial peptides and lysozyme in colonic epithelial cells of patients with ulcerative colitis. Clin Exp Immunol. 2003;131(1):90–101. doi:10.1046/j.1365-2249.2003.02035.x
  • Rubio CA. The natural antimicrobial enzyme lysozyme is up-regulated in gastrointestinal inflammatory conditions. Pathogens. 2014;3(1):73–92. doi:10.3390/pathogens3010073
  • Roldo M, Barbu E, Brown JF, et al. Azo compounds in colon-specific drug delivery. Expert Opin Drug Delivery. 2007;4(5):547–560. doi:10.1517/17425247.4.5.547
  • Cao YH, Cao RH, Brakenhielm E. Antiangiogenic mechanisms of diet-derived polyphenols. J Nutr Biochem. 2002;13(7):380–390. doi:10.1016/S0955-2863(02)00204-8
  • Ayissi VBO, Ebrahimi A, Schluesenner H. Epigenetic effects of natural polyphenols: a focus on SIRT1-mediated mechanisms. Mol Nutr Food Res. 2014;58(1):22–32. doi:10.1002/mnfr.201300195
  • Ishida T, Wang X, Shimizu T, et al. PEGylated liposomes elicit an anti-PEG IgM response in a T cell-independent manner. J Control Release. 2007;122(3):349–355. doi:10.1016/j.jconrel.2007.05.015
  • Sakata A, Ochiai T, Shimeno H, et al. Acid sphingomyelinase inhibition suppresses lipopolysaccharide-mediated release of inflammatory cytokines from macrophages and protects against disease pathology in dextran sulphate sodium-induced colitis in mice. Immunology. 2007;122(1):54–64. doi:10.1111/j.1365-2567.2007.02612.x
  • Campbell EL, Colgan SP. Control and dysregulation of redox signalling in the gastrointestinal tract. Nat Rev Gastroenterol Hepatol. 2019;16(2):106–120. doi:10.1038/s41575-018-0079-5
  • Simmonds NJ, Rampton DS. Inflammatory bowel disease--a radical view. Gut. 1993;34(7):865–868. doi:10.1136/gut.34.7.865
  • Schulze-Osthoff K, Bauer MK, Vogt M, et al. Oxidative stress and signal transduction. Internat J Vitam Nutr Res. 1997;67(5):336–342.
  • Grisham MB. Oxidants and free radicals in inflammatory bowel disease. Lancet. 1994;344(8926):859–861. doi:10.1016/S0140-6736(94)92831-2
  • Pavlick KP, Laroux FS, Fuseler J, et al. Role of reactive metabolites of oxygen and nitrogen in inflammatory bowel disease. Free Radic Biol Med. 2002;33(3):311–322. doi:10.1016/S0891-5849(02)00853-5
  • Chen L, You Q, Hu L, et al. The antioxidant procyanidin reduces reactive oxygen species signaling in macrophages and ameliorates experimental colitis in mice. Front Immunol. 2017;8:1910. doi:10.3389/fimmu.2017.01910
  • Simmonds NJ, Allen RE, Stevens TRJ, et al. Chemiluminescence assay of mucosal reactive oxygen metabolites in inflammatory bowel disease. Gastroenterology. 1992;103(1):186–196. doi:10.1016/0016-5085(92)91112-H
  • Sedghi S, Fields JZ, Klamut M, et al. Increased production of luminol enhanced chemiluminescence by the inflamed colonic mucosa in patients with ulcerative colitis. Gut. 1993;34(9):1191–1197. doi:10.1136/gut.34.9.1191
  • Nugent SG, Kumar D, Rampton DS, et al. Intestinal luminal pH in inflammatory bowel disease: possible determinants and implications for therapy with aminosalicylates and other drugs. Gut. 2001;48(4):571–577. doi:10.1136/gut.48.4.571
  • Palugan L, Cerea M, Zema L, et al. Coated pellets for oral colon delivery. J Drug Delivery Sci Technol. 2015;25:1–15. doi:10.1016/j.jddst.2014.12.003
  • Naik JB, Waghulde MR. Development of vildagliptin loaded Eudragit microspheres by screening design: in vitro evaluation. J Pharm Invest. 2018;48(6):627–637. doi:10.1007/s40005-017-0355-3
  • Madhavi M, Madhavi K, Jithan AV. Preparation and in vitro/in vivo characterization of curcumin microspheres intended to treat colon cancer. J Pharm Bioallied Sci. 2012;4(2):164–171. doi:10.4103/0975-7406.94825
  • Asfour MH, Mohsen AM. Formulation and evaluation of pH-sensitive rutin nanospheres against colon carcinoma using HCT-116 cell line. J Adv Res. 2018;9:17–26. doi:10.1016/j.jare.2017.10.003
  • Kulkarni RV, Sa B. Evaluation of pH-Sensitivity and Drug Release Characteristics of (Polyacrylamide-Grafted-Xanthan)-Carboxymethyl Cellulose-Based pH-Sensitive interpenetrating network hydrogel beads. Drug Dev Ind Pharm. 2008;34(12):1406–1414. doi:10.1080/03639040802130079
  • Das S, Chaudhury A, Ng K-Y. Preparation and evaluation of zinc-pectin-chitosan composite particles for drug delivery to the colon: role of chitosan in modifying in vitro and in vivo drug release. Int J Pharm. 2011;406(1–2):11–20. doi:10.1016/j.ijpharm.2010.12.015
  • Ways TMM, Lau WM, Khutoryanskiy VV. Chitosan and Its Derivatives for Application in Mucoadhesive Drug Delivery Systems. Polymers. 2018;10(3):267. doi:10.3390/polym10030267
  • Maroni A, Moutaharrik S, Zema L, et al. Enteric coatings for colonic drug delivery: state of the art. Expert Opin Drug Delivery. 2017;14(9):1027–1029. doi:10.1080/17425247.2017.1360864
  • Tirosh B, Khatib N, Barenholz Y, et al. Transferrin as a luminal target for negatively charged liposomes in the inflamed colonic mucosa. Mol Pharmaceut. 2009;6(4):1083–1091. doi:10.1021/mp9000926
  • Wileman TE, Lennartz MR, Stahl PD. Identification of the macrophage mannose receptor as a 175-kDa membrane protein. Proc Natl Acad Sci USA. 1986;83(8):2501–2505. doi:10.1073/pnas.83.8.2501
  • Leonel Parra F, Stoll IK, Zwick M, et al. Make It Simple: (SR-A1+TLR7) Macrophage Targeted NANOarchaeosomes. Front Bioeng Biotechnol. 2018;6:6. doi:10.3389/fbioe.2018.00006
  • Tripodo G, Trapani A, Torre ML, et al. Hyaluronic acid and its derivatives in drug delivery and imaging: recent advances and challenges. Eur J Pharm Biopharm. 2015;97:400–416. doi:10.1016/j.ejpb.2015.03.032
  • de la Motte CA, Kessler SP. The role of hyaluronan in innate defense responses of the intestine. Int J Cell Biol. 2015;2015:481301. doi:10.1155/2015/481301
  • Mukaida N, Sasaki S-I, Baba T. CCL4 Signaling in the Tumor Microenvironment. In: Birbrair A, editor. Tumor Microenvironment: The Role of Chemokines, Pt A. Springer; 2020:23–32.
  • Schreiber S, Perkins SL, Teitelbaum SL, et al. Regulation of mouse bone marrow macrophage mannose receptor expression and activation by prostaglandin E and IFN-gamma. J Iimmunol. 1993;151(9):4973–4981. doi:10.4049/jimmunol.151.9.4973
  • Lane KB, Egan B, Vick S, et al. Characterization of a rat alveolar macrophage cell line that expresses a functional mannose receptor. J Leukoc Biol. 1998;64(3):345–350. doi:10.1002/jlb.64.3.345
  • Janus L, Piatkowski M, Radwan-Praglowska J. Microwave-assisted synthesis and characterization of Poly(L-lysine)-Based Polymer/carbon quantum dot nanomaterials for biomedical purposes. Materials. 2019;12(23):3825. doi:10.3390/ma12233825
  • Naha PC, Hsu JC, Kim J, et al. Dextran-coated cerium oxide nanoparticles: a computed tomography contrast agent for imaging the gastrointestinal tract and inflammatory bowel disease. Acs Nano. 2020;14(8):10187–10197. doi:10.1021/acsnano.0c03457