59
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Development of Intratumoral Drug Delivery Based Strategies for Antitumor Therapy

, &
Pages 2189-2202 | Received 26 Mar 2024, Accepted 23 May 2024, Published online: 11 Jun 2024

References

  • chu X-Y, Huang W, Wang Y-L. Improving antitumor outcomes for palliative intratumoral injection therapy through lecithin–chitosan nanoparticles loading paclitaxel–cholesterol complex. Int J Nanomed. 2019;14:689–705.
  • Wang C, Ye Y, Hochu GM, Sadeghifar H, Gu Z. Enhanced Cancer Immunotherapy by Microneedle Patch-Assisted Delivery of Anti-PD1 Antibody. Nano Lett. 2016;16:2334–2340.
  • Chattopadhyay N, Cai Z, Kwon YL, Lechtman E, Pignol JP, Reilly RM. Molecularly targeted gold nanoparticles enhance the radiation response of breast cancer cells and tumor xenografts to X-radiation. Breast Cancer Res Treat. 2013;137(1):81–91. doi:10.1007/s10549-012-2338-4
  • Al-Abd AM, Hong KY, Song SC, Kuh HJ. Pharmacokinetics of doxorubicin after intratumoral injection using a thermosensitive hydrogel in tumor-bearing mice. J Control Release. 2010;142(1):101–107. doi:10.1016/j.jconrel.2009.10.003
  • Ho-Chun S, Kun N, Park K-H. Intratumoral administration of rhenium-188-labeled pullulan acetate nanoparticles (PAN) in mice bearing CT-26 cancer cells for suppression of tumor growth. J Microbiol Biotechnol. 2006;16(10):1491–1498.
  • Brachi G, Ruiz-Ramírez J, Dogra P. Intratumoral injection of hydrogel-embedded nanoparticles enhances retention in glioblastoma. Nanoscale. 2020;12(46):23838–23850. doi:10.1039/D0NR05053A
  • Boone CE, Wang C, Lopez-Ramirez MA. Active Microneedle Administration of Plant Virus Nanoparticles for Cancer In Situ Vaccination Improves Immunotherapeutic Efficacy. ACS Appl. Nano Mater. 2023;3(8):8037–8051.
  • Fan L, Duan M, Sun X. Injectable Liquid Metal- and Methotrexate-Loaded Microsphere for Cancer Chemophotothermal Synergistic Therapy. ACS Appl. Bio Mater. 2020;3(6):3553–3559. doi:10.1021/acsabm.0c00171
  • Chattopadhyay N, Fonge H, Cai Z, et al. Role of antibody-mediated tumor targeting and route of administration in nanoparticle tumor accumulation in vivo. Mol Pharm. 2012;9(8):2168–2179.
  • Paszek MJ, Zahir N, Johnson KR, et al. Tensional homeostasis and the malignant phenotype. Cancer Cell. 2005;8(3):241–254. doi:10.1016/j.ccr.2005.08.010
  • Tredan O, Galmarini CM, Patel K, Tannock IF, Natl J. Drug resistance and the solid tumor microenvironment. Cancer Inst. 2007;99(19):1441–1454. doi:10.1093/jnci/djm135
  • Shido Y, Nishida Y, Suzuki Y, Kobayashi T, Ishiguro N. Targeted hyperthermia using magnetite cationic liposomes and an alternating magnetic field in a mouse osteosarcoma model. J Bone Joint Surg Br. 2010;92(4):580–585. doi:10.1302/0301-620X.92B4.22814
  • Xu X, Huang Z, Huang Z, et al. Injectable, NIR/pH-Responsive Nanocomposite Hydrogel as Long-Acting Implant for Chemophotothermal Synergistic Cancer Therapy. ACS Appl. Mater. Interfaces. 2017;9(24):20361–20375. doi:10.1021/acsami.7b02307
  • Qu Y, Chu BY, Peng JR, et al. A biodegradable thermo-responsive hybrid hydrogel: therapeutic applications in preventing the post-operative recurrence of breast cancer. NPG Asia Materials. 2015;7(8):e207. doi:10.1038/am.2015.83
  • Zhu Y, Yang Z, Dong Z, et al. CaCO3‑Assisted Preparation of pH‑Responsive Immune‑Modulating Nanoparticles for Augmented Chemo‑Immunotherapy. Nano-Micro Lett. 2021;13(1):29. doi:10.1007/s40820-020-00549-4
  • Jianbo G, Xue L, Hongdan Y, et al. The Anti-Melanoma Efficiency of the Intratumoral Injection of Cucurbitacin-Loaded Sustained-Release Carriers: a PLGA Particle. System. 2013;102:2550–2563.
  • Sung Duk J, Lee J, Kyung Joo M, et al. PEG−PLA-Coated and Uncoated Radio-Luminescent CaWO4 Micro- and Nanoparticles for Concomitant Radiation and UV-A/RadioEnhancement Cancer Treatments. ACS Biomater Sci Eng. 2018;4:1445–1462. doi:10.1021/acsbiomaterials.8b00119
  • Yu L, Ding J. Injectable hydrogels as unique biomedical materials. Chem Soc Rev. 2008;37(8):1473–1481. doi:10.1039/b713009k
  • Mathew AP, Uthaman S, Cho KH, Cho CS, Park IK. Injectable hydrogels for delivering biotherapeutic molecules. Int JBiol Macromol. 2018;110:17–29. doi:10.1016/j.ijbiomac.2017.11.113
  • Ru Shin G, Eun Kim H, Kim JH, et al. Advances in Injectable In Situ-Forming Hydrogels for Intratumoral Treatment. Pharmaceutics. 2021;13(11):1953. doi:10.3390/pharmaceutics13111953
  • Zhang H, Zhu X, Yandan J, et al. Near-Infrared-Triggered In-situ Hybrid Hydrogel System for Synergistic Cancer Therapy. J Mater Chem B. 2015;3(30):6310–6326. doi:10.1039/C5TB00904A
  • Wan J, Geng S, Zhao H, et al. Doxorubicin-induced co-assembling nanomedicines with temperature-sensitive acidic polymer and their in-situ-forming hydrogels for intratumoral administration. J Control Release. 2016;235:328–336. doi:10.1016/j.jconrel.2016.06.009
  • Raza F, Zhu Y, Chen L, et al. Paclitaxel-loaded pH Responsive Hydrogel Based on Self-assembly Peptides for Tumor Targeting. Biomater Sci. 2019;7(5):2023–2036. doi:10.1039/C9BM00139E
  • Sun X, Zhuang B, Zhang M, et al. Intratumorally Injected Photothermal Agent-Loaded Photodynamic Nanocarriers for Ablation of Orthotopic Melanoma and Breast Cancer. ACS Biomater Sci Eng. 2019;5(2):724–739. doi:10.1021/acsbiomaterials.8b01111
  • Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev. 2004;56:1649–1659. doi:10.1016/j.addr.2004.02.014
  • Danhier F. To exploit the tumor microenvironment: since the EPR effect fails in the clinic, what is the future of nanomedicine? J Control Release. 2016;244(Pt A):108–121. doi:10.1016/j.jconrel.2016.11.015
  • Dawidczyk CM, Kim C, Park JH, et al. State-of-the-art in design rules for drug delivery platforms: lessons learned from FDA-approved nanomedicines. J Control Release. 2014;187:133–144. doi:10.1016/j.jconrel.2014.05.036
  • Shen L, Zhang Z, Wang T, et al. Reversed lipid-based nanoparticles dispersed in oil for malignant tumor treatment via intratumoral injection. Drug Deliv. 2017;24(1):857–866. doi:10.1080/10717544.2017.1330373
  • Lee J, Phyu Hlaing S, Hasan N, et al. Tumor-Penetrable Nitric Oxide-Releasing Nanoparticles Potentiate Local Antimelanoma Therapy. ACS Appl Mater Interfaces. 2021;13(26):30383–30396. doi:10.1021/acsami.1c07407
  • Pirollo KF, Chang EH. Does a targeting ligand influence nanoparticle tumor localization or uptake? Trends Biotechnol. 2008;26:552–558. doi:10.1016/j.tibtech.2008.06.007
  • Huang X, Peng X, Wang Y, et al. A reexamination of active and passive tumor targeting by using rod-shaped gold nanocrystals and covalently conjugated peptide ligands. ACS Nano. 2010;4(10):5887–5896. doi:10.1021/nn102055s
  • Bartlett DW, Su H, Hildebrandt IJ, Weber WA, Davis ME. Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc Natl Acad Sci USA. 2007;104(39):15549–15554. doi:10.1073/pnas.0707461104
  • Mahmoudi M, Bertrand N, Zope H, et al. Emerging understanding of the protein Corona at the nano-bio interfaces. Nano Today. 2016;11(6):817–832. doi:10.1016/j.nantod.2016.10.005
  • Chen FF, Wang GK, Griffin JI, et al. Complement proteins bind to nanoparticle protein Corona and undergo dynamic exchange in vivo. Nat Nanotechnol. 2017;12(4):387–393. doi:10.1038/nnano.2016.269
  • Hayashi Y, Takamiya M, Jensen PB, et al. Differential Nanoparticle Sequestration by Macrophages and Scavenger Endothelial Cells Visualized in Vivo in Real-Time and at Ultrastructural Resolution. ACS Nano. 2020;14(2):1665–1681. doi:10.1021/acsnano.9b07233
  • Hansen AE, Petersen AL, Henriksen JR, et al. Positron emission tomography based elucidation of the enhanced permeability and retention effect in dogs with cancer using copper-64 liposomes. ACS Nano. 2015;9(7):6985–6995. doi:10.1021/acsnano.5b01324
  • Hou A, Quan G, Yang B, et al. Rational Design of Rapidly Separating Dissolving Microneedles for Precise Drug Delivery by Balancing the Mechanical Performance and Disintegration Rate. Adv Healthc Mater. 2019;8(21):e1900898. doi:10.1002/adhm.201900898
  • Biyuan W, Jintao F, Zhou Y, et al. Tailored core‒shell dual metaleorganic frameworks as a versatile nanomotor for effective synergistic antitumor therapy. Acta Pharm Sin B. 2020;10(11):2198–2211. doi:10.1016/j.apsb.2020.07.025
  • Qin W, Quan G, Sun Y, et al. Dissolving Microneedles with Spatiotemporally controlled pulsatile release Nanosystem for Synergistic Chemo-photothermal Therapy of Melanoma. Theranostics. 2020;10(18):8179–8196. doi:10.7150/thno.44194
  • Boone CE, Wang C, Angel Lopez-Ramirez M, et al. Active Microneedle Administration of Plant Virus Nanoparticles for Cancer In Situ Vaccination Improves Immunotherapeutic Efficacy. ACS Appl Nano Mater. 2020;3(8):8037–8051. doi:10.1021/acsanm.0c01506
  • Tian L, Gao J, Yang Z, Huang G. Tamibarotene-loaded PLGA microspheres for intratumoral injection administration: preparation and evaluation. AAPS Pharm Sci Tech. 2018;19(1):275–283. doi:10.1208/s12249-017-0827-9
  • Doty AC, Weinstein DG, Hirota K. Mechanisms of in vivo release of triamcinolone acetonide from PLGA microspheres. J Control Release. 2017;256:19–25. doi:10.1016/j.jconrel.2017.03.031
  • Doty AC, Zhang Y, Weinstein DG. Mechanistic analysis of triamcinolone acetonide release from PLGA microspheres as a function of varying in vitro release conditions. Eur J Pharm Biopharm. 2017;113:24–33. doi:10.1016/j.ejpb.2016.11.008
  • Guo WJ, Quan P, Fang L, Cun DM, Yang MS. Sustained release donepezil loaded PLGA microspheres for injection: preparation, in vitro and in vivo study. Asian J Pharm Sci. 2015;10(5):405–414. doi:10.1016/j.ajps.2015.06.001
  • Benny O, Kim SK, Gvili K. In vivo fate and therapeutic efcacy of PF-4/CTF microspheres in an orthotopic human glioblastoma model. FASEB J. 2008;22(2):488–499. doi:10.1096/fj.07-8801com
  • Guoli N, Yang G, Yang H, et al. Uniformly sized hollow microspheres loaded with polydopamine nanoparticles and doxorubicin for local chemo-photothermal combination therapy. Chem Eng J. 2020;379:122317. doi:10.1016/j.cej.2019.122317
  • Zhou YL, Wang HT, Du QG. Effect of initiation site location on morphology of polymer microspheres via pickering polymerization. J Polym Sci. 2012;50:3537–3545. doi:10.1002/pola.26138
  • Wang SY, Shi XD, Gan ZH, Wang F. Preparation of PLGA Microspheres with Different Porous Morphologies Chin. J Polym Sci. 2015;33(1):128–136.
  • Zhang Z, Wang X, Binbin L, et al. Paclitaxel-loaded PLGA microspheres with a novel morphology to facilitate drug delivery and antitumor efficiency. RSC Adv. 2018;8(6):3274–3285. doi:10.1039/C7RA12683B
  • Zou Y, Song Y, Yang WJ, et al. Galactose-installed photo-crosslinked pH-sensitive degradable micelles for active targeting chemotherapy of hepatocellular carcinoma in mice. J Control Release. 2014;193:154–161. doi:10.1016/j.jconrel.2014.05.016
  • Omid C, Jianjun C, Benjamin AT, et al. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci U S A. 2006;103(16):6315–6320. doi:10.1073/pnas.0601755103
  • Yang L, Song X, Gong T, et al. Enhanced anti-tumor and anti-metastasis efficacy against breast cancer with an intratumoral injectable phospholipids-based phase separation gel co-loaded with 5-fluotouracil and magnesium oxide by neutralizing acidic microenvironment. Int J Pharm. 2018;547(1–2):181–189. doi:10.1016/j.ijpharm.2018.05.072
  • Lun Wong H, Mike Rauth A, Bendayan R, Wu XY. In vivo evaluation of a new polymer-lipid hybrid nanoparticle (PLN) formulation of doxorubicin in a murine solid tumor model. Eur J Pharm Biopharm. 2007;65(3):300–308. doi:10.1016/j.ejpb.2006.10.022
  • Kyoo Seong S, Man Ryu J, Hyuk Shin D, et al. Biodistribution and excretion of radioactivity after the administration of 166 Ho-chitosan complex (DW-166HC) into the prostate of rat. Eur J Nucl Med Mol Imaging. 2005;32(8):910–917. doi:10.1007/s00259-005-1792-1
  • Geng F, Song K, Xing JZ, et al. Thio-glucose bound gold nanoparticles enhance radio-cytotoxic targeting of ovarian cancer. Nanotechnology. 2011;22(28):285101. doi:10.1088/0957-4484/22/28/285101
  • Yoon HY, Koo H, Choi KY, et al. Tumor-targeting hyaluronic acid nanoparticles for photodynamic imaging and therapy. Biomaterials. 2012;3315:3980–3989. doi:10.1016/j.biomaterials.2012.02.016
  • Nakajo M, Kobayashi H, Shimabukuro K, et al. Biodistribution and in vivo kinetics of iodine-131 lipiodol infused via the hepatic artery of patients with hepatic cancer. J Nucl Med. 1988;29(6):1066–1077.
  • Suzuki YS, Momose Y, Higashi N, et al. Biodistribution and kinetics of holmium-166-chitosan complex (DW-166HC) in rats and mice. J Nucl Med. 1998;39(12):2161–2166.
  • Li D, Hu D, Xu H, et al. Progress and perspective of microneedle system for anti-cancer drug delivery. Biomaterials. 2021;264:120410. doi:10.1016/j.biomaterials.2020.120410
  • Marabelle A, Kohrt H, Caux C, et al. Intratumoral immunization: a new paradigm for cancer therapy. Clin Cancer Res. 2014;20(7):1747–1756. doi:10.1158/1078-0432.CCR-13-2116
  • Corrales L, Glickman LH, McWhirter SM, et al. Direct activation of sting in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep. 2015;11(7):1018–1030. doi:10.1016/j.celrep.2015.04.031
  • Macedo N, Miller DM, Haq R, et al. Clinical landscape of oncolytic virus research in 2020. J Immunother Cancer. 2020;8(2):e001486. doi:10.1136/jitc-2020-001486
  • Lee KL, Murray AA, Le DHT, et al. Combination of Plant Virus Nanoparticle-Based in Situ Vaccination with Chemotherapy Potentiates Antitumor Response. Nano Lett. 2017;17(7):4019–4028. doi:10.1021/acs.nanolett.7b00107
  • Jiang X, Wang J, Zheng X, et al. Intratumoral administration of STINGactivating nanovaccine enhances T cell immunotherapy. J Immunother Cancer. 2022;10(5):e003960. doi:10.1136/jitc-2021-003960
  • Mohsen MO, Heath M, Kramer MF, et al. In situ delivery of nanoparticles formulated with micron-sized crystals protects from murine melanoma. J Immunother Cancer. 2022;10(9):e004643. doi:10.1136/jitc-2022-004643
  • Liu JQ, Zhu J, Hu A. Is AAV-delivered IL-27 a potential immunotherapeutic for cancer? Am J Cancer Res. 2020;10(11):3565–3574.
  • Liu J-Q, Zhang C, Zhang X, et al. Intratumoral delivery of IL-12 and IL-27 mRNA using lipid nanoparticles for cancer immunotherapy. J Control Release. 2022;345:306–313. doi:10.1016/j.jconrel.2022.03.021
  • Link BK, Ballas ZK, Weisdorf D, et al. Oligodeoxynucleotide CpG 7909 delivered as intravenous infusion demonstrates immunologic modulation in patients with previously treated non-Hodgkin lymphoma. J Immunother. 2006;29(5):558–568. doi:10.1097/01.cji.0000211304.60126.8f
  • Maurer T. Immunostimulatory CpG-DNA and PSApeptide vaccination elicits profound cytotoxic T cell responses. Urol Oncol. 2013;31(7):1395–1401. doi:10.1016/j.urolonc.2011.09.002
  • Zhang X, Fengbo W, Men K, et al. Modified Fe3O4 Magnetic Nanoparticle Delivery of CpG Inhibits Tumor Growth and Spontaneous Pulmonary Metastases to Enhance Immunotherapy. Nanoscale Res Lett. 2018;13(1):240. doi:10.1186/s11671-018-2661-8
  • Celli JP, Spring BQ, Rizvi I, et al. Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. Chem Rev. 2010;110(5):2795–2838. doi:10.1021/cr900300p
  • Chen Q, Wen J, Li H, Xu Y, Liu F, Sun S. Recent advances in different modal imaging-guided photothermal therapy. Biomaterials. 2016;106:144–166. doi:10.1016/j.biomaterials.2016.08.022
  • Robertson CA, Hawkins Evans D, Abrahamse H. Photodynamic therapy (PDT): a short review on cellular mechanisms and cancer research applications for PDT. J Photochem Photobiol B. 2009;96(1):1–8. doi:10.1016/j.jphotobiol.2009.04.001
  • Dickerson EB, Dreaden EC, Huang X, et al. Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett. 2008;269(1):57–66. doi:10.1016/j.canlet.2008.04.026
  • Niidome T, Yamagata M, Okamoto Y, et al. PEG-modified gold nanorods with a stealth character for in vivo applications. J Control Release. 2006;114(3):343–347. doi:10.1016/j.jconrel.2006.06.017
  • De Jong WH, Hagens WI, Krystek P, Burger MC, Sips AJ, Geertsma RE. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials. 2008;29(12):1912–1919. doi:10.1016/j.biomaterials.2007.12.037
  • Green HN, Crockett SD, Martyshkin DV, et al. A histological evaluation and in vivo assessment of intratumoral near infrared photothermal nanotherapy-induced tumor regression. Int J Nanomed. 2014;9:5093–5102. doi:10.2147/IJN.S60648
  • Wang C, Tao H, Cheng L, Liu Z. Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles. Biomaterials. 2011;32(26):6145–6154. doi:10.1016/j.biomaterials.2011.05.007
  • Zhue D, Zhengb Z, Luo G, et al. Single injection and multiple treatments: an injectable nanozyme hydrogel as AIEgen reservoir and release controller for efficient tumor therapy. Nano Today. 2021;37:101091. doi:10.1016/j.nantod.2021.101091
  • Von Maltzahn G, Park JH, Agrawal A, et al. Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res. 2009;69(9):3892–3900. doi:10.1158/0008-5472.CAN-08-4242
  • Choi J, Kim HY, Ju EJ, et al. Use of macrophages to deliver therapeutic and imaging contrast agents to tumors. Biomaterials. 2012;33(16):4195–4203. doi:10.1016/j.biomaterials.2012.02.022
  • Mooney R, Roma L, Zhao D, et al. Neural stem cell-mediated delivery of gold nanorods improves photothermal therapy. ACS Nano. 2014;8(12):12450–12460. doi:10.1021/nn505147w
  • Zhibin L, Huang H, Tang S, et al. Small Gold Nanorods Laden Macrophages for Enhanced Tumor Coverage in Photothermal Therapy. Biomaterials. 2016;74:144–154. doi:10.1016/j.biomaterials.2015.09.038
  • Sun J, Wen X, Liping L, et al. Ultrasmall Endogenous Biopolymer Nanoparticles for Magnetic Resonance /Photoacoustic Dual-Modal Imaging-Guided Photothermal Therapy. Nanoscale. 2018;10(22):10584–10595. doi:10.1039/C8NR01215F
  • Kobayashi T. Cancer hyperthermia using magnetic nanoparticles. Biotechnol J. 2011;6(11):1342–1347. doi:10.1002/biot.201100045
  • Johannsen M, Thiesen B, Jordan A, et al. Magnetic Fluid Hyperthermia (MFH) Reduces Prostate Cancer Growth in the Orthotopic Dunning R3327 Rat Model. Prostate. 2005;64(3):283–292. doi:10.1002/pros.20213
  • Kettering M, Richter H, Wiekhorst F, et al. Minimal-invasive magnetic heating of tumors does not alter intra-tumoral nanoparticle accumulation, allowing for repeated therapy sessions: an in vivo study in mice. Nanotechnology. 2011;22(50):505102. doi:10.1088/0957-4484/22/50/505102
  • Chauhan A, Midha S, Kumar R, et al. Rapid tumor inhibition via magnetic hyperthermia regulated by caspase 3 with time-dependent clearance of iron oxide nanoparticles. Biomater Sci. 2021;9(8):2972–2990. doi:10.1039/D0BM01705A
  • Ito A, Tanaka K, Kondo K, et al. Tumor regression by combined immunotherapy and hyperthermia using magnetic nanoparticles in an experimental subcutaneous murine melanoma. Cancer Sci. 2003;94(3):308–313. doi:10.1111/j.1349-7006.2003.tb01438.x
  • Tanaka K, Ito A, Kobayashi T, et al. Intratumoral injection of immature dendritic cells enhances antitumor effect of hyperthermia using magnetic nanoparticles. Int, J, Cancer. 2005;116(4):624–633. doi:10.1002/ijc.21061
  • Hilger I, Hiergeist R, Hergt R, et al. Thermal ablation of tumors using magnetic nanoparticles: an in vivo feasibility study. Invest Radiol. 2002;37(10):580–586. doi:10.1097/00004424-200210000-00008
  • Johannsen M, Gneveckow U, Eckelt L, et al. Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique. Int J Hyperther. 2005;21(7):637–647. doi:10.1080/02656730500158360
  • Hashimoto T, Yuba E, Harada A, Kono K. Preparation of photothermal-chemotherapy nanohybrids by complexation of gold nanorods with polyamidoamine dendrimers having poly(ethylene glycol) and hydrophobic chains. J Mater Chem B. 2020;8(14):2826–2833. doi:10.1039/C9TB02163A
  • Kossatz S, Grandke J, Couleaud P, et al. Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery. Breast Cancer Res. 2015;17(1):66. doi:10.1186/s13058-015-0576-1
  • Wang D, Wan Z, Yang Q, et al. Sonodynamical reversion of immunosuppressive microenvironment in prostate cancer via engineered exosomes. Drug Deliv. 2022;29(1):702–713. doi:10.1080/10717544.2022.2044937
  • Tingting L, Zhang M, Wang J, et al. Thermosensitive Hydrogel Co-loaded with Gold Nanoparticles and Doxorubicin for Effective Chemoradiotherapy. AAPS J. 2016;18(1):146–155. doi:10.1208/s12248-015-9828-3
  • Wang Z, Liu B, Jingyao T, et al. PLGA Nanoparticles Loaded with Sorafenib Combined with Thermosensitive Hydrogel System and Microwave Hyperthermia for Multiple Sensitized Radiotherapy. Pharmaceutics. 2023;15(2):487. doi:10.3390/pharmaceutics15020487
  • Zeng W, Liu C, Wang S, Wang Z, Huang Q. SnFe2O4 Nanozyme Based TME Improvement System for Anti-Cancer Combination Thermoradiotherapy. Front Oncol. 2021;11:768829. doi:10.3389/fonc.2021.768829
  • Gogoi M, Jaiswal MK, Dev Sarma H, Bahadur D, Banerjee R. Biocompatibility and therapeutic evaluation of magnetic liposomes designed for self-controlled cancer hyperthermia and chemotherapy. Integr Biol (Camb). 2017;9(6):555–565. doi:10.1039/C6IB00234J
  • Manfred J, Burghard T, Uwe G, et al. Thermotherapy Using Magnetic Nanoparticles Combined With External Radiation in an Orthotopic Rat Model of Prostate Cancer. Prostate. 2006;66(1):97–104. doi:10.1002/pros.20324
  • Janic B, Brown SL, Neff R, et al. Gold Nanoparticle (AuNP) as a Therapeutic Enhancer for Radio – and Immunotherapy Therapy Combination in Triple Negative Breast Cancer. Int J Radiat Oncol Biol Phys. 2022;114(3):e522–e522. doi:10.1016/j.ijrobp.2022.07.2114
  • Banstola A, Pandit M, Duwa R, et al. Reactive oxygen species-responsive dual-targeted nanosystem promoted immunogenic cell death against breast cancer. Bioeng Transl Med. 2022;8(5):e10379. doi:10.1002/btm2.10379
  • Gorgizadeh M, Behzadpour N, Salehi F, et al. A MnFe2O4/C nanocomposite as a novel theranostic agent in MRI, sonodynamic therapy and photothermal therapy of a melanoma cancer model. Journal of Alloys and Compounds. 2020;816.
  • Yata T, Takahashi Y, Tan M, et al. DNA nanotechnology-based composite-type gold nanoparticle-immunostimulatory DNA hydrogel for tumor photothermal immunotherapy. Biomaterials. 2017;146:136–145. doi:10.1016/j.biomaterials.2017.09.014
  • Yang Z, Tao D, Zhong W, et al. Perfluorocarbon loaded fluorinated covalent organic polymers with effective sonosensitization and tumor hypoxia relief enable synergistic sonodynamic-immunotherapy. Biomaterials. 2022;280:121250. doi:10.1016/j.biomaterials.2021.121250
  • Xia ZJ, Chang JH, Zhang L, et al. Phase III randomized clinical trial of intratumoral injection of E1B gene-deleted adenovirus (H101) combined with cisplatin-based chemotherapy in treating squamous cell cancer of head and neck or esophagus. Chin J Cancer. 2004;23(12):1666e70.
  • Zhu HL, Xie P. The safety and short-term clinical observation of endoscopic intratumoral injection of recombinant human p53 adenovirus on advanced esophageal cancer. Pract J Clin Med. 2012;9(4):79e80.
  • Jenks N, Myers R, Greiner SM, et al. Safety studies on intrahepatic or intratumoral injection of oncolytic vesicular stomatitis virus expressing interferon-b in rodents and nonhuman primates. Hum Gene Ther. 2010;21:451e62. doi:10.1089/hum.2009.111
  • Mazzolini G, Alfaro C, Sangro B, et al. Intratumoral injection of dendritic cells engineered to secrete interleukin-12 by recombinant adenovirus in patients with metastatic gastrointestinal carcinomas. J Clin Oncol. 2005;23(5):999e1010. doi:10.1200/JCO.2005.00.463
  • Mehta HJ, Begnaud A, Penley AM, et al. Treatment of isolated mediastinal and hilar recurrence of lung cancer with bronchoscopic endobronchial ultrasound guided intratumoral injection of chemotherapy with cisplatin. Lung Cancer. 2015;90(3):542–547. doi:10.1016/j.lungcan.2015.10.009
  • Mehta HJ, Jantz MA. Endobronchial ultrasound-guided intratumoral injection of cisplatin for the treatment of isolated mediastinal recurrence of lung cancer. J Vis Exp. 2017;120:54855.
  • Andtbacka RH, Kaufman HL, Collichio F, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol. 2015;33(25):2780–2788. doi:10.1200/JCO.2014.58.3377
  • Kepp O, Marabelle A, Zitvogel L. Guido KroemerOncolysis without viruses - inducing systemic anticancer immune responses with local therapies. Nat Rev Clin Oncol. 2020;17(1):49–64. doi:10.1038/s41571-019-0272-7
  • Qutachi O, Wright EJ, Bray G, et al. Improved delivery of PLGA microparticles and microparticle-cell scaffolds in clinical needle gauges using modified viscosity formulations. Int J Pharm. 2018;546(1–2):272–278. doi:10.1016/j.ijpharm.2018.05.025
  • Nasiri R, Almaki JH, Idris A, et al. Targeted delivery of bromelain using dual mode nanoparticles: synthesis, physicochemical characterization, in vitro and in vivo evaluation. RSC Adv. 2017;7(64):40074–40094. doi:10.1039/C7RA06389J
  • Meiling Y, Zhang C, Tang Z, Tang X, Hui X. Intratumoral injection of gels containing losartan microspheres and (PLG-g-mPEG)-cisplatin nanoparticles improves drug penetration, retention and anti-tumor activity. Cancer Lett. 2019;442:396–408. doi:10.1016/j.canlet.2018.11.011
  • Melero I, Castanon E, Alvarez M, Champiat S, Marabelle A. Intratumoural administration and tumour tissue targeting of cancer immunotherapies. Nat Rev Clin Oncol. 2021;18(9):558–576. doi:10.1038/s41571-021-00507-y