61
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Endocannabinoid Hydrolase Inhibitors: Potential Novel Anxiolytic Drugs

, , , , ORCID Icon & ORCID Icon
Pages 2143-2167 | Received 03 Feb 2024, Accepted 27 May 2024, Published online: 12 Jun 2024

References

  • American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5®). American Psychiatric Publisher; 2013.
  • Szuhany KL, Simon NM. Anxiety disorders: a review. JAMA. 2022;328(24):2431–2445. doi:10.1001/jama.2022.22744
  • Huang Y, Wang Y, Wang H, et al. Prevalence of mental disorders in China: a cross-sectional epidemiological study. Lancet Psychiatry. 2019;6(3):211–224. doi:10.1016/S2215-0366(18)30511-X
  • Inserra A, Piot A, De Gregorio D, Gobbi G. Lysergic Acid Diethylamide (LSD) for the treatment of anxiety disorders: preclinical and clinical evidence. CNS Drugs. 2023;37(9):733–754. doi:10.1007/s40263-023-01008-5
  • Skolnick P. Anxioselective anxiolytics: on a quest for the Holy Grail. Trends Pharmacol Sci. 2012;33(11):611–620. doi:10.1016/j.tips.2012.08.003
  • Gosmann NP, de Abreu Costa M, de Barros Jaeger M, et al. Selective serotonin reuptake inhibitors, and serotonin and norepinephrine reuptake inhibitors for anxiety, obsessive-compulsive, and stress disorders: a 3-level network meta-analysis. PLoS Med. 2021;18(6):e1003664. doi:10.1371/journal.pmed.1003664
  • Murphy SE, Capitão LP, Giles SLC, Cowen PJ, Stringaris A, Harmer CJ. The knowns and unknowns of SSRI treatment in young people with depression and anxiety: efficacy, predictors, and mechanisms of action. Lancet Psychiatry. 2021;8(9):824–835. doi:10.1016/S2215-0366(21)00154-1
  • Gosmann NP, de Abreu Costa M, de Barros Jaeger M, et al. Incidence of adverse events and comparative tolerability of selective serotonin reuptake inhibitors, and serotonin and norepinephrine reuptake inhibitors for the treatment of anxiety, obsessive-compulsive, and stress disorders: a systematic review and network meta-analysis. Psychol Med. 2023;53(9):3783–3792. doi:10.1017/S0033291723001630
  • Joffe H, Petrillo L, Viguera A, et al. Eszopiclone improves insomnia and depressive and anxious symptoms in perimenopausal and postmenopausal women with hot flashes: a randomized, double-blinded, placebo-controlled crossover trial. Am J Obstet Gynecol. 2010;202(2):171.e1–171.e11. doi:10.1016/j.ajog.2009.10.868
  • Mokhber N, Azarpazhooh MR, Khajehdaluee M, Velayati A, Hopwood M. Randomized, single-blind, trial of sertraline and buspirone for treatment of elderly patients with generalized anxiety disorder. Psychiatry Clin Neurosci. 2010;64(2):128–133. doi:10.1111/j.1440-1819.2009.02055.x
  • Lowe H, Toyang N, Steele B, Bryant J, Ngwa W. The endocannabinoid system: a potential target for the treatment of various diseases. Int J Mol Sci. 2021;22(17):9472. doi:10.3390/ijms22179472
  • Alcaraz-Silva J, Feingold D, Viana-Torre G, et al. The endocannabinoid system as a biomarker for diagnostic and therapeutic applications in depression and anxiety. CNS Neurol Disord Drug Targets. 2023;22(3):417–430. doi:10.2174/1871527321666220405114402
  • Schmidt ME, Liebowitz MR, Stein MB, et al. The effects of inhibition of fatty acid amide hydrolase (FAAH) by JNJ-42165279 in social anxiety disorder: a double-blind, randomized, placebo-controlled proof-of-concept study. Neuropsychopharmacology. 2021;46(5):1004–1010. doi:10.1038/s41386-020-00888-1
  • Cristino L, Bisogno T, Di Marzo V. Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nat Rev Neurol. 2020;16(1):9–29. doi:10.1038/s41582-019-0284-z
  • Murkar A, De Koninck J, Merali Z. Cannabinoids: revealing their complexity and role in central networks of fear and anxiety. Neurosci Biobehav Rev. 2021;131:30–46. doi:10.1016/j.neubiorev.2021.09.002
  • Kaczocha M, Haj-Dahmane S. Mechanisms of endocannabinoid transport in the brain. Br J Pharmacol. 2022;179(17):4300–4310. doi:10.1111/bph.15469
  • Petrie GN, Nastase AS, Aukema RJ, Hill MN. Endocannabinoids, cannabinoids and the regulation of anxiety. Neuropharmacology. 2021;195:108626. doi:10.1016/j.neuropharm.2021.108626
  • Morgan AJ, Kingsley PJ, Mitchener MM, et al. Detection of cyclooxygenase-2-derived oxygenation products of the endogenous cannabinoid 2-arachidonoylglycerol in mouse brain. ACS Chem Neurosci. 2018;9(7):1552–1559. doi:10.1021/acschemneuro.7b00499
  • Patel S, Hill MN, Cheer JF, Wotjak CT, Holmes A. The endocannabinoid system as a target for novel anxiolytic drugs. Neurosci Biobehav Rev. 2017;76(Pt A):56–66. doi:10.1016/j.neubiorev.2016.12.033
  • Maldonado R, Cabañero D, Martín-García E. The endocannabinoid system in modulating fear, anxiety, and stress. Dialogues Clin Neurosci. 2020;22(3):229–239. doi:10.31887/DCNS.2020.22.3/rmaldonado
  • Lama A, Pirozzi C, Severi I, et al. Palmitoylethanolamide dampens neuroinflammation and anxiety-like behavior in obese mice. Brain Behav Immun. 2022;102:110–123. doi:10.1016/j.bbi.2022.02.008
  • Fraguas-Sánchez AI, Torres-Suárez AI. Medical Use of Cannabinoids. Drugs. 2018;78(16):1665–1703. doi:10.1007/s40265-018-0996-1
  • Cohen K, Weizman A, Weinstein A. Positive and negative effects of cannabis and cannabinoids on health. Clin Pharmacol Ther. 2019;105(5):1139–1147. doi:10.1002/cpt.1381
  • Stasiulewicz A, Znajdek K, Grudzień M, Pawiński T, Sulkowska AJI. A Guide to Targeting the Endocannabinoid System in Drug Design. Int J Mol Sci. 2020;21(8):2778. doi:10.3390/ijms21082778
  • Gipson CD, Kupchik YM, Kalivas PW. Rapid, transient synaptic plasticity in addiction. Neuropharmacology. 2014;76(Pt B):276–286. doi:10.1016/j.neuropharm.2013.04.032
  • Hill MN, Bierer LM, Makotkine I, et al. Reductions in circulating endocannabinoid levels in individuals with post-traumatic stress disorder following exposure to the World Trade Center attacks. Psychoneuroendocrinology. 2013;38(12):2952–2961. doi:10.1016/j.psyneuen.2013.08.004
  • Siebers M, Biedermann SV, Bindila L, Lutz B, Fuss J. Exercise-induced euphoria and anxiolysis do not depend on endogenous opioids in humans. Psychoneuroendocrinology. 2021;126:105173. doi:10.1016/j.psyneuen.2021.105173
  • Shonesy BC, Bluett RJ, Ramikie TS, et al. Genetic disruption of 2-arachidonoylglycerol synthesis reveals a key role for endocannabinoid signaling in anxiety modulation. Cell Rep. 2014;9(5):1644–1653. doi:10.1016/j.celrep.2014.11.001
  • Jenniches I, Ternes S, Albayram O, et al. Anxiety, stress, and fear response in mice with reduced endocannabinoid levels. Biol Psychiatry. 2016;79(10):858–868. doi:10.1016/j.biopsych.2015.03.033
  • Sánchez-Marín L, Flores-López M, Pastor A, et al. Acute stress and alcohol exposure during adolescence result in an anxious phenotype in adulthood: role of altered glutamate/endocannabinoid transmission mechanisms. Prog Neuropsychopharmacol Biol Psychiatry. 2022;113:110460. doi:10.1016/j.pnpbp.2021.110460
  • Hill MN, Haney M, Hillard CJ, Karhson DS, Vecchiarelli HA. The endocannabinoid system as a putative target for the development of novel drugs for the treatment of psychiatric illnesses. Psychol Med. 2023;53(15):7006–7024. doi:10.1017/S0033291723002465
  • Marcus DJ, Bedse G, Gaulden AD, et al. Endocannabinoid signaling collapse mediates stress-induced amygdalo-cortical strengthening. Neuron. 2020;105(6):1062–1076.e6. doi:10.1016/j.neuron.2019.12.024
  • Guggenhuber S, Romo-Parra H, Bindila L, et al. Impaired 2-AG signaling in hippocampal glutamatergic neurons: aggravation of anxiety-like behavior and unaltered seizure susceptibility. Int J Neuropsychopharmacol. 2015;19(2):pyv091. doi:10.1093/ijnp/pyv091
  • Serrano A, Pavon FJ, Buczynski MW, et al. Deficient endocannabinoid signaling in the central amygdala contributes to alcohol dependence-related anxiety-like behavior and excessive alcohol intake. Neuropsychopharmacology. 2018;43(9):1840–1850. doi:10.1038/s41386-018-0055-3
  • Pavón FJ, Polis IY, Stouffer DG, et al. Selective inhibition of monoacylglycerol lipase is associated with passive coping behavior and attenuation of stress-induced dopamine release in the medial prefrontal cortex. Neurobiol Stress. 2021;14:100293. doi:10.1016/j.ynstr.2021.100293
  • Alteba S, Mizrachi Zer-Aviv T, Tenenhaus A, et al. Antidepressant-like effects of URB597 and JZL184 in male and female rats exposed to early life stress. Eur Neuropsychopharmacol. 2020;39:70–86. doi:10.1016/j.euroneuro.2020.08.005
  • Bedse G, Bluett RJ, Patrick TA, et al. Therapeutic endocannabinoid augmentation for mood and anxiety disorders: comparative profiling of FAAH, MAGL and dual inhibitors. Transl Psychiatry. 2018;8(1):92. doi:10.1038/s41398-018-0141-7
  • Bedse G, Hartley ND, Neale E, et al. Functional redundancy between canonical endocannabinoid signaling systems in the modulation of anxiety. Biol Psychiatry. 2017;82(7):488–499. doi:10.1016/j.biopsych.2017.03.002
  • Bosch-Bouju C, Larrieu T, Linders L, Manzoni OJ, Layé S. Endocannabinoid-mediated plasticity in nucleus accumbens controls vulnerability to anxiety after social defeat stress. Cell Rep. 2016;16(5):1237–1242. doi:10.1016/j.celrep.2016.06.082
  • Lomazzo E, Bindila L, Remmers F, et al. Therapeutic potential of inhibitors of endocannabinoid degradation for the treatment of stress-related hyperalgesia in an animal model of chronic pain. Neuropsychopharmacology. 2015;40(2):488–501. doi:10.1038/npp.2014.198
  • Sumislawski JJ, Ramikie TS, Patel S. Reversible gating of endocannabinoid plasticity in the amygdala by chronic stress: a potential role for monoacylglycerol lipase inhibition in the prevention of stress-induced behavioral adaptation. Neuropsychopharmacology. 2011;36(13):2750–2761. doi:10.1038/npp.2011.166
  • Kinsey SG, O’Neal ST, Long JZ, Cravatt BF, Lichtman AH. Inhibition of endocannabinoid catabolic enzymes elicits anxiolytic-like effects in the marble burying assay. Pharmacol Biochem Behav. 2011;98(1):21–27. doi:10.1016/j.pbb.2010.12.002
  • Worley NB, Varela JA, Gaillardetz GP, Hill MN, Christianson JP. Monoacylglycerol lipase alpha inhibition alters prefrontal cortex excitability and blunts the consequences of traumatic stress in rat. Neuropharmacology. 2020;166:107964. doi:10.1016/j.neuropharm.2020.107964
  • Vozella V, Cruz B, Feldman HC, et al. Sexually dimorphic effects of monoacylglycerol lipase inhibitor MJN110 on stress-related behavior and drinking in Marchigian Sardinian alcohol-preferring rats. Br J Pharmacol. 2023;180(24):3130–3145. doi:10.1111/bph.16197
  • Dlugos A, Childs E, Stuhr KL, Hillard CJ, de Wit H. Acute stress increases circulating anandamide and other N-acylethanolamines in healthy humans. Neuropsychopharmacology. 2012;37(11):2416–2427. doi:10.1038/npp.2012.100
  • Zhai Q, Islam A, Chen B, et al. Endocannabinoid 2-arachidonoylglycerol levels in the anterior cingulate cortex, caudate putamen, nucleus accumbens, and piriform cortex were upregulated by chronic restraint stress. Cells. 2023;12(3):393. doi:10.3390/cells12030393
  • Di S, Itoga CA, Fisher MO, et al. Acute stress suppresses synaptic inhibition and increases anxiety via endocannabinoid release in the basolateral amygdala. J Neurosci. 2016;36(32):8461–8470. doi:10.1523/JNEUROSCI.2279-15.2016
  • Imperatore R, Morello G, Luongo L, et al. Genetic deletion of monoacylglycerol lipase leads to impaired cannabinoid receptor CB₁R signaling and anxiety-like behavior. J Neurochem. 2015;135(4):799–813. doi:10.1111/jnc.13267
  • Schlosburg JE, Blankman JL, Long JZ, et al. Chronic monoacylglycerol lipase blockade causes functional antagonism of the endocannabinoid system. Nat Neurosci. 2010;13(9):1113–1119. doi:10.1038/nn.2616
  • Kenwood MM, Kalin NH, Barbas H. The prefrontal cortex, pathological anxiety, and anxiety disorders. Neuropsychopharmacology. 2022;47(1):260–275. doi:10.1038/s41386-021-01109-z
  • Liu WZ, Zhang WH, Zheng ZH, et al. Identification of a prefrontal cortex-to-amygdala pathway for chronic stress-induced anxiety. Nat Commun. 2020;11(1):2221. doi:10.1038/s41467-020-15920-7
  • Domoto M, Sasase H, Wada S, et al. The synthetic cannabinoid 5F-AMB changes the balance between excitation and inhibition of layer V pyramidal neurons in the mouse medial prefrontal cortex. Psychopharmacology. 2018;235(8):2367–2376. doi:10.1007/s00213-018-4933-5
  • Zhang WH, Zhang JY, Holmes A, Pan BX. Amygdala Circuit Substrates for Stress Adaptation and Adversity. Biol Psychiatry. 2021;89(9):847–856. doi:10.1016/j.biopsych.2020.12.026
  • Jiang S, Zheng C, Wen G, Bu B, Zhao S, Xu X. Down-regulation of NR2B receptors contributes to the analgesic and antianxiety effects of enriched environment mediated by endocannabinoid system in the inflammatory pain mice. Behav Brain Res. 2022;435:114062. doi:10.1016/j.bbr.2022.114062
  • Longaretti A, Forastieri C, Gabaglio M, Rubino T, Battaglioli E, Rusconi F. Termination of acute stress response by the endocannabinoid system is regulated through lysine-specific demethylase 1-mediated transcriptional repression of 2-AG hydrolases ABHD6 and MAGL. J Neurochem. 2020;155(1):98–110. doi:10.1111/jnc.15000
  • Vickstrom CR, Liu X, Liu S, et al. Role of endocannabinoid signaling in a septohabenular pathway in the regulation of anxiety- and depressive-like behavior. Mol Psychiatry. 2021;26(7):3178–3191. doi:10.1038/s41380-020-00905-1
  • Biltz RG, Sawicki CM, Sheridan JF, Godbout JP. The neuroimmunology of social-stress-induced sensitization. Nat Immunol. 2022;23(11):1527–1535. doi:10.1038/s41590-022-01321-z
  • Pasquarelli N, Porazik C, Hanselmann J, Weydt P, Ferger B, Witting A. Comparative biochemical characterization of the monoacylglycerol lipase inhibitor KML29 in brain, spinal cord, liver, spleen, fat and muscle tissue. Neuropharmacology. 2015;91:148–156. doi:10.1016/j.neuropharm.2014.12.001
  • Wenzel TJ, Klegeris A. Novel multi-target directed ligand-based strategies for reducing neuroinflammation in Alzheimer’s disease. Life Sci. 2018;207:314–322. doi:10.1016/j.lfs.2018.06.025
  • Kerr DM, Harhen B, Okine BN, Egan LJ, Finn DP, Roche M. The monoacylglycerol lipase inhibitor JZL184 attenuates LPS-induced increases in cytokine expression in the rat frontal cortex and plasma: differential mechanisms of action. Br J Pharmacol. 2013;169(4):808–819. doi:10.1111/j.1476-5381.2012.02237.x
  • Zhu D, Zhang J, Hashem J, Gao F, Chen C. Inhibition of 2-arachidonoylglycerol degradation enhances glial immunity by single-cell transcriptomic analysis. J Neuroinflammation. 2023;20(1):17. doi:10.1186/s12974-023-02701-4
  • Grabner GF, Eichmann TO, Wagner B, et al. Deletion of monoglyceride lipase in astrocytes attenuates lipopolysaccharide-induced neuroinflammation. J Biol Chem. 2016;291(2):913–923. doi:10.1074/jbc.M115.683615
  • Nomura DK, Morrison BE, Blankman JL, et al. Endocannabinoid hydrolysis generates brain prostaglandins that promote neuroinflammation. Science. 2011;334(6057):809–813. doi:10.1126/science.1209200
  • Alhouayek M, Masquelier J, Cani PD, Lambert DM, Muccioli GG. Implication of the anti-inflammatory bioactive lipid prostaglandin D2-glycerol ester in the control of macrophage activation and inflammation by ABHD6. Proc Natl Acad Sci U S A. 2013;110(43):17558–17563. doi:10.1073/pnas.1314017110
  • Kibret BG, Ishiguro H, Horiuchi Y, Onaivi ES. New insights and potential therapeutic targeting of CB2 cannabinoid receptors in CNS disorders. Int J Mol Sci. 2022;23(2):975. doi:10.3390/ijms23020975
  • Li J, Wang H, Liu D, et al. CB2R activation ameliorates late adolescent chronic alcohol exposure-induced anxiety-like behaviors during withdrawal by preventing morphological changes and suppressing NLRP3 inflammasome activation in prefrontal cortex microglia in mice. Brain Behav Immun. 2023;110:60–79. doi:10.1016/j.bbi.2023.02.001
  • Mecha M, Feliú A, Carrillo-Salinas FJ, et al. Endocannabinoids drive the acquisition of an alternative phenotype in microglia. Brain Behav Immun. 2015;49:233–245. doi:10.1016/j.bbi.2015.06.002
  • Young AP, Denovan-Wright EM. The dynamic role of microglia and the endocannabinoid system in neuroinflammation. Front Pharmacol. 2021;12:806417. doi:10.3389/fphar.2021.806417
  • Roberts CJ, Stuhr KL, Hutz MJ, Raff H, Hillard CJ. Endocannabinoid signaling in hypothalamic-pituitary-adrenocortical axis recovery following stress: effects of indirect agonists and comparison of male and female mice. Pharmacol Biochem Behav. 2014;117:17–24. doi:10.1016/j.pbb.2013.11.026
  • Aliczki M, Zelena D, Mikics E, et al. Monoacylglycerol lipase inhibition-induced changes in plasma corticosterone levels, anxiety and locomotor activity in male CD1 mice. Horm Behav. 2013;63(5):752–758. doi:10.1016/j.yhbeh.2013.03.017
  • Hill MN, McLaughlin RJ, Pan B, et al. Recruitment of prefrontal cortical endocannabinoid signaling by glucocorticoids contributes to termination of the stress response. J Neurosci. 2011;31(29):10506–10515. doi:10.1523/JNEUROSCI.0496-11.2011
  • Long JZ, Li W, Booker L, et al. Selective blockade of 2-arachidonoylglycerol hydrolysis produces cannabinoid behavioral effects. Nat Chem Biol. 2009;5(1):37–44. doi:10.1038/nchembio.129
  • Yamasaki T, Hatori A, Zhang Y, et al. Neuroprotective effects of minocycline and KML29, a potent inhibitor of monoacylglycerol lipase, in an experimental stroke model: a small-animal positron emission tomography study. Theranostics. 2021;11(19):9492–9502. doi:10.7150/thno.64320
  • Della Pietra A, Giniatullin R, Savinainen JR. Distinct activity of endocannabinoid-hydrolyzing enzymes MAGL and FAAH in key regions of peripheral and central nervous system implicated in migraine. Int J Mol Sci. 2021;22(3):1204. doi:10.3390/ijms22031204
  • Chanda PK, Gao Y, Mark L, et al. Monoacylglycerol lipase activity is a critical modulator of the tone and integrity of the endocannabinoid system. Mol Pharmacol. 2010;78(6):996–1003. doi:10.1124/mol.110.068304
  • Aaltonen N, Kedzierska E, Orzelska-Górka J, et al. In Vivo Characterization of the Ultrapotent Monoacylglycerol Lipase Inhibitor {4-[bis-(benzo[d][1,3]dioxol-5-yl)methyl]-piperidin-1-yl}(1H-1,2,4-triazol-1-yl)methanone (JJKK-048). J Pharmacol Exp Ther. 2016;359(1):62–72. doi:10.1124/jpet.116.233114
  • Aida J, Fushimi M, Kusumoto T, et al. Design, synthesis, and evaluation of piperazinyl pyrrolidin-2-ones as a novel series of reversible monoacylglycerol lipase inhibitors. J Med Chem. 2018;61(20):9205–9217. doi:10.1021/acs.jmedchem.8b00824
  • Xiang H, Wang Y, Yang L, et al. Novel MAGL inhibitors alleviate LPS-induced acute kidney injury by inhibiting NLRP3 inflammatory vesicles, modulating intestinal flora, repairing the intestinal barrier, and interfering with serum metabolism. Molecules. 2023;28(21):7245. doi:10.3390/molecules28217245
  • Afzal O, Kumar S, Kumar R, Firoz A, Jaggi M, Bawa S. Docking based virtual screening and molecular dynamics study to identify potential monoacylglycerol lipase inhibitors. Bioorg Med Chem Lett. 2014;24(16):3986–3996. doi:10.1016/j.bmcl.2014.06.029
  • Xiong F, Ding X, Zhang H, et al. Discovery of novel reversible monoacylglycerol lipase inhibitors via docking-based virtual screening. Bioorg Med Chem Lett. 2021;41:127986. doi:10.1016/j.bmcl.2021.127986
  • Tuccinardi T, Granchi C, Rizzolio F, et al. Identification and characterization of a new reversible MAGL inhibitor. Bioorg Med Chem. 2014;22(13):3285–3291. doi:10.1016/j.bmc.2014.04.057
  • Zhi Z, Zhang W, Yao J, et al. Discovery of Aryl formyl piperidine derivatives as potent, reversible, and selective monoacylglycerol lipase inhibitors. J Med Chem. 2020;63(11):5783–5796. doi:10.1021/acs.jmedchem.9b02137
  • Bononi G, Di Stefano M, Poli G, et al. Reversible monoacylglycerol lipase inhibitors: discovery of a new class of benzylpiperidine derivatives. J Med Chem. 2022;65(10):7118–7140. doi:10.1021/acs.jmedchem.1c01806
  • Di Stefano M, Masoni S, Bononi G, et al. Design, synthesis, ADME and biological evaluation of benzylpiperidine and benzylpiperazine derivatives as novel reversible monoacylglycerol lipase (MAGL) inhibitors. Eur J Med Chem. 2024;263:115916. doi:10.1016/j.ejmech.2023.115916
  • Bononi G, Tonarini G, Poli G, et al. Monoacylglycerol lipase (MAGL) inhibitors based on a diphenylsulfide-benzoylpiperidine scaffold. Eur J Med Chem. 2021;223:113679. doi:10.1016/j.ejmech.2021.113679
  • Kapanda CN, Muccioli GG, Labar G, Poupaert JH, Lambert DM. Bis(dialkylaminethiocarbonyl)disulfides as potent and selective monoglyceride lipase inhibitors. J Med Chem. 2009;52(22):7310–7314. doi:10.1021/jm901323s
  • Omran Z. New Disulfiram Derivatives as MAGL-Selective Inhibitors. Molecules. 2021;26(11):3296. doi:10.3390/molecules26113296
  • Andrei C, Mihai DP, Nitulescu G, et al. Cetirizine and levetiracetam as inhibitors of monoacylglycerol lipase: investigating their repurposing potential as novel osteoarthritic pain therapies. Pharmaceuticals. 2023;16(11):1563. doi:10.3390/ph16111563
  • Jiang M, Huizenga MCW, Wirt JL, et al. A monoacylglycerol lipase inhibitor showing therapeutic efficacy in mice without central side effects or dependence. Nat Commun. 2023;14(1):8039. doi:10.1038/s41467-023-43606-3
  • Adeel M, Saorin G, Boccalon G, et al. A carrier free delivery system of a monoacylglycerol lipase hydrophobic inhibitor. Int J Pharm. 2022;613:121374. doi:10.1016/j.ijpharm.2021.121374
  • Deng H, Li W. Monoacylglycerol lipase inhibitors: modulators for lipid metabolism in cancer malignancy, neurological and metabolic disorders. Acta Pharm Sin B. 2020;10(4):582–602. doi:10.1016/j.apsb.2019.10.006
  • Cisar JS, Weber OD, Clapper JR, et al. Identification of ABX-1431, a selective inhibitor of monoacylglycerol lipase and clinical candidate for treatment of neurological disorders. J Med Chem. 2018;61(20):9062–9084. doi:10.1021/acs.jmedchem.8b00951
  • Deng H, Zhang Q, Lei Q, et al. Discovering monoacylglycerol lipase inhibitors by a combination of fluorogenic substrate assay and activity-based protein profiling. Front Pharmacol. 2022;13:941522. doi:10.3389/fphar.2022.941522
  • Punt JM, van der Vliet D, van der Stelt M. Chemical probes to control and visualize lipid metabolism in the brain. Acc Chem Res. 2022;55(22):3205–3217. doi:10.1021/acs.accounts.2c00521
  • Takahata K, Seki C, Kimura Y, et al. First-in-human in vivo imaging and quantification of monoacylglycerol lipase in the brain: a PET study with 18F-T-401. Eur J Nucl Med Mol Imaging. 2022;49(9):3150–3161. doi:10.1007/s00259-021-05671-y
  • He Y, Grether U, Taddio MF, et al. Multi-parameter optimization: development of a morpholin-3-one derivative with an improved kinetic profile for imaging monoacylglycerol lipase in the brain. Eur J Med Chem. 2022;243:114750. doi:10.1016/j.ejmech.2022.114750
  • Cheng R, Fujinaga M, Yang J, et al. A novel monoacylglycerol lipase-targeted 18F-labeled probe for positron emission tomography imaging of brown adipose tissue in the energy network. Acta Pharmacol Sin. 2022;43(11):3002–3010. doi:10.1038/s41401-022-00912-8
  • King AR, Dotsey EY, Lodola A, et al. Discovery of potent and reversible monoacylglycerol lipase inhibitors. Chem Biol. 2009;16(10):1045–1052. doi:10.1016/j.chembiol.2009.09.012
  • Al-Romaiyan A, Masocha W. Pristimerin, a triterpene that inhibits monoacylglycerol lipase activity, prevents the development of paclitaxel-induced allodynia in mice. Front Pharmacol. 2022;13:944502. doi:10.3389/fphar.2022.944502
  • Merali Z, Cayer C, Kent P, et al. Sacred Maya incense, copal (Protium copal - Burseraceae), has antianxiety effects in animal models. J Ethnopharmacol. 2018;216:63–70. doi:10.1016/j.jep.2018.01.027
  • Tung M-C, Fung K-M, Hsu H-M, Tseng T-S. Discovery of 8-prenylnaringenin from hop (Humulus lupulus L.) as a potent monoacylglycerol lipase inhibitor for treatments of neuroinflammation and Alzheimer’s disease. RSC Adv. 2021;11(49):31062–31072. doi:10.1039/d1ra05311f
  • El-Alfy AT, Joseph S, Brahmbhatt A, Akati S, Abourashed EA. Indirect modulation of the endocannabinoid system by specific fractions of nutmeg total extract. Pharm Biol. 2016;54(12):2933–2938. doi:10.1080/13880209.2016.1194864
  • Benkherouf AY, Soini SL, Stompor M, Uusi-Oukari M. Positive allosteric modulation of native and recombinant GABAA receptors by hops prenylflavonoids. Eur J Pharmacol. 2019;852:34–41. doi:10.1016/j.ejphar.2019.02.034
  • Beladjila KA, Berrehal D, De Tommasi N, et al. New phenylethanoid glycosides from cistanche phelypaea and their activity as inhibitors of Monoacylglycerol Lipase (MAGL). Planta Med. 2018;84(9–10):710–715. doi:10.1055/s-0044-100187
  • De Leo M, Huallpa CG, Alvarado B, et al. New diterpenes from Salvia pseudorosmarinus and their activity as inhibitors of monoacylglycerol lipase (MAGL). Fitoterapia. 2018;130:251–258. doi:10.1016/j.fitote.2018.09.010
  • Mei J, Guo R, Zhang F, et al. Identification of bioactive natural products using yeast: application to monoacylglycerol lipase inhibitor extraction from Corydalis Rhizoma. Biomed Pharmacother. 2022;149:112798. doi:10.1016/j.biopha.2022.112798
  • Chen L, Yan Y, Chen T, et al. Forsythiaside prevents β-amyloid-induced hippocampal slice injury by upregulating 2-arachidonoylglycerol via cannabinoid receptor 1-dependent NF-κB pathway. Neurochem Int. 2019;125:57–66. doi:10.1016/j.neuint.2019.02.008
  • Talia S, Benarous K, Lamrani M, Yousfi M. Lepidine B from Lepidium sativum seeds as multi-functional anti- alzheimer’s disease agent: in vitro and in silico studies. Curr Comput Aided Drug Des. 2021;17(3):360–377. doi:10.2174/1573409916666200302120305
  • Chicca A, Marazzi J, Gertsch J. The antinociceptive triterpene β-amyrin inhibits 2-arachidonoylglycerol (2-AG) hydrolysis without directly targeting cannabinoid receptors. Br J Pharmacol. 2012;167(8):1596–1608. doi:10.1111/j.1476-5381.2012.02059.x
  • Vecchiarelli HA, Morena M, Lee TTY, et al. Sex and stressor modality influence acute stress-induced dynamic changes in corticolimbic endocannabinoid levels in adult Sprague Dawley rats. Neurobiol Stress. 2022;20:100470. doi:10.1016/j.ynstr.2022.100470
  • Botsford C, Brellenthin AG, Cisler JM, Hillard CJ, Koltyn KF, Crombie KM. Circulating endocannabinoids and psychological outcomes in women with PTSD. J Anxiety Disord. 2023;93:102656. doi:10.1016/j.janxdis.2022.102656
  • Rubino T, Realini N, Castiglioni C, et al. Role in anxiety behavior of the endocannabinoid system in the prefrontal cortex. Cereb Cortex. 2008;18(6):1292–1301. doi:10.1093/cercor/bhm161
  • Tevosian M, Todorov H, Lomazzo E, et al. NAPE-PLD deletion in stress-TRAPed neurons results in an anxiogenic phenotype. Transl Psychiatry. 2023;13(1):152. doi:10.1038/s41398-023-02448-9
  • Hill MN, Kumar SA, Filipski SB, et al. Disruption of fatty acid amide hydrolase activity prevents the effects of chronic stress on anxiety and amygdalar microstructure. Mol Psychiatry. 2013;18(10):1125–1135. doi:10.1038/mp.2012.90
  • Stopponi S, Fotio Y, Domi A, et al. Inhibition of fatty acid amide hydrolase in the central amygdala alleviates co-morbid expression of innate anxiety and excessive alcohol intake. Addict Biol. 2018;23(6):1223–1232. doi:10.1111/adb.12573
  • Postnov A, Schmidt ME, Pemberton DJ, et al. Fatty acid amide hydrolase inhibition by JNJ-42165279: a multiple-ascending dose and a positron emission tomography study in healthy volunteers. Clin Transl Sci. 2018;11(4):397–404. doi:10.1111/cts.12548
  • Paulus MP, Stein MB, Simmons AN, Risbrough VB, Halter R, Chaplan SR. The effects of FAAH inhibition on the neural basis of anxiety-related processing in healthy male subjects: a randomized clinical trial. Neuropsychopharmacol. 2021;46(5):1011–1019. doi:10.1038/s41386-020-00936-w
  • Li GL, Winter H, Arends R, et al. Assessment of the pharmacology and tolerability of PF-04457845, an irreversible inhibitor of fatty acid amide hydrolase-1, in healthy subjects. Br J Clin Pharmacol. 2012;73(5):706–716. doi:10.1111/j.1365-2125.2011.04137.x
  • Mayo LM, Asratian A, Lindé J, et al. Elevated anandamide, enhanced recall of fear extinction, and attenuated stress responses following inhibition of fatty acid amide hydrolase: a randomized, controlled experimental medicine trial. Biol Psychiatry. 2020;87(6):538–547. doi:10.1016/j.biopsych.2019.07.034
  • D’Souza DC, Cortes-Briones J, Creatura G, et al. Efficacy and safety of a fatty acid amide hydrolase inhibitor (PF-04457845) in the treatment of cannabis withdrawal and dependence in men: a double-blind, placebo-controlled, parallel group, phase 2a single-site randomised controlled trial. Lancet Psychiatry. 2019;6(1):35–45. doi:10.1016/S2215-0366(18)30427-9
  • Zimmermann T, Bartsch JC, Beer A, et al. Impaired anandamide/palmitoylethanolamide signaling in hippocampal glutamatergic neurons alters synaptic plasticity, learning, and emotional responses. Neuropsychopharmacology. 2019;44(8):1377–1388. doi:10.1038/s41386-018-0274-7
  • Fusse EJ, Scarante FF, Vicente MA, et al. Anxiogenic doses of rapamycin prevent URB597-induced anti-stress effects in socially defeated mice. Neurosci Lett. 2024;818:137519. doi:10.1016/j.neulet.2023.137519
  • Borges-Assis AB, Uliana DL, Hott SC, Guimarães FS, Lisboa SF, Resstel LBM. Bed nucleus of the stria terminalis CB1 receptors and the FAAH enzyme modulate anxiety behavior depending on previous stress exposure. Prog Neuropsychopharmacol Biol Psychiatry. 2023;125:110739. doi:10.1016/j.pnpbp.2023.110739
  • Danandeh A, Vozella V, Lim J, et al. Effects of fatty acid amide hydrolase inhibitor URB597 in a rat model of trauma-induced long-term anxiety. Psychopharmacology. 2018;235(11):3211–3221. doi:10.1007/s00213-018-5020-7
  • Flannery LE, Kerr DM, Finn DP, Roche M. FAAH inhibition attenuates TLR3-mediated hyperthermia, nociceptive- and anxiety-like behavior in female rats. Behav Brain Res. 2018;353:11–20. doi:10.1016/j.bbr.2018.06.030
  • de Ceglia M, Micioni Di Bonaventura MV, Romano A, et al. Anxiety associated with palatable food withdrawal is reversed by the selective FAAH inhibitor PF-3845: a regional analysis of the contribution of endocannabinoid signaling machinery. Int J Eat Disord. 2023;56(6):1098–1113. doi:10.1002/eat.23917
  • Bluett RJ, Gamble-George JC, Hermanson DJ, Hartley ND, Marnett LJ, Patel S. Central anandamide deficiency predicts stress-induced anxiety: behavioral reversal through endocannabinoid augmentation. Transl Psychiatry. 2014;4(7):e408. doi:10.1038/tp.2014.53
  • Carnevali L, Barbetti M, Fotio Y, et al. Enhancement of peripheral fatty acyl ethanolamide signaling prevents stress-induced social avoidance and anxiety-like behaviors in male rats. Psychopharmacology. 2023. doi:10.1007/s00213-023-06473-w
  • Vecchiarelli HA, Morena M, Keenan CM, et al. Comorbid anxiety-like behavior in a rat model of colitis is mediated by an upregulation of corticolimbic fatty acid amide hydrolase. Neuropsychopharmacology. 2021;46(5):992–1003. doi:10.1038/s41386-020-00939-7
  • Marco EM, Rapino C, Caprioli A, Borsini F, Laviola G, Maccarrone M. Potential therapeutic value of a novel FAAH inhibitor for the treatment of anxiety. PLoS One. 2015;10(9):e0137034. doi:10.1371/journal.pone.0137034
  • Silva HH, Tavares V, Neto BV, Cerqueira F, Medeiros R, Silva MRG. FAAH rs324420 polymorphism: biological pathways, impact on elite athletic performance and insights for sport medicine. Genes. 2023;14(10):1946. doi:10.3390/genes14101946
  • Spohrs J, Ulrich M, Grön G, Plener PL, Abler B. FAAH polymorphism (rs324420) modulates extinction recall in healthy humans: an fMRI study. Eur Arch Psychiatry Clin Neurosci. 2022;272(8):1495–1504. doi:10.1007/s00406-021-01367-4
  • Sisk LM, Rapuano KM, Conley MI, et al. Genetic variation in endocannabinoid signaling is associated with differential network-level functional connectivity in youth. J Neurosci Res. 2022;100(3):731–743. doi:10.1002/jnr.24946
  • Dincheva I, Drysdale AT, Hartley CA, et al. FAAH genetic variation enhances fronto-amygdala function in mouse and human. Nat Commun. 2015;6:6395. doi:10.1038/ncomms7395
  • Marusak HA, Evanski J, Desai S, Rabinak CA. Impact of childhood trauma exposure, genetic variation in endocannabinoid signaling, and anxiety on frontolimbic pathways in children. Cannabis Cannabinoid Res. 2023;8(6):1079–1089. doi:10.1089/can.2022.0144
  • Hillard CJ. Chapter one - the endocannabinoid signaling system in the CNS: a primer. In: Parsons L, Hill M editors. International Review of Neurobiology. Vol 125. Endocannabinoids. Academic Press; 2015:1–47. doi:10.1016/bs.irn.2015.10.001
  • Yasmin F, Colangeli R, Morena M, et al. Stress-induced modulation of endocannabinoid signaling leads to delayed strengthening of synaptic connectivity in the amygdala. Proc Natl Acad Sci. 2020;117(1):650–655. doi:10.1073/pnas.1910322116
  • Gulyas AI, Cravatt BF, Bracey MH, et al. Segregation of two endocannabinoid-hydrolyzing enzymes into pre- and postsynaptic compartments in the rat hippocampus, cerebellum and amygdala. Eur J Neurosci. 2004;20(2):441–458. doi:10.1111/j.1460-9568.2004.03428.x
  • Morena M, Patel S, Bains JS, Hill MN. Neurobiological Interactions Between Stress and the Endocannabinoid System. Neuropsychopharmacol. 2016;41(1):80–102. doi:10.1038/npp.2015.166
  • Alugubelly N, Mohammed AN, Carr RL. Persistent proteomic changes in glutamatergic and GABAergic signaling in the amygdala of adolescent rats exposed to chlorpyrifos as juveniles. Neurotoxicology. 2021;85:234–244. doi:10.1016/j.neuro.2021.05.012
  • Rl C, A N, de L K, et al.. Inhibition of fatty acid amide hydrolase by chlorpyrifos in juvenile rats results in altered exploratory and social behavior as adolescents. Neurotoxicology. 2020:77. doi:10.1016/j.neuro.2020.01.002
  • Duan T, Gu N, Wang Y, et al. Fatty acid amide hydrolase inhibitors produce rapid anti-anxiety responses through amygdala long-term depression in male rodents. J Psychiatry Neurosci. 2017;42(4):230–241. doi:10.1503/jpn.160116
  • Pavón FJ, Serrano A, Stouffer DG, et al. Ethanol-induced alterations in endocannabinoids and relevant neurotransmitters in the nucleus accumbens of fatty acid amide hydrolase knockout mice. Addict Biol. 2019;24(6):1204–1215. doi:10.1111/adb.12695
  • Rossi S, De Chiara V, Musella A, et al. Preservation of striatal cannabinoid CB1 receptor function correlates with the antianxiety effects of fatty acid amide hydrolase inhibition. Mol Pharmacol. 2010;78(2):260–268. doi:10.1124/mol.110.064196
  • Aguilera-Portillo G, Rangel-López E, Villeda-Hernández J, et al. The pharmacological inhibition of fatty acid amide hydrolase prevents excitotoxic damage in the rat striatum: possible involvement of CB1 receptors regulation. Mol Neurobiol. 2019;56(2):844–856. doi:10.1007/s12035-018-1129-2
  • Kerr DM, Burke NN, Ford GK, et al. Pharmacological inhibition of endocannabinoid degradation modulates the expression of inflammatory mediators in the hypothalamus following an immunological stressor. Neuroscience. 2012;204:53–63. doi:10.1016/j.neuroscience.2011.09.032
  • Doenni VM, Gray JM, Song CM, Patel S, Hill MN, Pittman QJ. Deficient adolescent social behavior following early-life inflammation is ameliorated by augmentation of anandamide signaling. Brain Behav Immun. 2016;58:237–247. doi:10.1016/j.bbi.2016.07.152
  • Grieco M, De Caris MG, Maggi E, et al. Fatty Acid Amide Hydrolase (FAAH) inhibition modulates amyloid-beta-induced microglia polarization. Int J Mol Sci. 2021;22(14):7711. doi:10.3390/ijms22147711
  • Malek N, Popiolek-Barczyk K, Mika J, Przewlocka B, Starowicz K. Anandamide, acting via CB2 receptors, alleviates LPS-induced neuroinflammation in rat primary microglial cultures. Neural Plast. 2015;2015:130639. doi:10.1155/2015/130639
  • Tanaka M, Yagyu K, Sackett S, Zhang Y. Anti-inflammatory effects by pharmacological inhibition or knockdown of fatty acid amide hydrolase in BV2 microglial cells. Cells. 2019;8(5):491. doi:10.3390/cells8050491
  • Rivera P, Del Mar Fernández-Arjona M, Silva-Peña D, et al. Pharmacological blockade of fatty acid amide hydrolase (FAAH) by URB597 improves memory and changes the phenotype of hippocampal microglia despite ethanol exposure. Biochem. Pharmacol. 2018;157:244–257. doi:10.1016/j.bcp.2018.08.005
  • Tchantchou F, Tucker LB, Fu AH, et al. The fatty acid amide hydrolase inhibitor PF-3845 promotes neuronal survival, attenuates inflammation and improves functional recovery in mice with traumatic brain injury. Neuropharmacology. 2014;85:427–439. doi:10.1016/j.neuropharm.2014.06.006
  • Henry RJ, Kerr DM, Finn DP, Roche M. FAAH-mediated modulation of TLR3-induced neuroinflammation in the rat hippocampus. J Neuroimmunol. 2014;276(1–2):126–134. doi:10.1016/j.jneuroim.2014.09.002
  • Zhu Y, Zhang H, Mao H, et al. FAAH served a key membrane-anchoring and stabilizing role for NLRP3 protein independently of the endocannabinoid system. Cell Death Differ. 2023;30(1):168–183. doi:10.1038/s41418-022-01054-4
  • Abelson JL, Liberzon I, Young EA, Khan S. Cognitive modulation of the endocrine stress response to a pharmacological challenge in normal and panic disorder subjects. Arch Gen Psychiatry. 2005;62(6):668–675. doi:10.1001/archpsyc.62.6.668
  • Hill MN, McLaughlin RJ, Bingham B, et al. Endogenous cannabinoid signaling is essential for stress adaptation. Proc Natl Acad Sci U S A. 2010;107(20):9406–9411. doi:10.1073/pnas.0914661107
  • Hill MN, McLaughlin RJ, Morrish AC, et al. Suppression of amygdalar endocannabinoid signaling by stress contributes to activation of the hypothalamic-pituitary-adrenal axis. Neuropsychopharmacology. 2009;34(13):2733–2745. doi:10.1038/npp.2009.114
  • Newsom RJ, Osterlund C, Masini CV, Day HE, Spencer RL, Campeau S. Cannabinoid receptor type 1 antagonism significantly modulates basal and loud noise induced neural and hypothalamic-pituitary-adrenal axis responses in male Sprague-Dawley rats. Neuroscience. 2012;204:64–73. doi:10.1016/j.neuroscience.2011.11.043
  • Haller J, Barna I, Barsvari B, et al. Interactions between environmental aversiveness and the anxiolytic effects of enhanced cannabinoid signaling by FAAH inhibition in rats. Psychopharmacology. 2009;204(4):607–616. doi:10.1007/s00213-009-1494-7
  • Bedse G, Colangeli R, Lavecchia AM, et al. Role of the basolateral amygdala in mediating the effects of the fatty acid amide hydrolase inhibitor URB597 on HPA axis response to stress. Eur Neuropsychopharmacol. 2014;24(9):1511–1523. doi:10.1016/j.euroneuro.2014.07.005
  • Gray JM, Vecchiarelli HA, Morena M, et al. Corticotropin-releasing hormone drives anandamide hydrolysis in the amygdala to promote anxiety. J Neurosci. 2015;35(9):3879–3892. doi:10.1523/JNEUROSCI.2737-14.2015
  • Gray JM, Wilson CD, Lee TTY, et al. Sustained glucocorticoid exposure recruits cortico-limbic CRH signaling to modulate endocannabinoid function. Psychoneuroendocrinology. 2016;66:151–158. doi:10.1016/j.psyneuen.2016.01.004
  • Duranti A, Beldarrain G, Álvarez A, et al. The endocannabinoid system as a target for neuroprotection/neuroregeneration in perinatal hypoxic–ischemic brain injury. Biomedicines. 2022;11(1):28. doi:10.3390/biomedicines11010028
  • Oddi S, Fiorenza MT, Maccarrone M. Endocannabinoid signaling in adult hippocampal neurogenesis: a mechanistic and integrated perspective. Prog Lipid Res. 2023;91:101239. doi:10.1016/j.plipres.2023.101239
  • Fogaça MV, Campos AC, Coelho LD, Duman RS, Guimarães FS. The anxiolytic effects of cannabidiol in chronically stressed mice are mediated by the endocannabinoid system: role of neurogenesis and dendritic remodeling. Neuropharmacology. 2018;135:22–33. doi:10.1016/j.neuropharm.2018.03.001
  • Avraham HK, Jiang S, Fu Y, et al. Impaired neurogenesis by HIV-1-Gp120 is rescued by genetic deletion of fatty acid amide hydrolase enzyme. Br J Pharmacol. 2015;172(19):4603–4614. doi:10.1111/bph.12657
  • Segev A, Korem N, Mizrachi Zer-Aviv T, et al. Role of endocannabinoids in the hippocampus and amygdala in emotional memory and plasticity. Neuropsychopharmacology. 2018;43(10):2017–2027. doi:10.1038/s41386-018-0135-4
  • Kathuria S, Gaetani S, Fegley D, et al. Modulation of anxiety through blockade of anandamide hydrolysis. Nat Med. 2003;9(1):76–81. doi:10.1038/nm803
  • Koehl M, Ladevèze E, Catania C, Cota D, Abrous DN. Inhibition of mTOR signaling by genetic removal of p70 S6 kinase 1 increases anxiety-like behavior in mice. Transl Psychiatry. 2021;11(1):165. doi:10.1038/s41398-020-01187-5
  • Tanaka M, Yamada S, Watanabe Y. The Role of Neuropeptide Y in the Nucleus Accumbens. Int J Mol Sci. 2021;22(14):7287. doi:10.3390/ijms22147287
  • Amstadter AB, Koenen KC, Ruggiero KJ, et al. NPY moderates the relation between hurricane exposure and generalized anxiety disorder in an epidemiologic sample of hurricane-exposed adults. Depress Anxiety. 2010;27(3):270–275. doi:10.1002/da.20648
  • Decressac M, Barker RA. Neuropeptide Y and its role in CNS disease and repair. Exp Neurol. 2012;238(2):265–272. doi:10.1016/j.expneurol.2012.09.004
  • Molosh AI, Sajdyk TJ, Truitt WA, Zhu W, Oxford GS, Shekhar A. NPY Y1 receptors differentially modulate GABAA and NMDA receptors via divergent signal-transduction pathways to reduce excitability of amygdala neurons. Neuropsychopharmacology. 2013;38(7):1352–1364. doi:10.1038/npp.2013.33
  • Maymon N, Mizrachi Zer-Aviv T, Sabban EL, Akirav I. Neuropeptide Y and cannabinoids interaction in the amygdala after exposure to shock and reminders model of PTSD. Neuropharmacology. 2020;162:107804. doi:10.1016/j.neuropharm.2019.107804
  • Greco R, Demartini C, Zanaboni AM, et al. Potentiation of endocannabinoids and other lipid amides prevents hyperalgesia and inflammation in a pre-clinical model of migraine. J Headache Pain. 2022;23(1):79. doi:10.1186/s10194-022-01449-1
  • Fotio Y, Mabou Tagne A, Jung KM, Piomelli D. Fatty acid amide hydrolase inhibition alleviates anxiety-like symptoms in a rat model used to study post-traumatic stress disorder. Psychopharmacology. 2023. doi:10.1007/s00213-023-06358-y
  • Shang Y, Wang M, Hao Q, et al. Development of indole-2-carbonyl piperazine urea derivatives as selective FAAH inhibitors for efficient treatment of depression and pain. Bioorg Chem. 2022;128:106031. doi:10.1016/j.bioorg.2022.106031
  • Gur Maz T, Turanlı S, Caliskan HB, Çalışkan B, Banoglu E. Development and molecular modeling studies of new thiadiazole piperazine urea derivatives as potential fatty acid amide hydrolase inhibitors. Arch Pharm. 2022;355(8):e2200082. doi:10.1002/ardp.202200082
  • Keith JM, Jones W, Pierce JM, et al. Heteroarylureas with fused bicyclic diamine cores as inhibitors of fatty acid amide hydrolase. Bioorg Med Chem Lett. 2020;30(20):127463. doi:10.1016/j.bmcl.2020.127463
  • Jaiswal S, Tripathi RKP, Ayyannan SR. Scaffold hopping-guided design of some isatin based rigid analogs as fatty acid amide hydrolase inhibitors: synthesis and evaluation. Biomed Pharmacother. 2018;107:1611–1623. doi:10.1016/j.biopha.2018.08.125
  • Jaiswal S, Ayyannan SR. Lead optimization study on indoline-2,3-dione derivatives as potential fatty acid amide hydrolase inhibitors. J Biomol Struct Dyn. 2023;41(19):9632–9650. doi:10.1080/07391102.2022.2145372
  • Patel JZ, Parkkari T, Laitinen T, et al. Chiral 1,3,4-oxadiazol-2-ones as highly selective FAAH inhibitors. J Med Chem. 2013;56(21):8484–8496. doi:10.1021/jm400923s
  • Greco R, Francavilla M, Demartini C, et al. Activity of FAAH-Inhibitor JZP327A in an Experimental Rat Model of Migraine. Int J Mol Sci. 2023;24(12):10102. doi:10.3390/ijms241210102
  • Papa A, Pasquini S, Galvani F, et al. Development of potent and selective FAAH inhibitors with improved drug-like properties as potential tools to treat neuroinflammatory conditions. Eur J Med Chem. 2023;246:114952. doi:10.1016/j.ejmech.2022.114952
  • Zięba A, Laitinen T, Patel JZ, Poso A, Kaczor AA. Docking-based 3D-QSAR studies for 1,3,4-oxadiazol-2-one derivatives as FAAH inhibitors. Int J Mol Sci. 2021;22(11):6108. doi:10.3390/ijms22116108
  • Lorca M, Valdes Y, Chung H, Romero-Parra J, Pessoa-Mahana CD, Mella J. Three-Dimensional Quantitative Structure-Activity Relationships (3D-QSAR) on a Series of Piperazine-Carboxamides Fatty Acid Amide Hydrolase (FAAH) inhibitors as a useful tool for the design of new cannabinoid ligands. Int J Mol Sci. 2019;20(10):2510. doi:10.3390/ijms20102510
  • Zanfirescu A, Nitulescu G, Mihai DP, Nitulescu GM. Identifying FAAH inhibitors as new therapeutic options for the treatment of chronic pain through drug repurposing. Pharmaceuticals. 2021;15(1):38. doi:10.3390/ph15010038
  • Deplano A, Karlsson J, Svensson M, et al. Exploring the fatty acid amide hydrolase and cyclooxygenase inhibitory properties of novel amide derivatives of ibuprofen. J Enzyme Inhib Med Chem. 2020;35(1):815–823. doi:10.1080/14756366.2020.1743283
  • Deplano A, Karlsson J, Moraca F, et al. Design, synthesis and in vitro and in vivo biological evaluation of flurbiprofen amides as new fatty acid amide hydrolase/cyclooxygenase-2 dual inhibitory potential analgesic agents. J Enzyme Inhib Med Chem. 2021;36(1):940–953. doi:10.1080/14756366.2021.1875459
  • Montanari S, Scalvini L, Bartolini M, et al. Fatty Acid Amide Hydrolase (FAAH), Acetylcholinesterase (AChE), and Butyrylcholinesterase (BuChE): networked targets for the development of carbamates as potential anti-Alzheimer’s Disease agents. J Med Chem. 2016;59(13):6387–6406. doi:10.1021/acs.jmedchem.6b00609
  • Maleki MF, Nadri H, Kianfar M, et al. Design and synthesis of new carbamates as inhibitors for fatty acid amide hydrolase and cholinesterases: molecular dynamic, in vitro and in vivo studies. Bioorg Chem. 2021;109:104684. doi:10.1016/j.bioorg.2021.104684
  • Wilt S, Kodani S, Le TNH, et al. Development of multitarget inhibitors for the treatment of pain: design, synthesis, biological evaluation and molecular modeling studies. Bioorg Chem. 2020;103:104165. doi:10.1016/j.bioorg.2020.104165
  • Cammarota M, Ferlenghi F, Vacondio F, et al. Combined targeting of fatty acid amide hydrolase and melatonin receptors promotes neuroprotection and stimulates inflammation resolution in rats. Br J Pharmacol. 2023;180(10):1316–1338. doi:10.1111/bph.16014
  • Intranuovo F, Brunetti L, DelRe P, et al. Development of N-(1-Adamantyl)benzamides as novel anti-inflammatory multitarget agents acting as dual modulators of the cannabinoid CB2 receptor and fatty acid amide hydrolase. J Med Chem. 2023;66(1):235–250. doi:10.1021/acs.jmedchem.2c01084
  • Wagenlehner FME, van Till JWO, Houbiers JGA, et al. Fatty acid amide hydrolase inhibitor treatment in men with chronic prostatitis/chronic pelvic pain syndrome: an adaptive double-blind, randomized controlled trial. Urology. 2017;103:191–197. doi:10.1016/j.urology.2017.02.029
  • Demartini C, Greco R, Zanaboni AM, Francavilla M, Facchetti S, Tassorelli C. URB937 prevents the development of mechanical allodynia in male rats with trigeminal neuralgia. Pharmaceuticals. 2023;16(11):1626. doi:10.3390/ph16111626
  • Zhang D, Saraf A, Kolasa T, et al. Fatty acid amide hydrolase inhibitors display broad selectivity and inhibit multiple carboxylesterases as off-targets. Neuropharmacology. 2007;52(4):1095–1105. doi:10.1016/j.neuropharm.2006.11.009
  • Kerbrat A, Ferré JC, Fillatre P, et al. Acute neurologic disorder from an inhibitor of fatty acid amide hydrolase. N Engl J Med. 2016;375(18):1717–1725. doi:10.1056/NEJMoa1604221
  • van Esbroeck ACM, Janssen APA, Cognetta AB, et al. Activity-based protein profiling reveals off-target proteins of the FAAH inhibitor BIA 10-2474. Science. 2017;356(6342):1084–1087. doi:10.1126/science.aaf7497
  • Otrubova K, Chatterjee S, Ghimire S, Cravatt BF, Boger DL. N-Acyl pyrazoles: effective and tunable inhibitors of serine hydrolases. Bioorg Med Chem. 2019;27(8):1693–1703. doi:10.1016/j.bmc.2019.03.020
  • Lamani M, Malamas MS, Farah SI, et al. Piperidine and piperazine inhibitors of fatty acid amide hydrolase targeting excitotoxic pathology. Bioorg Med Chem. 2019;27(23):115096. doi:10.1016/j.bmc.2019.115096
  • Thors L, Eriksson J, Fowler CJ. Inhibition of the cellular uptake of anandamide by genistein and its analogue daidzein in cells with different levels of fatty acid amide hydrolase-driven uptake. Br J Pharmacol. 2007;152(5):744–750. doi:10.1038/sj.bjp.0707401
  • Ahmad H, Rauf K, Zada W, et al. Kaempferol facilitated extinction learning in contextual fear conditioned rats via inhibition of fatty-acid amide hydrolase. Molecules. 2020;25(20):4683. doi:10.3390/molecules25204683
  • Zada W, VanRyzin JW, Perez‐Pouchoulen M, et al. Fatty acid amide hydrolase inhibition and N‐arachidonoylethanolamine modulation by isoflavonoids: a novel target for upcoming antidepressants. Pharmacol Res Perspect. 2022;10(5):e00999. doi:10.1002/prp2.999
  • Alasmari M, Bӧhlke M, Kelley C, Maher T, Pino-Figueroa A. Inhibition of Fatty Acid Amide Hydrolase (FAAH) by macamides. Mol Neurobiol. 2019;56(3):1770–1781. doi:10.1007/s12035-018-1115-8
  • Almukadi H, Wu H, Böhlke M, Kelley CJ, Maher TJ, Pino-Figueroa A. The macamide N-3-methoxybenzyl-linoleamide is a time-dependent fatty acid amide hydrolase (FAAH) inhibitor. Mol Neurobiol. 2013;48(2):333–339. doi:10.1007/s12035-013-8499-2
  • Police A, Shankar VK, Pandey P, Rangappa S, Doerksen RJ, Narasimha Murthy S. Novel topical anandamide formulation for alleviating peripheral neuropathic pain. Int J Pharm. 2023;641:123085. doi:10.1016/j.ijpharm.2023.123085
  • Shanmugasundaram D, Roza JM. Effect of broad-spectrum hemp extract on neurobehavioral activity on the immobilization stress-induced model in Sprague Dawley rats. ScientificWorldJournal. 2023;2023:3425576. doi:10.1155/2023/3425576
  • Lin YX, Sun JT, Liao ZZ, et al. Triterpenoids from the fruiting bodies of Ganoderma lucidum and their inhibitory activity against FAAH. Fitoterapia. 2022;158:105161. doi:10.1016/j.fitote.2022.105161
  • Li DW, Liu M, Leng YQ, et al. Lanostane triterpenoids from Ganoderma lucidum and their inhibitory effects against FAAH. Phytochemistry. 2022;203:113339. doi:10.1016/j.phytochem.2022.113339
  • Thors L, Alajakku K, Fowler CJ. The “specific” tyrosine kinase inhibitor genistein inhibits the enzymic hydrolysis of anandamide: implications for anandamide uptake. Br J Pharmacol. 2007;150(7):951–960. doi:10.1038/sj.bjp.0707172
  • El-Mekkawy S, Shahat AA, Alqahtani AS, et al. A polyphenols-rich extract from Moricandia sinaica Boiss. Exhibits analgesic, anti-inflammatory and antipyretic activities in vivo. Molecules. 2020;25(21):5049. doi:10.3390/molecules25215049
  • Thors L, Belghiti M, Fowler CJ. Inhibition of fatty acid amide hydrolase by kaempferol and related naturally occurring flavonoids. Br J Pharmacol. 2008;155(2):244–252. doi:10.1038/bjp.2008.237
  • Mariano A, Di Sotto A, Leopizzi M, et al. Antiarthritic effects of a root extract from Harpagophytum procumbens DC: novel insights into the molecular mechanisms and possible bioactive phytochemicals. Nutrients. 2020;12(9):2545. doi:10.3390/nu12092545
  • Gonçalves ECD, Assis PM, Junqueira LA, et al. Citral inhibits the inflammatory response and hyperalgesia in mice: the role of TLR4, TLR2/Dectin-1, and CB2 cannabinoid receptor/ATP-sensitive K+ channel pathways. J Nat Prod. 2020;83(4):1190–1200. doi:10.1021/acs.jnatprod.9b01134
  • El-Alfy AT, Abourashed EA, Patel C, Mazhari N, An H, Jeon A. Phenolic compounds from nutmeg (Myristica fragrans Houtt.) inhibit the endocannabinoid-modulating enzyme fatty acid amide hydrolase. J Pharm Pharmacol. 2019;71(12):1879–1889. doi:10.1111/jphp.13174
  • Sanna MD, Les F, Lopez V, Galeotti N. Lavender (Lavandula angustifolia Mill.) essential oil alleviates neuropathic pain in mice with spared nerve injury. Front Pharmacol. 2019;10:472. doi:10.3389/fphar.2019.00472
  • De Petrocellis L, Ligresti A, Moriello AS, et al. Effects of cannabinoids and cannabinoid-enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes. Br J Pharmacol. 2011;163(7):1479–1494. doi:10.1111/j.1476-5381.2010.01166.x
  • Capasso R, Borrelli F, Aviello G, et al. Cannabidiol, extracted from Cannabis sativa, selectively inhibits inflammatory hypermotility in mice. Br J Pharmacol. 2008;154(5):1001–1008. doi:10.1038/bjp.2008.177
  • Li D, Leng Y, Liao Z, et al. Nor-triterpenoids from the fruiting bodies of Ganoderma lucidum and their inhibitory activity against FAAH. Nat Prod Res. 2023;37(4):579–585. doi:10.1080/14786419.2022.2078817
  • Chicca A, Caprioglio D, Minassi A, et al. Functionalization of β-caryophyllene generates novel polypharmacology in the endocannabinoid system. ACS Chem Biol. 2014;9(7):1499–1507. doi:10.1021/cb500177c
  • Irrera N, D’Ascola A, Pallio G, et al. β-Caryophyllene Mitigates Collagen Antibody Induced Arthritis (CAIA) in mice through a cross-talk between CB2 and PPAR-γ receptors. Biomolecules. 2019;9(8):326. doi:10.3390/biom9080326
  • Wu H, Kelley CJ, Pino-Figueroa A, Vu HD, Maher TJ. Macamides and their synthetic analogs: evaluation of in vitro FAAH inhibition. Bioorg Med Chem. 2013;21(17):5188–5197. doi:10.1016/j.bmc.2013.06.034
  • Taboada-Rosell K, Castro-García FA, Medina-Saldivar C, Cruz-Visalaya SR, Pacheco-Otalora LF. The novel FAAH inhibitor, MCH1, reduces the infarction area in the motor cortex-related region but does not affect the sensorimotor function or memory and spatial learning in rats exposed to transient middle cerebral artery occlusion. Brain Res. 2024;1822:148636. doi:10.1016/j.brainres.2023.148636
  • Zhang ZW, Han P, Fu J, et al. Gut microbiota-based metabolites of Xiaoyao Pills (a typical Traditional Chinese medicine) ameliorate depression by inhibiting fatty acid amide hydrolase levels in brain. J Ethnopharmacol. 2023;313:116555. doi:10.1016/j.jep.2023.116555
  • Samandar F, Tehranizadeh ZA, Saberi MR, Chamani J. CB1 as a novel target for Ginkgo biloba’s terpene trilactone for controlling chemotherapy-induced peripheral neuropathy (CIPN). J Mol Model. 2022;28(9):283. doi:10.1007/s00894-022-05284-8
  • Xie J, Li Y, Liang Y, Kui H, Wang C, Huang J. Integration of non-targeted metabolomics with network pharmacology deciphers the anxiolytic mechanisms of Platycladi Semen extracts in CUMS mice. J Ethnopharmacol. 2023;315:116571. doi:10.1016/j.jep.2023.116571
  • Tian X, Liu T, Li L, et al. Visual high-throughput screening for developing a fatty acid amide hydrolase natural inhibitor based on an enzyme-activated fluorescent probe. Anal Chem. 2020;92(14):9493–9500. doi:10.1021/acs.analchem.9b05826
  • Tian M, Tian Z, Yao D, et al. A NIR fluorescent probe for fatty acid amide hydrolase bioimaging and its application in development of inhibitors. J Mater Chem B. 2021;9(32):6460–6465. doi:10.1039/d1tb01054a
  • Della Pietra A, Krivoshein G, Ivanov K, et al. Potent dual MAGL/FAAH inhibitor AKU-005 engages endocannabinoids to diminish meningeal nociception implicated in migraine pain. J Headache Pain. 2023;24(1):38. doi:10.1186/s10194-023-01568-3
  • Dong B, Shilpa BM, Shah R, et al. Dual pharmacological inhibitor of endocannabinoid degrading enzymes reduces depressive-like behavior in female rats. J Psychiatr Res. 2020;120:103–112. doi:10.1016/j.jpsychires.2019.10.010
  • Adamson Barnes NS, Mitchell VA, Kazantzis NP, Vaughan CW. Actions of the dual FAAH/MAGL inhibitor JZL195 in a murine neuropathic pain model. Br J Pharmacol. 2016;173(1):77–87. doi:10.1111/bph.13337
  • Toczek M, Ryszkiewicz P, Remiszewski P, et al. Weak hypotensive effect of chronic administration of the dual FAAH/MAGL inhibitor JZL195 in spontaneously hypertensive rats as revealed by area under the curve analysis. Int J Mol Sci. 2023;24(13):10942. doi:10.3390/ijms241310942
  • Abohalaka R, Karaman Y, Recber T, Onder SC, Nemutlu E, Bozkurt TE. Endocannabinoid metabolism inhibition ameliorates ovalbumin-induced allergic airway inflammation and hyperreactivity in Guinea pigs. Life Sci. 2022;306:120808. doi:10.1016/j.lfs.2022.120808
  • Manduca A, Morena M, Campolongo P, et al. Distinct roles of the endocannabinoids anandamide and 2-arachidonoylglycerol in social behavior and emotionality at different developmental ages in rats. Eur Neuropsychopharmacol. 2015;25(8):1362–1374. doi:10.1016/j.euroneuro.2015.04.005
  • Fowler CJ. Transport of endocannabinoids across the plasma membrane and within the cell. FEBS J. 2013;280(9):1895–1904. doi:10.1111/febs.12212
  • Nicolussi S, Gertsch J. Endocannabinoid transport revisited. Vitam Horm. 2015;98:441–485. doi:10.1016/bs.vh.2014.12.011
  • Jones MJ, Uzuneser TC, Clement T, et al. Inhibition of fatty acid binding protein-5 in the basolateral amygdala induces anxiolytic effects and accelerates fear memory extinction. Psychopharmacology. 2023. doi:10.1007/s00213-023-06468-7
  • Chicca A, Nicolussi S, Bartholomäus R, et al. Chemical probes to potently and selectively inhibit endocannabinoid cellular reuptake. Proc Natl Acad Sci U S A. 2017;114(25):E5006–E5015. doi:10.1073/pnas.1704065114
  • Bortolato M, Campolongo P, Mangieri RA, et al. Anxiolytic-like properties of the anandamide transport inhibitor AM404. Neuropsychopharmacology. 2006;31(12):2652–2659. doi:10.1038/sj.npp.1301061
  • Kwee CMB, Leen NA, Van der Kamp RC, et al. Anxiolytic effects of endocannabinoid enhancing compounds: a systematic review and meta-analysis. Eur Neuropsychopharmacol. 2023;72:79–94. doi:10.1016/j.euroneuro.2023.04.001