119
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Ferroptosis in Cancer Therapy: Mechanisms, Small Molecule Inducers, and Novel Approaches

, , ORCID Icon, , , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 2485-2529 | Received 04 Apr 2024, Accepted 13 Jun 2024, Published online: 21 Jun 2024

References

  • Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA Cancer J Clin. 2024;74(1):12–49. doi:10.3322/caac.21820
  • Wu Y, Li Y, Gao Y, et al. Immunotherapies of acute myeloid leukemia: rationale, clinical evidence and perspective. Biomed Pharmacother. 2024;171:116132. doi:10.1016/j.biopha.2024.116132
  • Murayama T, Nakayama J, Jiang X, et al. Targeting DHX9 triggers tumor-intrinsic interferon response and replication stress in small cell lung cancer. Cancer Discov. 2024;14(3):468–491. doi:10.1158/2159-8290.Cd-23-0486
  • Xu B, Sun H, Liu S, et al. IFI35 limits antitumor immunity in triple-negative breast cancer via CCL2 secretion. Oncogene. 2024;43(10):693–702. doi:10.1038/s41388-023-02934-w
  • Shishido SN, Lin E, Nissen N, et al. Cancer-related cells and oncosomes in the liquid biopsy of pancreatic cancer patients undergoing surgery. NPJ Precis Oncol. 2024;8(1):36. doi:10.1038/s41698-024-00521-0
  • Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060–1072. doi:10.1016/j.cell.2012.03.042
  • Jiang X, Peng Q, Peng M, et al. Cellular metabolism: a key player in cancer ferroptosis. Cancer Commun. 2024;44(2):185–204. doi:10.1002/cac2.12519
  • Zhao X, Li X, Xu Y. Ferroptosis: a dual-edged sword in tumour growth. Front Pharmacol. 2023;14:1330910. doi:10.3389/fphar.2023.1330910
  • Yang Z, Wei X, Ji C, et al. OGT/HIF-2α axis promotes the progression of clear cell renal cell carcinoma and regulates its sensitivity to ferroptosis. iScience. 2023;26(11):108148. doi:10.1016/j.isci.2023.108148
  • Tang R, Wu Z, Rong Z, et al.. Ferroptosis-related lncRNA pairs to predict the clinical outcome and molecular characteristics of pancreatic ductal adenocarcinoma. Brief Bioinform. 2022;23(1). doi:10.1093/bib/bbab388
  • Li J, He D, Li S, Xiao J, Zhu Z. Ferroptosis: the emerging player in remodeling triple-negative breast cancer. Front Immunol. 2023;14:1284057. doi:10.3389/fimmu.2023.1284057
  • Mojarad-Jabali S, Mahdinloo S, Farshbaf M, et al. Transferrin receptor-mediated liposomal drug delivery: recent trends in targeted therapy of cancer. Expert Opin Drug Deliv. 2022;19(6):685–705. doi:10.1080/17425247.2022.2083106
  • Lee J, Roh JL. Epithelial-mesenchymal plasticity: implications for ferroptosis vulnerability and cancer therapy. Crit Rev Oncol Hematol. 2023;185:103964. doi:10.1016/j.critrevonc.2023.103964
  • Bae C, Hernández Millares R, Ryu S, et al. Synergistic effect of ferroptosis-inducing nanoparticles and X-ray irradiation combination therapy. Small. 2024;20:e2310873. doi:10.1002/smll.202310873
  • Shi TM, Chen XF, Ti H. Ferroptosis-based therapeutic strategies toward precision medicine for cancer. J Med Chem. 2024;67(4):2238–2263. doi:10.1021/acs.jmedchem.3c01749
  • Zhang DD. Ironing out the details of ferroptosis. Nat Cell Biol. 2024. doi:10.1038/s41556-024-01361-7
  • Hinokuma H, Kanamori Y, Ikeda K, et al. Distinct functions between ferrous and ferric iron in lung cancer cell growth. Cancer Sci. 2023;114(11):4355–4364. doi:10.1111/cas.15949
  • Hong X, Roh W, Sullivan RJ, et al. The lipogenic regulator SREBP2 induces transferrin in circulating melanoma cells and suppresses ferroptosis. Cancer Discov. 2021;11(3):678–695. doi:10.1158/2159-8290.Cd-19-1500
  • Han Y, Fu L, Kong Y, Jiang C, Huang L, Zhang H. STEAP3 affects ovarian cancer progression by regulating ferroptosis through the p53/SLC7A11 pathway. Mediators Inflamm. 2024;2024:4048527. doi:10.1155/2024/4048527
  • Aron AT, Loehr MO, Bogena J, Chang CJ. An endoperoxide reactivity-based FRET probe for ratiometric fluorescence imaging of labile iron pools in living cells. J Am Chem Soc. 2016;138(43):14338–14346. doi:10.1021/jacs.6b08016
  • Kirbas Cilingir E, Besbinar O, Giro L, et al. Small warriors of nature: novel red emissive chlorophyllin carbon dots harnessing Fenton-fueled ferroptosis for in vitro and in vivo cancer treatment. Small. 2024;20:e2309283. doi:10.1002/smll.202309283
  • Wang X, He M, Zhao Y, et al. Bimetallic PtPd atomic clusters as apoptosis/ferroptosis inducers for antineoplastic therapy through heterogeneous catalytic processes. ACS Nano. 2024. doi:10.1021/acsnano.3c11610
  • Wang Y, Ding H, Zheng Y, et al. Alleviated NCOA4-mediated ferritinophagy protected RA FLSs from ferroptosis in lipopolysaccharide-induced inflammation under hypoxia. Inflamm Res. 2024;73(3):363–379. doi:10.1007/s00011-023-01842-9
  • Ye L, Jin F, Kumar SK, Dai Y. The mechanisms and therapeutic targets of ferroptosis in cancer. Expert Opin Ther Targets. 2021;25(11):965–986. doi:10.1080/14728222.2021.2011206
  • Ye L, Wen X, Qin J, et al. Metabolism-regulated ferroptosis in cancer progression and therapy. Cell Death Dis. 2024;15(3):196. doi:10.1038/s41419-024-06584-y
  • Li X, Meng F, Wang H, et al. Iron accumulation and lipid peroxidation: implication of ferroptosis in hepatocellular carcinoma. Front Endocrinol (Lausanne). 2023;14:1319969. doi:10.3389/fendo.2023.1319969
  • Qiu B, Zandkarimi F, Bezjian CT, et al. Phospholipids with two polyunsaturated fatty acyl tails promote ferroptosis. Cell. 2024;187(5):1177–1190.e18. doi:10.1016/j.cell.2024.01.030
  • Samovich SN, Mikulska-Ruminska K, Dar HH, et al. Strikingly high activity of 15-Lipoxygenase towards di-polyunsaturated arachidonoyl/adrenoyl-phosphatidylethanolamines generates peroxidation signals of ferroptotic cell death. Angew Chem Int Ed Engl. 2024;63(9):e202314710. doi:10.1002/anie.202314710
  • Bai XY, Liu XL, Deng ZZ, et al. Ferroptosis is a new therapeutic target for spinal cord injury. Front Neurosci. 2023;17:1136143. doi:10.3389/fnins.2023.1136143
  • Fang X, Ardehali H, Min J, Wang F. The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease. Nat Rev Cardiol. 2023;20(1):7–23. doi:10.1038/s41569-022-00735-4
  • Huang Y, Sarkhel S, Roy A, Mohan A. Interrelationship of lipid aldehydes (MDA, 4-HNE, and 4-ONE) mediated protein oxidation in muscle foods. Crit Rev Food Sci Nutr. 2023;1–17. doi:10.1080/10408398.2023.2245029
  • Zou Y, Li H, Graham ET, et al. Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis. Nat Chem Biol. 2020;16(3):302–309. doi:10.1038/s41589-020-0472-6
  • Zheng X, Zhang C. The regulation of ferroptosis by noncoding RNAs. Int J Mol Sci. 2023;24:17.
  • Liu L, Ye Y, Lin R, et al. Ferroptosis: a promising candidate for exosome-mediated regulation in different diseases. Cell Commun Signal. 2024;22(1):6. doi:10.1186/s12964-023-01369-w
  • Lara O, Janssen P, Mambretti M, et al. Compartmentalized role of xCT in supporting pancreatic tumor growth, inflammation and mood disturbance in mice. Brain Behav Immun. 2024;118:275–286. doi:10.1016/j.bbi.2024.03.001
  • Kang YP, Mockabee-Macias A, Jiang C, et al. Non-canonical glutamate-cysteine ligase activity protects against ferroptosis. Cell Metab. 2021;33(1):174–189.e7. doi:10.1016/j.cmet.2020.12.007
  • Zhang H, Pan J, Huang S, et al. Hydrogen sulfide protects cardiomyocytes from doxorubicin-induced ferroptosis through the SLC7A11/GSH/GPx4 pathway by Keap1 S-sulfhydration and Nrf2 activation. Redox Biol. 2024;70:103066. doi:10.1016/j.redox.2024.103066
  • Zhang XD, Liu ZY, Wang MS, et al. Mechanisms and regulations of ferroptosis. Front Immunol. 2023;14:1269451. doi:10.3389/fimmu.2023.1269451
  • Alborzinia H, Chen Z, Yildiz U, et al. LRP8-mediated selenocysteine uptake is a targetable vulnerability in MYCN-amplified neuroblastoma. EMBO Mol Med. 2023;15(8):e18014. doi:10.15252/emmm.202318014
  • Miao H, Meng H, Zhang Y, Chen T, Zhang L, Cheng W. FSP1 inhibition enhances olaparib sensitivity in BRCA-proficient ovarian cancer patients via a nonferroptosis mechanism. Cell Death Differ. 2024;31:497–510. doi:10.1038/s41418-024-01263-z
  • Fišar Z, Hroudová J. CoQ(10) and Mitochondrial dysfunction in alzheimer’s disease. Antioxidants (Basel). 2024;13:2.
  • Huo J, Xu Z, Hosoe K, et al. Coenzyme Q10 prevents senescence and dysfunction caused by oxidative stress in vascular endothelial cells. Oxid Med Cell Longev. 2018;2018:3181759. doi:10.1155/2018/3181759
  • Bersuker K, Hendricks JM, Li Z, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 2019;575:688–692. doi:10.1038/s41586-019-1705-2
  • Díaz M, Valdés-Baizabal C, de Pablo DP, Marin R. Age-dependent changes in Nrf2/Keap1 and target antioxidant protein expression correlate to lipoxidative adducts, and are modulated by dietary N-3 LCPUFA in the hippocampus of mice. Antioxidants (Basel). 2024;13:2.
  • Song Y, Qu Y, Mao C, Zhang R, Jiang D, Sun X. Post-translational modifications of Keap1: the state of the art. Front Cell Dev Biol. 2023;11:1332049. doi:10.3389/fcell.2023.1332049
  • Gong Z, Xue L, Li H, et al. Targeting Nrf2 to treat thyroid cancer. Biomed Pharmacother. 2024;173:116324. doi:10.1016/j.biopha.2024.116324
  • Li B, Nasser MI, Masood M, et al. Efficiency of traditional Chinese medicine targeting the Nrf2/HO-1 signaling pathway. Biomed Pharmacother. 2020;126:110074. doi:10.1016/j.biopha.2020.110074
  • Zhang J, Zhang L, Yao G, Zhao H, Wu S. NRF2 is essential for iron-overload stimulated osteoclast differentiation through regulation of redox and iron homeostasis. Cell Biol Toxicol. 2023;39(6):3305–3321. doi:10.1007/s10565-023-09834-5
  • Jiang X, Gao H, Cao Y, et al. SiNPs induce ferroptosis in HUVECs through p38 inhibiting NrF2 pathway. Front Public Health. 2023;11:1024130. doi:10.3389/fpubh.2023.1024130
  • Liao P, Hemmerlin A, Bach TJ, Chye ML. The potential of the mevalonate pathway for enhanced isoprenoid production. Biotechnol Adv. 2016;34(5):697–713. doi:10.1016/j.biotechadv.2016.03.005
  • Lee J, Roh JL. Targeting GPX4 in human cancer: implications of ferroptosis induction for tackling cancer resilience. Cancer Lett. 2023;559:216119. doi:10.1016/j.canlet.2023.216119
  • Zheng J, Conrad M. The Metabolic Underpinnings of Ferroptosis. Cell Metab. 2020;32(6):920–937. doi:10.1016/j.cmet.2020.10.011
  • Peuget S, Zhou X, Selivanova G. Translating p53-based therapies for cancer into the clinic. Nat Rev Cancer. 2024;24(3):192–215. doi:10.1038/s41568-023-00658-3
  • Zhao C, Yu Y, Yin G, et al. Sulfasalazine promotes ferroptosis through AKT-ERK1/2 and P53-SLC7A11 in rheumatoid arthritis. Inflammopharmacology. 2024;32:1277–1294. doi:10.1007/s10787-024-01439-6
  • Liu C, Shen Y, Cavdar O, Huang J, Fang H. Angiotensin II-induced vascular endothelial cells ferroptosis via P53-ALOX12 signal axis. Clin Exp Hypertens. 2023;45(1):2180019. doi:10.1080/10641963.2023.2180019
  • Zhu T, Liu B, Wu D, Xu G, Fan Y. Autophagy regulates VDAC3 Ubiquitination by FBXW7 to promote erastin-induced ferroptosis in acute lymphoblastic leukemia. Front Cell Dev Biol. 2021;9:740884. doi:10.3389/fcell.2021.740884
  • Luo M, Wu L, Zhang K, et al. miR-137 regulates ferroptosis by targeting glutamine transporter SLC1A5 in melanoma. Cell Death Differ. 2018;25(8):1457–1472. doi:10.1038/s41418-017-0053-8
  • Sun X, Ou Z, Chen R, et al. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology. 2016;63(1):173–184. doi:10.1002/hep.28251
  • Yang WS, SriRamaratnam R, Welsch ME, et al. Regulation of ferroptotic cancer cell death by GPX4. Cell. 2014;156(1–2):317–331. doi:10.1016/j.cell.2013.12.010
  • Ferrada L, Barahona MJ, Vera M, Stockwell BR, Nualart F. Dehydroascorbic acid sensitizes cancer cells to system x(c)(-) inhibition-induced ferroptosis by promoting lipid droplet peroxidation. Cell Death Dis. 2023;14(9):637. doi:10.1038/s41419-023-06153-9
  • Fang Y, Tan Q, Zhou H, Xu J, Gu Q. Discovery and optimization of 2-(trifluoromethyl)benzimidazole derivatives as novel ferroptosis inducers in vitro and in vivo. Eur J Med Chem. 2023;245(Pt 1):114905. doi:10.1016/j.ejmech.2022.114905
  • Wang W, Ma F, Cheung YT, et al. Marine alkaloid lepadins E and H induce ferroptosis for cancer chemotherapy. J Med Chem. 2023;66(16):11201–11215. doi:10.1021/acs.jmedchem.3c00659
  • Yin LB, Li ZW, Wang JL, et al. Sulfasalazine inhibits esophageal cancer cell proliferation by mediating ferroptosis. Chem Biol Drug Des. 2023;102(4):730–737. doi:10.1111/cbdd.14281
  • Zhang D, Zhang M, Pang Y, Li M, Ma W. Folic acid-modified long-circulating liposomes loaded with sulfasalazine for targeted induction of ferroptosis in melanoma. ACS Biomater Sci Eng. 2024;10(1):588–598. doi:10.1021/acsbiomaterials.3c01223
  • Ignarro RS, Facchini G, Vieira AS, et al. Sulfasalazine intensifies temozolomide cytotoxicity in human glioblastoma cells. Mol Cell Biochem. 2016;418(1–2):167–178. doi:10.1007/s11010-016-2742-x
  • Guo L, Hu C, Yao M, Han G. Mechanism of sorafenib resistance associated with ferroptosis in HCC. Front Pharmacol. 2023;14:1207496. doi:10.3389/fphar.2023.1207496
  • Zhou X, Zou L, Chen W, et al. Flubendazole, FDA-approved anthelmintic, elicits valid antitumor effects by targeting P53 and promoting ferroptosis in castration-resistant prostate cancer. Pharmacol Res. 2021;164:105305. doi:10.1016/j.phrs.2020.105305
  • Zhang J, Gao M, Niu Y, Sun J. From DNMT1 degrader to ferroptosis promoter: drug repositioning of 6-Thioguanine as a ferroptosis inducer in gastric cancer. Biochem Biophys Res Commun. 2022;603:75–81. doi:10.1016/j.bbrc.2022.03.026
  • Yang J, Zhou Y, Xie S, et al. Metformin induces Ferroptosis by inhibiting UFMylation of SLC7A11 in breast cancer. J Exp Clin Cancer Res. 2021;40(1):206. doi:10.1186/s13046-021-02012-7
  • Deng C, Xiong L, Chen Y, Wu K, Wu J. Metformin induces ferroptosis through the Nrf2/HO-1 signaling in lung cancer. BMC Pulm Med. 2023;23(1):360. doi:10.1186/s12890-023-02655-6
  • Liang X, Hu C, Han M, et al. Solasonine inhibits pancreatic cancer progression with involvement of ferroptosis induction. Front Oncol. 2022;12:834729. doi:10.3389/fonc.2022.834729
  • Cui X, Gong Y, Ge J, et al. α-Solanine induces ferroptosis in nasopharyngeal carcinoma via targeting HSP90α/p53 axis. J Funct Foods. 2023;104:105517. doi:10.1016/j.jff.2023.105517
  • Tang X, Ding H, Liang M, et al. Curcumin induces ferroptosis in non-small-cell lung cancer via activating autophagy. Thorac Cancer. 2021;12(8):1219–1230. doi:10.1111/1759-7714.13904
  • Cao X, Li Y, Wang Y, et al. Curcumin suppresses tumorigenesis by ferroptosis in breast cancer. PLoS One. 2022;17(1):e0261370. doi:10.1371/journal.pone.0261370
  • Li S, He Y, Chen K, et al. RSL3 Drives Ferroptosis through NF-κB pathway activation and GPX4 depletion in glioblastoma. Oxid Med Cell Longev. 2021;2021:2915019. doi:10.1155/2021/2915019
  • Xing K, Bian X, Shi D, et al. miR-612 Enhances RSL3-Induced Ferroptosis of Hepatocellular Carcinoma Cells via Mevalonate Pathway. J Hepatocell Carcinoma. 2023;10:2173–2185. doi:10.2147/jhc.S433332
  • Xu C, Xiao Z, Wang J, et al. Discovery of a potent glutathione peroxidase 4 inhibitor as a selective ferroptosis inducer. J Med Chem. 2021;64(18):13312–13326. doi:10.1021/acs.jmedchem.1c00569
  • Randolph JT, O’Connor MJ, Han F, et al. Discovery of a potent chloroacetamide GPX4 inhibitor with bioavailability to enable target engagement in mice, a potential tool compound for inducing ferroptosis in vivo. J Med Chem. 2023;66(6):3852–3865. doi:10.1021/acs.jmedchem.2c01415
  • Weïwer M, Bittker JA, Lewis TA, et al. Development of small-molecule probes that selectively kill cells induced to express mutant RAS. Bioorg Med Chem Lett. 2012;22(4):1822–1826. doi:10.1016/j.bmcl.2011.09.047
  • Chen T, Leng J, Tan J, et al. Discovery of novel potent covalent glutathione peroxidase 4 inhibitors as highly selective ferroptosis inducers for the treatment of triple-negative breast cancer. J Med Chem. 2023;66(14):10036–10059. doi:10.1021/acs.jmedchem.3c00967
  • Zhang X, Guo Y, Li H, Han L. FIN56, a novel ferroptosis inducer, triggers lysosomal membrane permeabilization in a TFEB-dependent manner in glioblastoma. J Cancer. 2021;12(22):6610–6619. doi:10.7150/jca.58500
  • Liu J, Li J, Kang R, Tang D. Cell type-specific induction of ferroptosis to boost antitumor immunity. Oncoimmunology. 2023;12(1):2282252. doi:10.1080/2162402x.2023.2282252
  • Cao Y, Wu B, Xu Y, et al. Discovery of GPX4 inhibitors through FP-based high-throughput screening. Eur J Med Chem. 2024;265:116044. doi:10.1016/j.ejmech.2023.116044
  • Liu H, Forouhar F, Lin AJ, et al. Small-molecule allosteric inhibitors of GPX4. Cell Chem Biol. 2022;29(12):1680–1693.e9. doi:10.1016/j.chembiol.2022.11.003
  • Wang L, Cai H, Hu Y, et al. A pharmacological probe identifies cystathionine β-synthase as a new negative regulator for ferroptosis. Cell Death Dis. 2018;9(10):1005. doi:10.1038/s41419-018-1063-2
  • Rodman SN, Spence JM, Ronnfeldt TJ, et al. Enhancement of radiation response in breast cancer stem cells by inhibition of thioredoxin- and glutathione-dependent metabolism. Radiat Res. 2016;186(4):385–395. doi:10.1667/rr14463.1
  • Kitsugi K, Noritake H, Matsumoto M, et al. Simvastatin inhibits hepatic stellate cells activation by regulating the ferroptosis signaling pathway. Biochim Biophys Acta Mol Basis Dis. 2023;1869(7):166750. doi:10.1016/j.bbadis.2023.166750
  • Shueng PW, Chan HW, Lin WC, Kuo DY, Chuang HY. Orlistat resensitizes sorafenib-resistance in hepatocellular carcinoma cells through modulating metabolism. Int J Mol Sci. 2022;23(12):6501. doi:10.3390/ijms23126501
  • Zhou W, Zhang J, Yan M, et al. Orlistat induces ferroptosis-like cell death of lung cancer cells. Front Med. 2021;15(6):922–932. doi:10.1007/s11684-020-0804-7
  • Lee J, Roh JL. Targeting Nrf2 for ferroptosis-based therapy: implications for overcoming ferroptosis evasion and therapy resistance in cancer. Biochim Biophys Acta Mol Basis Dis. 2023;1869(7):166788. doi:10.1016/j.bbadis.2023.166788
  • Chen H, Zhao R, Ge M, Sun Y, Li Y, Shan L. Gliotoxin, a natural product with ferroptosis inducing properties. Bioorg Chem. 2023;133:106415. doi:10.1016/j.bioorg.2023.106415
  • Zhou C, Yu T, Zhu R, et al. Timosaponin AIII promotes non-small-cell lung cancer ferroptosis through targeting and facilitating HSP90 mediated GPX4 ubiquitination and degradation. Int J Biol Sci. 2023;19(5):1471–1489. doi:10.7150/ijbs.77979
  • Zhu JM, Chen C, Kong M, et al. Discovery and optimization of indirubin derivatives as novel ferroptosis inducers for the treatment of colon cancer. Eur J Med Chem. 2023;261:115829. doi:10.1016/j.ejmech.2023.115829
  • Greco G, Schnekenburger M, Catanzaro E, et al. Discovery of sulforaphane as an inducer of ferroptosis in U-937 leukemia cells: expanding its anticancer potential. Cancers. 2021;14(1):76. doi:10.3390/cancers14010076
  • Cheu JW, Lee D, Li Q, et al. Ferroptosis suppressor protein 1 inhibition promotes tumor ferroptosis and anti-tumor immune responses in liver cancer. Cell Mol Gastroenterol Hepatol. 2023;16(1):133–159. doi:10.1016/j.jcmgh.2023.03.001
  • Nakamura T, Hipp C, Santos Dias Mourão A, et al.. Phase separation of FSP1 promotes ferroptosis. Nature. 2023:619(7969):371–377. doi:10.1038/s41586-023-06255-6
  • Hendricks JM, Doubravsky CE, Wehri E, et al. Identification of structurally diverse FSP1 inhibitors that sensitize cancer cells to ferroptosis. Cell Chem Biol. 2023;30(9):1090–1103.e7. doi:10.1016/j.chembiol.2023.04.007
  • Nakamura T, Mishima E, Yamada N, et al. Integrated chemical and genetic screens unveil FSP1 mechanisms of ferroptosis regulation. Nat Struct Mol Biol. 2023;30(11):1806–1815. doi:10.1038/s41594-023-01136-y
  • Yoshioka H, Kawamura T, Muroi M, et al. Identification of a small molecule that enhances ferroptosis via inhibition of ferroptosis suppressor protein 1 (FSP1). ACS Chem Biol. 2022;17(2):483–491. doi:10.1021/acschembio.2c00028
  • Chen J, Zhou S, Zhang X, Zhao H. S-3’-hydroxy-7’, 2’, 4’-trimethoxyisoxane, a novel ferroptosis inducer, promotes NSCLC cell death through inhibiting Nrf2/HO-1 signaling pathway. Front Pharmacol. 2022;13:973611. doi:10.3389/fphar.2022.973611
  • Gjorgieva Ackova D, Maksimova V, Smilkov K, Buttari B, Arese M, Saso L. Alkaloids as Natural NRF2 inhibitors: chemoprevention and cytotoxic action in cancer. Pharmaceuticals (Basel). 2023;16:6.
  • Gai C, Yu M, Li Z, et al. Acetaminophen sensitizing erastin-induced ferroptosis via modulation of Nrf2/heme oxygenase-1 signaling pathway in non-small-cell lung cancer. J Cell Physiol. 2020;235(4):3329–3339. doi:10.1002/jcp.29221
  • Liu J, Lin WP, Su W, et al. Sunitinib attenuates reactive MDSCs enhancing anti-tumor immunity in HNSCC. Int Immunopharmacol. 2023;119:110243. doi:10.1016/j.intimp.2023.110243
  • Kong N, Chen X, Feng J, et al. Baicalin induces ferroptosis in bladder cancer cells by downregulating FTH1. Acta Pharm Sin B. 2021;11(12):4045–4054. doi:10.1016/j.apsb.2021.03.036
  • Li J, Wei S, Marabada D, Wang Z, Huang Q. Research Progress of Natural Matrine Compounds and Synthetic Matrine Derivatives. Molecules. 2023;28(15):1.
  • Zhu X, Chen X, Qiu L, Zhu J, Wang J. Norcantharidin induces ferroptosis via the suppression of NRF2/HO-1 signaling in ovarian cancer cells. Oncol Lett. 2022;24(4):359. doi:10.3892/ol.2022.13479
  • Liu X, Peng X, Cen S, Yang C, Ma Z, Shi X. Wogonin induces ferroptosis in pancreatic cancer cells by inhibiting the Nrf2/GPX4 axis. Front Pharmacol. 2023;14:1129662. doi:10.3389/fphar.2023.1129662
  • Liu J, Yang G, Zhang H. Glyphosate-triggered hepatocyte ferroptosis via suppressing Nrf2/GSH/GPX4 axis exacerbates hepatotoxicity. Sci Total Environ. 2023;862:160839. doi:10.1016/j.scitotenv.2022.160839
  • He X, Zhou Y, Chen W, et al. Repurposed pizotifen malate targeting NRF2 exhibits anti-tumor activity through inducing ferroptosis in esophageal squamous cell carcinoma. Oncogene. 2023;42(15):1209–1223. doi:10.1038/s41388-023-02636-3
  • Zhu X, Huang N, Ji Y, et al. Brusatol induces ferroptosis in oesophageal squamous cell carcinoma by repressing GSH synthesis and increasing the labile iron pool via inhibition of the NRF2 pathway. Biomed Pharmacother. 2023;167:115567. doi:10.1016/j.biopha.2023.115567
  • Ma S, Henson ES, Chen Y, Gibson SB. Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells. Cell Death Dis. 2016;7(7):e2307. doi:10.1038/cddis.2016.208
  • Xiang Y, Chen X, Wang W, et al. Natural product erianin inhibits bladder cancer cell growth by inducing ferroptosis via NRF2 inactivation. Front Pharmacol. 2021;12:775506. doi:10.3389/fphar.2021.775506
  • Li ZJ, Dai HQ, Huang XW, et al. Artesunate synergizes with sorafenib to induce ferroptosis in hepatocellular carcinoma. Acta Pharmacol Sin. 2021;42(2):301–310. doi:10.1038/s41401-020-0478-3
  • Kuang Y, Sechi M, Nurra S, Ljungman M, Neamati N. Design and Synthesis of Novel Reactive Oxygen Species Inducers for the Treatment of Pancreatic Ductal Adenocarcinoma. J Med Chem. 2018;61(4):1576–1594. doi:10.1021/acs.jmedchem.7b01463
  • Platzbecker U, Santini V, Fenaux P, et al. Imetelstat in patients with lower-risk myelodysplastic syndromes who have relapsed or are refractory to erythropoiesis-stimulating agents (IMerge): a multinational, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2024;403(10423):249–260. doi:10.1016/s0140-6736(23)01724-5
  • Qiu C, Zhang X, Huang B, et al. Disulfiram, a ferroptosis inducer, triggers lysosomal membrane permeabilization by up-regulating ROS in glioblastoma. Onco Targets Ther. 2020;13:10631–10640. doi:10.2147/ott.S272312
  • Cruz-Gregorio A, Aranda-Rivera AK. Quercetin and Ferroptosis. Life. 2023;13(8):1.
  • Oh M, Jang SY, Lee JY, et al. The lipoprotein-associated phospholipase A2 inhibitor Darapladib sensitises cancer cells to ferroptosis by remodelling lipid metabolism. Nat Commun. 2023;14(1):5728. doi:10.1038/s41467-023-41462-9
  • Yang L, Wang H, Yang X, et al. Auranofin mitigates systemic iron overload and induces ferroptosis via distinct mechanisms. Signal Transduct Target Ther. 2020;5(1):138. doi:10.1038/s41392-020-00253-0
  • Zhao H, Zhang M, Zhang J, et al. Hinokitiol-iron complex is a ferroptosis inducer to inhibit triple-negative breast tumor growth. Cell Biosci. 2023;13(1):87. doi:10.1186/s13578-023-01044-0
  • Huang D, Dong X, Li J, et al. Steroidal saponin SSPH I induces ferroptosis in HepG2 cells via regulating iron metabolism. Med Oncol. 2023;40(5):132. doi:10.1007/s12032-023-02000-1
  • Hu C, Zu D, Xu J, et al. Polyphyllin B suppresses gastric tumor growth by modulating iron metabolism and inducing ferroptosis. Int J Biol Sci. 2023;19(4):1063–1079. doi:10.7150/ijbs.80324
  • Wang S, Ren H, Fan C, Lin Q, Liu M, Tian J. Ochratoxin A induces renal cell ferroptosis by disrupting iron homeostasis and increasing ROS. J Agric Food Chem. 2024;72(3):1734–1744. doi:10.1021/acs.jafc.3c04495
  • Zhang Y, Yang Y, Chen W, et al. BaP/BPDE suppressed endothelial cell angiogenesis to induce miscarriage by promoting MARCHF1/GPX4-mediated ferroptosis. Environ Int. 2023;180:108237. doi:10.1016/j.envint.2023.108237
  • Du J, Krishnamoorthy K, Ramabhai V, Yang D. Targeting ferroptosis as a therapeutic implication in lung cancer treatment by a novel naphthoquinone inducer: juglone. Mol Biotechnol. 2023. doi:10.1007/s12033-023-01004-6
  • Zhang Y, Tan Y, Liu S, et al. Implications of Withaferin A for the metastatic potential and drug resistance in hepatocellular carcinoma cells via Nrf2-mediated EMT and ferroptosis. Toxicol Mech Methods. 2023;33(1):47–55. doi:10.1080/15376516.2022.2075297
  • Liang T, Dong H, Wang Z, et al. Discovery of novel urea derivatives as ferroptosis and autophagy inducer for human colon cancer treatment. Eur J Med Chem. 2024;268:116277. doi:10.1016/j.ejmech.2024.116277
  • Kim YJ, Lim B, Kim SY, et al. Remodeling of sorafenib as an orally bioavailable ferroptosis inducer for Lung Cancer by chemical modification of adenine-binding motif. Biomed Pharmacother. 2024;176:116758. doi:10.1016/j.biopha.2024.116758
  • Ma F, Li Y, Cai M, et al. ML162 derivatives incorporating a naphthoquinone unit as ferroptosis/apoptosis inducers: design, synthesis, anti-cancer activity, and drug-resistance reversal evaluation. Eur J Med Chem. 2024;270:116387. doi:10.1016/j.ejmech.2024.116387
  • Wang R, Song W, Zhu J, et al. Biomimetic nano-chelate diethyldithiocarbamate Cu/Fe for enhanced metalloimmunity and ferroptosis activation in glioma therapy. J Control Release. 2024;368:84–96. doi:10.1016/j.jconrel.2024.02.004
  • Zheng Z, Zhang S, Liu X, et al.. LRRK2 regulates ferroptosis through the system Xc-GSH-GPX4 pathway in the neuroinflammatory mechanism of Parkinson’s disease. J Cell Physiol. 2024;239. doi:10.1002/jcp.31250
  • Dolma S, Lessnick SL, Hahn WC, Stockwell BR. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell. 2003;3(3):285–296. doi:10.1016/s1535-6108(03)00050-3
  • Zhang W, Li Q, Zhang Y, et al. Multiple myeloma with high expression of SLC7A11 is sensitive to erastin-induced ferroptosis. Apoptosis. 2024;29(3–4):412–423. doi:10.1007/s10495-023-01909-2
  • Huo H, Zhou Z, Qin J, Liu W, Wang B, Gu Y. Erastin disrupts mitochondrial permeability transition pore (mPTP) and induces apoptotic death of colorectal cancer cells. PLoS One. 2016;11(5):e0154605. doi:10.1371/journal.pone.0154605
  • Yu Y, Xie Y, Cao L, et al. The ferroptosis inducer erastin enhances sensitivity of acute myeloid leukemia cells to chemotherapeutic agents. Mol Cell Oncol. 2015;2(4):e1054549. doi:10.1080/23723556.2015.1054549
  • Li Y, Zeng X, Lu D, Yin M, Shan M, Gao Y. Erastin induces ferroptosis via ferroportin-mediated iron accumulation in endometriosis. Hum Reprod. 2021;36(4):951–964. doi:10.1093/humrep/deaa363
  • Song J, Wang H, Sheng J, et al. Vitexin attenuates chronic kidney disease by inhibiting renal tubular epithelial cell ferroptosis via NRF2 activation. Mol Med. 2023;29(1):147. doi:10.1186/s10020-023-00735-1
  • Xu C, Li S, Chen J, et al. Doxorubicin and erastin co-loaded hydroxyethyl starch-polycaprolactone nanoparticles for synergistic cancer therapy. J Control Release. 2023;356:256–271. doi:10.1016/j.jconrel.2023.03.001
  • Cheng Q, Bao L, Li M, Chang K, Yi X. Erastin synergizes with cisplatin via ferroptosis to inhibit ovarian cancer growth in vitro and in vivo. J Obstet Gynaecol Res. 2021;47(7):2481–2491. doi:10.1111/jog.14779
  • Chen L, Li X, Liu L, Yu B, Xue Y, Liu Y. Erastin sensitizes glioblastoma cells to temozolomide by restraining xCT and cystathionine-γ-lyase function. Oncol Rep. 2015;33(3):1465–1474. doi:10.3892/or.2015.3712
  • Woodley K, Dillingh LS, Giotopoulos G, et al. Mannose metabolism inhibition sensitizes acute myeloid leukaemia cells to therapy by driving ferroptotic cell death. Nat Commun. 2023;14(1):2132. doi:10.1038/s41467-023-37652-0
  • Liu ZY, Chen G, Wang X, et al. Synergistic photochemo effects based on light-activatable dual prodrug nanoparticles for effective cancer therapy. Adv Healthc Mater. 2023;12(27):e2301133. doi:10.1002/adhm.202301133
  • Larraufie MH, Yang WS, Jiang E, Thomas AG, Slusher BS, Stockwell BR. Incorporation of metabolically stable ketones into a small molecule probe to increase potency and water solubility. Bioorg Med Chem Lett. 2015;25(21):4787–4792. doi:10.1016/j.bmcl.2015.07.018
  • Zhang Y, Tan H, Daniels JD, et al. Imidazole ketone erastin induces ferroptosis and slows tumor growth in a mouse lymphoma model. Cell Chem Biol. 2019;26(5):623–633.e9. doi:10.1016/j.chembiol.2019.01.008
  • Nuzzo G, Gallo C, Crocetta F, et al. Identification of the marine alkaloid lepadin a as potential inducer of immunogenic cell death. Biomolecules. 2022;12(2):246. doi:10.3390/biom12020246
  • Zhou J, Wu J, Fu F, et al. α-Solanine attenuates chondrocyte pyroptosis to improve osteoarthritis via suppressing NF-κB pathway. J Cell Mol Med. 2024;28(4):e18132. doi:10.1111/jcmm.18132
  • Fekry MI, Ezzat SM, Salama MM, Alshehri OY, Al-Abd AM. Bioactive glycoalkaloides isolated from Solanum melongena fruit peels with potential anticancer properties against hepatocellular carcinoma cells. Sci Rep. 2019;9(1):1746. doi:10.1038/s41598-018-36089-6
  • Zou T, Gu L, Yang L, et al. Alpha-solanine anti-tumor effects in non-small cell lung cancer through regulating the energy metabolism pathway. Recent Pat Anticancer Drug Discov. 2022;17(4):396–409. doi:10.2174/1574892817666220113144635
  • Li TC, Chen NJ, Chen YY, He BJ, Zhou ZF. Solasonine induces apoptosis of the SGC-7901 human gastric cancer cell line in vitro via the mitochondria-mediated pathway. J Cell Mol Med. 2022;26(12):3387–3395. doi:10.1111/jcmm.17343
  • Zeng YY, Luo YB, Ju XD, et al. Solasonine causes redox imbalance and mitochondrial oxidative stress of ferroptosis in lung adenocarcinoma. Front Oncol. 2022;12:874900. doi:10.3389/fonc.2022.874900
  • Jin M, Shi C, Li T, Wu Y, Hu C, Huang G. Solasonine promotes ferroptosis of hepatoma carcinoma cells via glutathione peroxidase 4-induced destruction of the glutathione redox system. Biomed Pharmacother. 2020;129:110282. doi:10.1016/j.biopha.2020.110282
  • Gao TH, Liao W, Lin LT, et al. Curcumae rhizoma and its major constituents against hepatobiliary disease: pharmacotherapeutic properties and potential clinical applications. Phytomedicine. 2022;102:154090. doi:10.1016/j.phymed.2022.154090
  • Hesari A, Rezaei M, Rezaei M, et al. Effect of curcumin on glioblastoma cells. J Cell Physiol. 2019;234(7):10281–10288. doi:10.1002/jcp.27933
  • Chen H, Li Z, Xu J, et al. Curcumin induces ferroptosis in follicular thyroid cancer by upregulating HO-1 expression. Oxid Med Cell Longev. 2023;2023:6896790. doi:10.1155/2023/6896790
  • Zheng Y, Zhao T, Wang J, et al. Curcumol alleviates liver fibrosis through inducing autophagy and ferroptosis in hepatic stellate cells. FASEB j. 2022;36(12):e22665. doi:10.1096/fj.202200933RR
  • Cheng HP, Bao XW, Luo YY, et al. Sulfasalazine ameliorates lipopolysaccharide-induced acute lung injury by inhibiting oxidative stress and nuclear factor-kappaB pathways. Int J Biochem Cell Biol. 2024;169:106530. doi:10.1016/j.biocel.2024.106530
  • Wang F, Oudaert I, Tu C, et al. System Xc(-) inhibition blocks bone marrow-multiple myeloma exosomal crosstalk, thereby countering bortezomib resistance. Cancer Lett. 2022;535:215649. doi:10.1016/j.canlet.2022.215649
  • Takatani-Nakase T, Ikushima C, Sakitani M, Nakase I. Regulatory network of ferroptosis and autophagy by targeting oxidative stress defense using sulfasalazine in triple-negative breast cancer. Life Sci. 2024;339:122411. doi:10.1016/j.lfs.2023.122411
  • Giannitrapani L, Di Gaudio F, Cervello M, et al. Genetic biomarkers of sorafenib response in patients with hepatocellular carcinoma. Int J Mol Sci. 2024;25(4):2197. doi:10.3390/ijms25042197
  • Yuan S, Wei C, Liu G, et al. Sorafenib attenuates liver fibrosis by triggering hepatic stellate cell ferroptosis via HIF-1α/SLC7A11 pathway. Cell Prolif. 2022;55(1):e13158. doi:10.1111/cpr.13158
  • Zheng J, Sato M, Mishima E, Sato H, Proneth B, Conrad M. Sorafenib fails to trigger ferroptosis across a wide range of cancer cell lines. Cell Death Dis. 2021;12(7):698. doi:10.1038/s41419-021-03998-w
  • Hong T, Lei G, Chen X, et al. PARP inhibition promotes ferroptosis via repressing SLC7A11 and synergizes with ferroptosis inducers in BRCA-proficient ovarian cancer. Redox Biol. 2021;42:101928. doi:10.1016/j.redox.2021.101928
  • Yang WS, Stockwell BR. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol. 2008;15(3):234–245. doi:10.1016/j.chembiol.2008.02.010
  • Sui X, Zhang R, Liu S, et al. RSL3 Drives Ferroptosis Through GPX4 Inactivation and ROS Production in Colorectal Cancer. Front Pharmacol. 2018;9:1371. doi:10.3389/fphar.2018.01371
  • Chen H, Qi Q, Wu N, et al. Aspirin promotes RSL3-induced ferroptosis by suppressing mTOR/SREBP-1/SCD1-mediated lipogenesis in PIK3CA-mutant colorectal cancer. Redox Biol. 2022;55:102426. doi:10.1016/j.redox.2022.102426
  • Cheff DM, Huang C, Scholzen KC, et al. The ferroptosis inducing compounds RSL3 and ML162 are not direct inhibitors of GPX4 but of TXNRD1. Redox Biol. 2023;62:102703. doi:10.1016/j.redox.2023.102703
  • Liu S, Wu W, Chen Q, et al. TXNRD1: a key regulator involved in the ferroptosis of CML cells induced by cysteine depletion in vitro. Oxid Med Cell Longev. 2021;2021:7674565. doi:10.1155/2021/7674565
  • Eaton JK, Furst L, Ruberto RA, et al. Selective covalent targeting of GPX4 using masked nitrile-oxide electrophiles. Nat Chem Biol. 2020;16(5):497–506. doi:10.1038/s41589-020-0501-5
  • Hou DY, Cheng DB, Zhang NY, et al. In vivo assembly enhanced binding effect augments tumor specific ferroptosis therapy. Nat Commun. 2024;15(1):454. doi:10.1038/s41467-023-44665-2
  • Li J, Liu J, Zhou Z, et al. Tumor-specific GPX4 degradation enhances ferroptosis-initiated antitumor immune response in mouse models of pancreatic cancer. Sci Transl Med. 2023;15(720):eadg3049. doi:10.1126/scitranslmed.adg3049
  • Shimada K, Skouta R, Kaplan A, et al. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat Chem Biol. 2016;12(7):497–503. doi:10.1038/nchembio.2079
  • Fruehauf JP, Zonis S, al-Bassam M, et al. Selective and synergistic activity of L-S, R-buthionine sulfoximine on malignant melanoma is accompanied by decreased expression of glutathione-S-transferase. Pigment Cell Res. 1997;10(4):236–249. doi:10.1111/j.1600-0749.1997.tb00490.x
  • Ye M, Lu F, Chen J, et al. Orlistat induces ferroptosis in pancreatic neuroendocrine tumors by inactivating the MAPK pathway. J Cancer. 2023;14(8):1458–1469. doi:10.7150/jca.83118
  • Liu S, Zhang HL, Li J, et al. Tubastatin A potently inhibits GPX4 activity to potentiate cancer radiotherapy through boosting ferroptosis. Redox Biol. 2023;62:102677. doi:10.1016/j.redox.2023.102677
  • Baralić K, Živanović J, Marić Đ, et al. Sulforaphane-A compound with potential health benefits for disease prevention and treatment: insights from pharmacological and toxicological experimental studies. Antioxidants (Basel). 2024;13(2). doi:10.3390/antiox13020147
  • Li W, Liang L, Liu S, Yi H, Zhou Y. FSP1: a key regulator of ferroptosis. Trends Mol Med. 2023;29(9):753–764. doi:10.1016/j.molmed.2023.05.013
  • Bebber CM, von Karstedt S. FSP1 inhibition: pick your pocket. Nat Struct Mol Biol. 2023;30(11):1618–1619. doi:10.1038/s41594-023-01145-x
  • Doll S, Freitas FP, Shah R, et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 2019;575:693–698. doi:10.1038/s41586-019-1707-0
  • Zhou J, Zhang L, Yan J, Hou A, Sui W, Sun M. Curcumin Induces Ferroptosis in A549 CD133(+) Cells through the GSH-GPX4 and FSP1-CoQ10-NAPH Pathways. Discov Med. 2023;35(176):251–263. doi:10.24976/Discov.Med.202335176.26
  • Liu MR, Shi C, Song QY, et al.. Sorafenib induces ferroptosis by promoting TRIM54-mediated FSP1 ubiquitination and degradation in hepatocellular carcinoma. Hepatol Commun. 2023;7(10). doi:10.1097/HC9.0000000000000246
  • Kim JW, Kim MJ, Han TH, et al. FSP1 confers ferroptosis resistance in KEAP1 mutant non-small cell lung carcinoma in NRF2-dependent and -independent manner. Cell Death Dis. 2023;14(8):567. doi:10.1038/s41419-023-06070-x
  • Sun S, Shen J, Jiang J, Wang F, Min J. Targeting ferroptosis opens new avenues for the development of novel therapeutics. Signal Transduct Target Ther. 2023;8(1):372. doi:10.1038/s41392-023-01606-1
  • Yan R, Lin B, Jin W, Tang L, Hu S, Cai R. NRF2, a Superstar of Ferroptosis. Antioxidants (Basel). 2023;12(9):1.
  • Yu X, Wang Y, Tan J, et al. Inhibition of NRF2 enhances the acute myeloid leukemia cell death induced by venetoclax via the ferroptosis pathway. Cell Death Discov. 2024;10(1):35. doi:10.1038/s41420-024-01800-2
  • Kar A, Mukherjee SK, Barik S, Hossain ST. Antimicrobial activity of trigonelline hydrochloride against pseudomonas aeruginosa and its quorum-sensing regulated molecular mechanisms on biofilm formation and virulence. ACS Infect Dis. 2024;10(2):746–762. doi:10.1021/acsinfecdis.3c00617
  • Fouzder C, Mukhuty A, Mukherjee S, Malick C, Kundu R. Trigonelline inhibits Nrf2 via EGFR signalling pathway and augments efficacy of Cisplatin and Etoposide in NSCLC cells. Toxicol In Vitro. 2021;70:105038. doi:10.1016/j.tiv.2020.105038
  • Bajek-Bil A, Chmiel M, Włoch A, Stompor-Gorący M. Baicalin-current trends in detection methods and health-promoting properties. Pharmaceuticals (Basel). 2023;16(4):570. doi:10.3390/ph16040570
  • Wen RJ, Dong X, Zhuang HW, et al. Baicalin induces ferroptosis in osteosarcomas through a novel Nrf2/xCT/GPX4 regulatory axis. Phytomedicine. 2023;116:154881. doi:10.1016/j.phymed.2023.154881
  • Jin J, Fan Z, Long Y, et al. Matrine induces ferroptosis in cervical cancer through activation of piezo1 channel. Phytomedicine. 2024;122:155165. doi:10.1016/j.phymed.2023.155165
  • Chen MH, Gu YY, Zhang AL, Sze DM, Mo SL, May BH. Biological effects and mechanisms of matrine and other constituents of Sophora flavescens in colorectal cancer. Pharmacol Res. 2021;171:105778. doi:10.1016/j.phrs.2021.105778
  • Wang X, Zhu W, Xing M, Zhu H, Chen E, Zhou J. Matrine disrupts Nrf2/GPX4 antioxidant system and promotes hepatocyte ferroptosis. Chem Biol Interact. 2023;384:110713. doi:10.1016/j.cbi.2023.110713
  • Zhou Y, Fan X, Jiao T, et al. SIRT6 as a key event linking P53 and NRF2 counteracts APAP-induced hepatotoxicity through inhibiting oxidative stress and promoting hepatocyte proliferation. Acta Pharm Sin B. 2021;11(1):89–99. doi:10.1016/j.apsb.2020.06.016
  • Yamada N, Komada T, Ohno N, Takahashi M. Acetaminophen-induced hepatotoxicity: different mechanisms of Acetaminophen-induced ferroptosis and mitochondrial damage. Arch Toxicol. 2020;94(6):2255–2257. doi:10.1007/s00204-020-02722-5
  • Li D, Song C, Song C, et al. Sunitinib induces cardiotoxicity through modulating oxidative stress and Nrf2-dependent ferroptosis in vitro and in vivo. Chem Biol Interact. 2024;388:110829. doi:10.1016/j.cbi.2023.110829
  • Bruedigam C, Porter AH, Song A, et al. Imetelstat-mediated alterations in fatty acid metabolism to induce ferroptosis as a therapeutic strategy for acute myeloid leukemia. Nat Cancer. 2024;5(1):47–65. doi:10.1038/s43018-023-00653-5
  • Linkermann A. Telomerase inhibitor imetelstat kills AML cells via lipid ROS and ferroptosis. Nat Cancer. 2024;5(1):12–13. doi:10.1038/s43018-023-00654-4
  • Zeng M, Wu B, Wei W, et al. Disulfiram: a novel repurposed drug for cancer therapy. Chin Med J (Engl). 2024. doi:10.1097/cm9.0000000000002909
  • Xu Y, Lu L, Luo J, et al. Disulfiram alone functions as a radiosensitizer for pancreatic cancer both in vitro and in vivo. Front Oncol. 2021;11:683695. doi:10.3389/fonc.2021.683695
  • Wu L, Meng F, Dong L, et al. Disulfiram and BKM120 in combination with chemotherapy impede tumor progression and delay tumor recurrence in tumor initiating Cell-Rich TNBC. Sci Rep. 2019;9(1):236. doi:10.1038/s41598-018-35619-6
  • Wang H, Dong Z, Liu J, Zhu Z, Najafi M. Mechanisms of Cancer-killing by Quercetin; A Review on Cell Death Mechanisms. Anticancer Agents Med Chem. 2023;23(9):999–1012. doi:10.2174/1871520623666230120094158
  • Kiran KS, Kameshwar VH, Mudnakudu Nagaraju KK, et al. Diosmin: a Daboia russelii venom PLA(2)s inhibitor- purified, and characterized from Oxalis corniculata L medicinal plant. J Ethnopharmacol. 2024;318(Pt B):116977. doi:10.1016/j.jep.2023.116977
  • Ido Y, Muto N, Inada A, et al. Induction of apoptosis by hinokitiol, a potent iron chelator, in teratocarcinoma F9 cells is mediated through the activation of caspase-3. Cell Prolif. 1999;32(1):63–73. doi:10.1046/j.1365-2184.1999.3210063.x
  • Zhou JL, Huang XY, Qiu HC, et al. SSPH I, a novel anti-cancer saponin, inhibits autophagy and induces apoptosis via ROS Accumulation and ERK1/2 signaling pathway in hepatocellular carcinoma cells. Onco Targets Ther. 2020;13:5979–5991. doi:10.2147/ott.S253234
  • Lee HJ, Kim HD, Ryu D. Practical strategies to reduce ochratoxin A in foods. Toxins (Basel). 2024;16(1):58. doi:10.3390/toxins16010058
  • Zhang J, Fu M, Wu J, et al. The anti-glioma effect of juglone derivatives through ROS generation. Front Pharmacol. 2022;13:911760. doi:10.3389/fphar.2022.911760
  • Zhang W, Jiang B, Liu Y, Xu L, Wan M. Bufotalin induces ferroptosis in non-small cell lung cancer cells by facilitating the ubiquitination and degradation of GPX4. Free Radic Biol Med. 2022;180:75–84. doi:10.1016/j.freeradbiomed.2022.01.009
  • Xing Z, Su A, Mi L, et al. Withaferin A: a dietary supplement with promising potential as an anti-tumor therapeutic for cancer treatment - pharmacology and mechanisms. Drug Des Devel Ther. 2023;17:2909–2929. doi:10.2147/dddt.S422512
  • Du J, Wang X, Li Y, et al. DHA exhibits synergistic therapeutic efficacy with cisplatin to induce ferroptosis in pancreatic ductal adenocarcinoma via modulation of iron metabolism. Cell Death Dis. 2021;12(7):705. doi:10.1038/s41419-021-03996-y
  • Hsu WT, Huang CY, Yen CYT, Cheng AL, Hsieh PCH. The HER2 inhibitor lapatinib potentiates doxorubicin-induced cardiotoxicity through iNOS signaling. Theranostics. 2018;8(12):3176–3188. doi:10.7150/thno.23207
  • Zhang S, Liu Z, Xia T, et al. Ginkgolic acid inhibits the expression of SAE1 and induces ferroptosis to exert an anti-hepatic fibrosis effect. Phytomedicine. 2024;126:155148. doi:10.1016/j.phymed.2023.155148
  • Viswanadhapalli S, Luo Y, Sareddy GR, et al. EC359: a first-in-class small-molecule inhibitor for targeting oncogenic LIFR signaling in triple-negative breast cancer. Mol Cancer Ther. 2019;18(8):1341–1354. doi:10.1158/1535-7163.Mct-18-1258
  • Feng CZ, Li NZ, Hu XB, et al. The LIFR-targeting small molecules EC330/EC359 are potent ferroptosis inducers. Genes Dis. 2023;10(3):735–738. doi:10.1016/j.gendis.2022.10.016
  • Sinitsky M, Asanov M, Sinitskaya A, et al. Atorvastatin can modulate DNA damage repair in endothelial cells exposed to mitomycin C. Int J Mol Sci. 2023;24(7):6783. doi:10.3390/ijms24076783
  • Zhang Q, Qu H, Chen Y, et al. Atorvastatin induces mitochondria-dependent ferroptosis via the modulation of Nrf2-xCT/GPx4 Axis. Front Cell Dev Biol. 2022;10:806081. doi:10.3389/fcell.2022.806081
  • Warita K, Ishikawa T, Sugiura A, et al. Concomitant attenuation of HMGCR expression and activity enhances the growth inhibitory effect of atorvastatin on TGF-β-treated epithelial cancer cells. Sci Rep. 2021;11(1):12763. doi:10.1038/s41598-021-91928-3
  • Liu T, Shu J, Liu Y, et al. Atorvastatin attenuates ferroptosis-dependent myocardial injury and inflammation following coronary microembolization via the Hif1a/Ptgs2 pathway. Front Pharmacol. 2022;13:1057583. doi:10.3389/fphar.2022.1057583
  • Feng M, Xu H, Zhou W, Pan Y. The BRD4 inhibitor JQ1 augments the antitumor efficacy of abemaciclib in preclinical models of gastric carcinoma. J Exp Clin Cancer Res. 2023;42(1):44. doi:10.1186/s13046-023-02615-2
  • Sui S, Zhang J, Xu S, Wang Q, Wang P, Pang D. Ferritinophagy is required for the induction of ferroptosis by the bromodomain protein BRD4 inhibitor (+)-JQ1 in cancer cells. Cell Death Dis. 2019;10(5):331. doi:10.1038/s41419-019-1564-7
  • Go S, Kang M, Kwon SP, Jung M, Jeon OH, Kim BS. The senolytic drug JQ1 removes senescent cells via ferroptosis. Tissue Eng Regen Med. 2021;18(5):841–850. doi:10.1007/s13770-021-00346-z
  • Våtsveen TK, Myhre MR, Steen CB, et al. Artesunate shows potent anti-tumor activity in B-cell lymphoma. J Hematol Oncol. 2018;11(1):23. doi:10.1186/s13045-018-0561-0
  • Ooko E, Saeed ME, Kadioglu O, et al. Artemisinin derivatives induce iron-dependent cell death (ferroptosis) in tumor cells. Phytomedicine. 2015;22(11):1045–1054. doi:10.1016/j.phymed.2015.08.002
  • McDowell A, Hill KS, McCorkle JR, et al.. Preclinical evaluation of artesunate as an antineoplastic agent in ovarian cancer treatment. Diagnostics (Basel). 2021;11(3):395.
  • Roh JL, Kim EH, Jang H, Shin D. Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis. Redox Biol. 2017;11:254–262. doi:10.1016/j.redox.2016.12.010
  • Hughes GR, Dudey AP, Hemmings AM, Chantry A. Frontiers in PROTACs. Drug Discov Today. 2021;26(10):2377–2383. doi:10.1016/j.drudis.2021.04.010
  • Ignatov M, Jindal A, Kotelnikov S, et al. High accuracy prediction of PROTAC complex structures. J Am Chem Soc. 2023;145(13):7123–7135. doi:10.1021/jacs.2c09387
  • Wang H, Wang C, Li B, et al. Discovery of ML210-Based glutathione peroxidase 4 (GPX4) degrader inducing ferroptosis of human cancer cells. Eur J Med Chem. 2023;254:115343. doi:10.1016/j.ejmech.2023.115343
  • Hu M, Li X, Wang L, et al. ZX703: a small-molecule degrader of GPX4 inducing ferroptosis in human cancer cells. ACS Med Chem Lett. 2024;15(3):406–412. doi:10.1021/acsmedchemlett.3c00571
  • Luo T, Zheng Q, Shao L, Ma T, Mao L, Wang M. Intracellular delivery of glutathione peroxidase degrader induces ferroptosis in vivo. Angew Chem Int Ed Engl. 2022;61(39):e202206277. doi:10.1002/anie.202206277
  • Cai M, Ma F, Hu C, et al. Design and synthesis of proteolysis-targeting chimeras (PROTACs) as degraders of glutathione peroxidase 4. Bioorg Med Chem. 2023;90:117352. doi:10.1016/j.bmc.2023.117352
  • Zhu L, Hu S, Yan X, et al. Ugi reaction-assisted assembly of covalent PROTACs against glutathione peroxidase 4. Bioorg Chem. 2023;134:106461. doi:10.1016/j.bioorg.2023.106461
  • Wang C, Zheng C, Wang H, et al. Dual degradation mechanism of GPX4 degrader in induction of ferroptosis exerting anti-resistant tumor effect. Eur J Med Chem. 2023;247:115072. doi:10.1016/j.ejmech.2022.115072
  • Song H, Liang J, Guo Y, et al. A potent GPX4 degrader to induce ferroptosis in HT1080 cells. Eur J Med Chem. 2024;265:116110. doi:10.1016/j.ejmech.2023.116110
  • Zheng C, Wang C, Sun D, et al. Structure-activity relationship study of RSL3-based GPX4 degraders and its potential noncovalent optimization. Eur J Med Chem. 2023;255:115393. doi:10.1016/j.ejmech.2023.115393
  • Yu J, Zhu F, Yang Y, et al. Ultrasmall iron-doped zinc oxide nanoparticles for ferroptosis assisted sono-chemodynamic cancer therapy. Colloids Surf B Biointerfaces. 2023;232:113606. doi:10.1016/j.colsurfb.2023.113606
  • Chen M, Shen Y, Pu Y, et al. Biomimetic inducer enabled dual ferroptosis of tumor and M2-type macrophages for enhanced tumor immunotherapy. Biomaterials. 2023;303:122386. doi:10.1016/j.biomaterials.2023.122386
  • Mu M, Wang Y, Zhao S, et al. Engineering a pH/glutathione-responsive tea polyphenol nanodevice as an apoptosis/ferroptosis-inducing agent. ACS Appl Bio Mater. 2020;3(7):4128–4138. doi:10.1021/acsabm.0c00225
  • Chen Q, Ma X, Xie L, et al. Iron-based nanoparticles for MR imaging-guided ferroptosis in combination with photodynamic therapy to enhance cancer treatment. Nanoscale. 2021;13(9):4855–4870. doi:10.1039/d0nr08757b
  • Zeng L, Ding S, Cao Y, et al. A MOF-based potent ferroptosis inducer for enhanced radiotherapy of triple negative breast cancer. ACS Nano. 2023;17(14):13195–13210. doi:10.1021/acsnano.3c00048
  • Liu Z, Kang R, Yang N, et al. Tetrahydrobiopterin inhibitor-based antioxidant metabolic strategy for enhanced cancer ferroptosis-immunotherapy. J Colloid Interface Sci. 2024;658:100–113. doi:10.1016/j.jcis.2023.12.042
  • Zhao LX, Gong ZQ, Zhang Q, et al. Graphdiyne nanoplatforms for photothermal-ferroptosis combination therapy against glioblastoma. J Control Release. 2023;359:12–25. doi:10.1016/j.jconrel.2023.05.035
  • Cheng Z, Xue C, Liu M, et al. Injectable microenvironment-responsive hydrogels with redox-activatable supramolecular prodrugs mediate ferroptosis-immunotherapy for postoperative tumor treatment. Acta Biomater. 2023;169:289–305. doi:10.1016/j.actbio.2023.08.002
  • Yao X, Xie R, Cao Y, et al. Simvastatin induced ferroptosis for triple-negative breast cancer therapy. J Nanobiotechnology. 2021;19(1):311. doi:10.1186/s12951-021-01058-1
  • Wu F, Du Y, Yang J, et al. Peroxidase-like active nanomedicine with dual glutathione depletion property to restore oxaliplatin chemosensitivity and promote programmed cell death. ACS Nano. 2022;16(3):3647–3663. doi:10.1021/acsnano.1c06777
  • Liang Y, Peng C, Su N, et al. Tumor microenvironments self-activated cascade catalytic nanoscale metal organic frameworks as ferroptosis inducer for radiosensitization. Chem Eng J. 2022;437:135309. doi:10.1016/j.cej.2022.135309
  • Xu T, Ma Y, Yuan Q, et al. Enhanced ferroptosis by oxygen-boosted phototherapy based on a 2-in-1 nanoplatform of ferrous hemoglobin for tumor synergistic therapy. ACS Nano. 2020;14(3):3414–3425. doi:10.1021/acsnano.9b09426
  • Bao W, Liu X, Lv Y, et al. Nanolongan with multiple on-demand conversions for ferroptosis-apoptosis combined anticancer therapy. ACS Nano. 2019;13(1):260–273. doi:10.1021/acsnano.8b05602
  • Sang M, Luo R, Bai Y, et al. Mitochondrial membrane anchored photosensitive nano-device for lipid hydroperoxides burst and inducing ferroptosis to surmount therapy-resistant cancer. Theranostics. 2019;9(21):6209–6223. doi:10.7150/thno.36283
  • Wan X, Song L, Pan W, Zhong H, Li N, Tang B. Tumor-targeted cascade nanoreactor based on metal-organic frameworks for synergistic ferroptosis-starvation anticancer therapy. ACS Nano. 2020;14(9):11017–11028. doi:10.1021/acsnano.9b07789
  • Yao L, Zhao MM, Luo QW, et al. Carbon Quantum dots-based nanozyme from coffee induces cancer cell ferroptosis to activate antitumor immunity. ACS Nano. 2022;16(6):9228–9239. doi:10.1021/acsnano.2c01619
  • Zhou LL, Guan Q, Li WY, Zhang Z, Li YA, Dong YB. A ferrocene-functionalized covalent organic framework for enhancing chemodynamic therapy via redox dyshomeostasis. Small. 2021;17(32):e2101368. doi:10.1002/smll.202101368
  • Wang S, Li F, Qiao R, et al. Arginine-rich manganese silicate nanobubbles as a ferroptosis-inducing agent for tumor-targeted theranostics. ACS Nano. 2018;12(12):12380–12392. doi:10.1021/acsnano.8b06399
  • Xue CC, Li MH, Zhao Y, et al. Tumor microenvironment-activatable Fe-doxorubicin preloaded amorphous CaCO(3) nanoformulation triggers ferroptosis in target tumor cells. Sci Adv. 2020;6(18):eaax1346. doi:10.1126/sciadv.aax1346
  • Xu XL, Zhang NN, Shu GF, et al. A luminol-based self-illuminating nanocage as a reactive oxygen species amplifier to enhance deep tumor penetration and synergistic therapy. ACS Nano. 2021;15(12):19394–19408. doi:10.1021/acsnano.1c05891
  • Liang X, Chen M, Bhattarai P, Hameed S, Tang Y, Dai Z. Complementing cancer photodynamic therapy with ferroptosis through iron oxide loaded porphyrin-grafted lipid nanoparticles. ACS Nano. 2021;15(12):20164–20180. doi:10.1021/acsnano.1c08108
  • Xu Y, Guo Y, Zhang C, et al. Fibronectin-coated metal-phenolic networks for cooperative tumor chemo-/chemodynamic/immune therapy via enhanced ferroptosis-mediated immunogenic cell death. ACS Nano. 2022;16(1):984–996. doi:10.1021/acsnano.1c08585
  • Cao K, Du Y, Bao X, et al. Glutathione-bioimprinted nanoparticles targeting of N6-methyladenosine fto demethylase as a strategy against leukemic stem cells. Small. 2022;18(13):e2106558. doi:10.1002/smll.202106558
  • Zhang F, Li F, Lu GH, et al. Engineering magnetosomes for ferroptosis/immunomodulation synergism in cancer. ACS Nano. 2019;13(5):5662–5673. doi:10.1021/acsnano.9b00892
  • Tian X, Ruan L, Zhou S, et al. Appropriate Size of Fe(3)O(4) nanoparticles for cancer therapy by ferroptosis. ACS Appl Bio Mater. 2022;5(4):1692–1699. doi:10.1021/acsabm.2c00068
  • Liu J, Li X, Chen J, et al. Arsenic-loaded biomimetic iron oxide nanoparticles for enhanced ferroptosis-inducing therapy of hepatocellular carcinoma. ACS Appl Mater Interfaces. 2023;15(5):6260–6273. doi:10.1021/acsami.2c14962
  • Zhang Z, Wang L, Guo Z, Sun Y, Yan J. A pH-sensitive imidazole grafted polymeric micelles nanoplatform based on ROS amplification for ferroptosis-enhanced chemodynamic therapy. Colloids Surf B Biointerfaces. 2024;237:113871. doi:10.1016/j.colsurfb.2024.113871
  • Qi A, Wang C, Ni S, et al. Intravesical mucoadhesive hydrogel induces chemoresistant bladder cancer ferroptosis through delivering iron oxide nanoparticles in a three-tier strategy. ACS Appl Mater Interfaces. 2021;13(44):52374–52384. doi:10.1021/acsami.1c14944
  • Bilbao‐Asensio M, Ruiz‐de‐Angulo A, Arguinzoniz AG, et al.. Redox‐triggered nanomedicine via lymphatic delivery: inhibition of melanoma growth by ferroptosis enhancement and a Pt(IV)‐prodrug chemoimmunotherapy approach. Adv Ther. 2022;6(2):1.
  • Liu Y, Pi F, He L, Yang F, Chen T. Oxygen vacancy-rich manganese nanoflowers as ferroptosis inducers for tumor radiotherapy. Small. 2024;e2310118. doi:10.1002/smll.202310118
  • Shao J, Zhang J, Xue K, et al. Upconversion dihydroartemisinin-loaded nanocomposites for NIR-enhanced ferroptosis of glioblastoma cells. ACS Appl Nano Mater. 2024;7(8):9106–9115. doi:10.1021/acsanm.4c00548
  • Xu J, Zhang W, Cai Z, et al.. Tetrahedron DNA nanostructure/iron-based nanomaterials for combined tumor therapy. Chin. Chem. Lett. 2024:109620. doi:10.1016/j.cclet.2024.109620
  • Lin X, Chen H, Deng T, et al. Improved immune response for colorectal cancer therapy triggered by multifunctional nanocomposites with self-amplifying antitumor ferroptosis. ACS Appl Mater Interfaces. 2024;16(11):13481–13495. doi:10.1021/acsami.3c16813
  • Zhu X, Xie L, Tian J, Jiang Y, Song E, Song Y. A multi-mode Rhein-based nano-platform synergizing ferrotherapy/chemotherapy-induced immunotherapy for enhanced tumor therapy. Acta Biomater. 2024;180:383–393. doi:10.1016/j.actbio.2024.03.030
  • Chen Y, Li X, Luo K, et al. Hyperthermia/glutathione-triggered ferritin nanoparticles amplify the ferroptosis for synergistic tumor therapy. Mater Today Bio. 2024;26:101085. doi:10.1016/j.mtbio.2024.101085
  • Zhao X, Leng D, Wang H, et al. An acid-responsive iron-based nanocomposite for OSCC treatment. J Dent Res. 2024;103(6):612–621. doi:10.1177/00220345241238154
  • Wang M, Yu A, Han W, Chen J, Lu C, Tu X. Self-assembled metal-phenolic nanocomplexes comprised of green tea catechin for tumor-specific ferroptosis. Mater Today Bio. 2024;26:101040. doi:10.1016/j.mtbio.2024.101040
  • Zou W, Gao F, Meng Z, et al. Lactic acid responsive sequential production of hydrogen peroxide and consumption of glutathione for enhanced ferroptosis tumor therapy. J Colloid Interface Sci. 2024;663:787–800. doi:10.1016/j.jcis.2024.03.001
  • Zhu J, Zhao S, Zhu Y, et al. Sorafenib sensitization in tumor therapy by iron overload and AMPK activation. Nano Res. 2024. doi:10.1007/s12274-024-6602-9
  • Sun B, Zheng X, Zhang X, Zhang H, Jiang Y. Oxaliplatin-Loaded Mil-100(Fe) for chemotherapy-ferroptosis combined therapy for gastric cancer. ACS Omega. 2024;9(14):16676–16686. doi:10.1021/acsomega.4c00658
  • Zhao X, Wang X, Zhang W, et al. A ferroptosis-inducing arsenene-iridium nanoplatform for synergistic immunotherapy in pancreatic cancer. Angew Chem Int Ed Engl. 2024;63(15):e202400829. doi:10.1002/anie.202400829
  • Bai J, Zhang X, Zhao Z, et al.. CuO nanozymes catalyze cysteine and glutathione depletion induced ferroptosis and cuproptosis for synergistic tumor therapy. Small. 2024:e2400326. doi:10.1002/smll.202400326
  • Wang Y, Wu X, Bao X, Mou X. Progress in the mechanism of the effect of Fe(3)O(4) nanomaterials on ferroptosis in tumor cells. Molecules. 2023;28(11):1.
  • Wang S, He H, Mao Y, Zhang Y, Gu N. Advances in atherosclerosis theranostics harnessing iron oxide-based nanoparticles. Adv Sci. 2024;11(17):e2308298. doi:10.1002/advs.202308298
  • Gao L, Fan K, Yan X. Iron oxide nanozyme: a multifunctional enzyme mimetic for biomedical applications. Theranostics. 2017;7(13):3207–3227. doi:10.7150/thno.19738
  • Dadfar SM, Roemhild K, Drude NI, et al. Iron oxide nanoparticles: diagnostic, therapeutic and theranostic applications. Adv Drug Deliv Rev. 2019;138:302–325. doi:10.1016/j.addr.2019.01.005
  • Jalali A, Bari IJ, Salehzadeh A. Menthol conjugated magnetic iron oxide nanoparticles induce apoptosis and increase caspase-8 gene expression in gastric cancer cell line. BioNanoScience. 2024. doi:10.1007/s12668-024-01377-1
  • Mu QG, Lin G, Jeon M, et al. Iron oxide nanoparticle targeted chemo-immunotherapy for triple negative breast cancer. Mater Today (Kidlington). 2021;50:149–169. doi:10.1016/j.mattod.2021.08.002
  • Jiang Q, Wang K, Zhang X, et al. Platelet membrane-camouflaged magnetic nanoparticles for ferroptosis-enhanced cancer immunotherapy. Small. 2020;16(22):e2001704. doi:10.1002/smll.202001704
  • Lyu Z, Kou Y, Fu Y, et al. Comparative transcriptomics revealed neurodevelopmental impairments and ferroptosis induced by extremely small iron oxide nanoparticles. Front Genet. 2024;15:1402771. doi:10.3389/fgene.2024.1402771
  • Biancacci I, De Lorenzi F, Theek B, et al. Monitoring EPR effect dynamics during nanotaxane treatment with theranostic polymeric micelles. Adv Sci. 2022;9(10):e2103745. doi:10.1002/advs.202103745
  • Lebreton V, Legeay S, Saulnier P, Lagarce F. Specificity of pharmacokinetic modeling of nanomedicines. Drug Discov Today. 2021;26(10):2259–2268. doi:10.1016/j.drudis.2021.04.017
  • Forgan RS. Reproducibility in research into metal-organic frameworks in nanomedicine. Communicat Mater. 2024;5(1). doi:10.1038/s43246-024-00475-7
  • Alvarez N, Sevilla A. Current advances in photodynamic therapy (PDT) and the future potential of PDT-combinatorial cancer therapies. Int J Mol Sci. 2024;25(2):1023. doi:10.3390/ijms25021023
  • Mishchenko TA, Balalaeva IV, Vedunova MV, Krysko DV. Ferroptosis and photodynamic therapy synergism: enhancing anticancer treatment. Trends Cancer. 2021;7(6):484–487. doi:10.1016/j.trecan.2021.01.013
  • Huang Y, Li X, Zhang Z, Xiong L, Wang Y, Wen Y. Photodynamic therapy combined with ferroptosis is a synergistic antitumor therapy strategy. Cancers. 2023;15(20):5043. doi:10.3390/cancers15205043
  • Hu Q, Zhu W, Du J, et al. A GPX4-targeted photosensitizer to reverse hypoxia-induced inhibition of ferroptosis for non-small cell lung cancer therapy. Chem Sci. 2023;14(34):9095–9100. doi:10.1039/d3sc01597a
  • Zhang Y, Liu X, Zeng L, et al. Exosomal protein angiopoietin-like 4 mediated radioresistance of lung cancer by inhibiting ferroptosis under hypoxic microenvironment. Br J Cancer. 2022;127(10):1760–1772. doi:10.1038/s41416-022-01956-7
  • Liu S, Zhao X, Shui S, et al. PDTAC: targeted Photodegradation of GPX4 triggers ferroptosis and potent antitumor immunity. J Med Chem. 2022;65(18):12176–12187. doi:10.1021/acs.jmedchem.2c00855
  • Kojima Y, Tanaka M, Sasaki M, et al. Induction of ferroptosis by photodynamic therapy and enhancement of antitumor effect with ferroptosis inducers. J Gastroenterol. 2024;59(2):81–94. doi:10.1007/s00535-023-02054-y
  • Tavakkoli Yaraki M, Wu M, Middha E, et al. Gold Nanostars-AIE theranostic nanodots with enhanced fluorescence and photosensitization towards effective image-guided photodynamic therapy. Nano-micro Lett. 2021;13(1):58. doi:10.1007/s40820-020-00583-2
  • Zhao X, Zhang J, Zhang W, et al. A chiral fluorescent Ir(iii) complex that targets the GPX4 and ErbB pathways to induce cellular ferroptosis. Chem Sci. 2023;14(5):1114–1122. doi:10.1039/d2sc06171f
  • Pan X, Wang H, Wang S, et al. Sonodynamic therapy (SDT): a novel strategy for cancer nanotheranostics. Sci China Life Sci. 2018;61(4):415–426. doi:10.1007/s11427-017-9262-x
  • Lai Y, Lu N, Ouyang A, Zhang Q, Zhang P. Ferroptosis promotes sonodynamic therapy: a platinum(ii)-indocyanine sonosensitizer. Chem Sci. 2022;13(34):9921–9926. doi:10.1039/d2sc02597c
  • Zhou L, Dong C, Ding L, et al. Targeting ferroptosis synergistically sensitizes apoptotic sonodynamic anti-tumor nanotherapy. Nano Today. 2021;39:101212. doi:10.1016/j.nantod.2021.101212
  • Oliver DMA, Reddy PH. Small molecules as therapeutic drugs for Alzheimer’s disease. Mol Cell Neurosci. 2019;96:47–62. doi:10.1016/j.mcn.2019.03.001
  • Zhang L, Luo YL, Xiang Y, et al.. Ferroptosis inhibitors: past, present and future. Front Pharmacol. 2024;15. doi:10.3389/fphar.2024.1407335
  • Ma W, Hu N, Xu W, Zhao L, Tian C, Kamei KI. Ferroptosis inducers: a new frontier in cancer therapy. Bioorg Chem. 2024;146:107331. doi:10.1016/j.bioorg.2024.107331
  • Weng G, Shen C, Cao D, et al. PROTAC-DB: an online database of PROTACs. Nucleic Acids Res. 2021;49(D1):D1381–d1387. doi:10.1093/nar/gkaa807
  • Dhas N, Kudarha R, Tiwari R, et al. Recent advancements in nanomaterial-mediated ferroptosis-induced cancer therapy: importance of molecular dynamics and novel strategies. Life Sci. 2024;346:122629. doi:10.1016/j.lfs.2024.122629
  • Wang Y, Liu T, Li X, Sheng H, Ma X, Hao L. Ferroptosis-inducing nanomedicine for cancer therapy. Front Pharmacol. 2021;12:735965. doi:10.3389/fphar.2021.735965
  • Liu Q, Zhao Y, Zhou H, Chen C. Ferroptosis: challenges and opportunities for nanomaterials in cancer therapy. Regen Biomater. 2023;10:rbad004. doi:10.1093/rb/rbad004
  • Jiang J, Lv X, Cheng H, et al. Type I photodynamic antimicrobial therapy: principles, progress, and future perspectives. Acta Biomater. 2024;177:1–19. doi:10.1016/j.actbio.2024.02.005
  • Gao W, Wang Z, Lv L, et al. Photodynamic therapy induced enhancement of tumor vasculature permeability using an upconversion nanoconstruct for improved intratumoral nanoparticle delivery in deep tissues. Theranostics. 2016;6(8):1131–1144. doi:10.7150/thno.15262
  • Loke YL, Beishenaliev A, Wang PW, et al. ROS-generating alginate-coated gold nanorods as biocompatible nanosonosensitisers for effective sonodynamic therapy of cancer. Ultrason Sonochem. 2023;96:106437. doi:10.1016/j.ultsonch.2023.106437
  • Frye WJE, Huff LM, Dalmasy JMG, et al. The multidrug resistance transporter p-glycoprotein confers resistance to ferroptosis inducers. bioRxiv. 2023. doi:10.1101/2023.02.23.529736
  • Liang D, Feng Y, Zandkarimi F, et al. Ferroptosis surveillance independent of GPX4 and differentially regulated by sex hormones. Cell. 2023;186(13):2748–2764.e22. doi:10.1016/j.cell.2023.05.003
  • Li Y, Ran Q, Duan Q, et al. 7-Dehydrocholesterol dictates ferroptosis sensitivity. Nature. 2024;626(7998):411–418. doi:10.1038/s41586-023-06983-9
  • Du Y, Zhou Y, Yan X, et al. APE1 inhibition enhances ferroptotic cell death and contributes to hepatocellular carcinoma therapy. Cell Death Differ. 2024;31:431–446. doi:10.1038/s41418-024-01270-0
  • Jacinto E. mTOR takes charge: relaying uncharged tRNA levels by mTOR ubiquitination. Cell Metab. 2023;35(12):2097–2099. doi:10.1016/j.cmet.2023.11.006
  • Nguyen LH, Xu Y, Nair M, Bordey A. The mTOR pathway genes mTOR, Rheb, Depdc5, Pten, and Tsc1 have convergent and divergent impacts on cortical neuron development and function. bioRxiv. 2024. doi:10.1101/2023.08.11.553034
  • Li S, Ouyang X, Sun H, et al. DEPDC5 protects CD8(+) T cells from ferroptosis by limiting mTORC1-mediated purine catabolism. Cell Discov. 2024;10(1):53. doi:10.1038/s41421-024-00682-z
  • Yang M, Luo H, Yi X, Wei X, Jiang DS. The epigenetic regulatory mechanisms of ferroptosis and its implications for biological processes and diseases. MedComm. 2023;4(3):e267. doi:10.1002/mco2.267
  • Wang X, Kong X, Feng X, Jiang DS. Effects of DNA, RNA, and Protein Methylation on the Regulation of Ferroptosis. Int J Biol Sci. 2023;19(11):3558–3575. doi:10.7150/ijbs.85454
  • Pandur E, Szabó I, Hormay E, et al. Alterations of the expression levels of glucose, inflammation, and iron metabolism related miRNAs and their target genes in the hypothalamus of STZ-induced rat diabetes model. Diabetol Metab Syndr. 2022;14(1):147. doi:10.1186/s13098-022-00919-5
  • Murakami H, Hayashi M, Terada S, Ohmichi M. Medroxyprogesterone acetate-resistant endometrial cancer cells are susceptible to ferroptosis inducers. Life Sci. 2023;325:121753. doi:10.1016/j.lfs.2023.121753
  • Cai Q, Guo X, Chen Y, Liu J, Liu Y. Selenium-Doped 3D porous molybdenum carbide nanospheres improve mitochondrial function by reducing oxidative stress in alzheimer’s disease. ACS Appl Nano Mater. 2023;6(23):22496–22505. doi:10.1021/acsanm.3c05296
  • Xiao Y, Yu Y, Hu L, et al. Matrine alleviates sepsis-induced myocardial injury by inhibiting ferroptosis and apoptosis. Inflammation. 2023;46(5):1684–1696. doi:10.1007/s10753-023-01833-2
  • Sun L, Wang H, Xu D, Yu S, Zhang L, Li X. Lapatinib induces mitochondrial dysfunction to enhance oxidative stress and ferroptosis in doxorubicin-induced cardiomyocytes via inhibition of PI3K/AKT signaling pathway. Bioengineered. 2022;13(1):48–60. doi:10.1080/21655979.2021.2004980
  • Lei G, Mao C, Yan Y, Zhuang L, Gan B. Ferroptosis, radiotherapy, and combination therapeutic strategies. Protein Cell. 2021;12(11):836–857. doi:10.1007/s13238-021-00841-y
  • Nie A, Shen C, Zhou Z, Wang J, Sun B, Zhu C. Ferroptosis: potential opportunities for natural products in cancer therapy. Phytother Res. 2024;38(3):1173–1190. doi:10.1002/ptr.8088
  • Zhang W, Cui X, Li R, Ji W, Shi H, Cui J. Association between ICW/TBW ratio and cancer prognosis: subanalysis of a population-based retrospective multicenter study. Clin Nutr. 2024;43(2):322–331. doi:10.1016/j.clnu.2023.12.004
  • Alcantara M, Tesio M, June CH, Houot R. CAR T-cells for T-cell malignancies: challenges in distinguishing between therapeutic, normal, and neoplastic T-cells. Leukemia. 2018;32(11):2307–2315. doi:10.1038/s41375-018-0285-8
  • Wang T, Pulkkinen OI, Aittokallio T. Target-specific compound selectivity for multi-target drug discovery and repurposing. Front Pharmacol. 2022;13:1003480. doi:10.3389/fphar.2022.1003480
  • Huang Y, Wang J, Wang S, et al. Discrimination of active and inactive substances in cytotoxicity based on Tox21 10K compound library: structure alert and mode of action. Toxicology. 2021;462:152948. doi:10.1016/j.tox.2021.152948
  • Gooch A, Sizochenko N, Rasulev B, Gorb L, Leszczynski J. In vivo toxicity of nitroaromatics: a comprehensive quantitative structure-activity relationship study. Environ Toxicol Chem. 2017;36(8):2227–2233. doi:10.1002/etc.3761
  • Huang M, Teng Q, Cao F, Huang J, Pang J. Ferroptosis and ferroptosis-inducing nanomedicine as a promising weapon in combination therapy of prostate cancer. Biomater Sci. 2024;12:1617–1629. doi:10.1039/d3bm01894f
  • Liu X, Lu Y, Li X, Luo L, You J. Nanoplatform-enhanced photodynamic therapy for the induction of immunogenic cell death. J Control Release. 2024;365:1058–1073. doi:10.1016/j.jconrel.2023.11.058
  • Deng W, Shang H, Tong Y, et al. The application of nanoparticles-based ferroptosis, pyroptosis and autophagy in cancer immunotherapy. J Nanobiotechnology. 2024;22(1):97. doi:10.1186/s12951-024-02297-8