213
Views
14
CrossRef citations to date
0
Altmetric
Original Research

MicroRNA-126: a promising biomarker for angiogenesis of diabetic wounds treated with negative pressure wound therapy

, , , , &
Pages 1685-1696 | Published online: 03 Sep 2019

References

  • Ali SR , Ozdemir BA , Hinchliffe RJ . Critical appraisal of the quality of evidence addressing the diagnosis, prognosis, and management of peripheral artery disease in patients with diabetic foot ulceration. Eur J Vasc Endovasc Surg . 2018;56(3):401–408. doi:10.1016/j.ejvs.2018.05.009 29909087
  • Brem H , Tomic-Canic M . Cellular and molecular basis of wound healing in diabetes. J Clin Invest . 2007;117(5):1219–1222. doi:10.1172/JCI32169 17476353
  • Eming SA , Martin P , Tomic-Canic M . Wound repair and regeneration: mechanisms, signaling, and translation. Sci Transl Med . 2014;6(265):265sr266–265sr266. doi:10.1126/scitranslmed.3009337
  • Okonkwo U , DiPietro L . Diabetes and wound angiogenesis. Int J Mol Sci . 2017;18(7):1419. doi:10.3390/ijms18071419
  • Erba P , Ogawa R , Ackermann M , et al. Angiogenesis in wounds treated by microdeformational wound therapy. Ann Surg . 2011;253(2):402–409. doi:10.1097/SLA.0b013e31820563a8 21217515
  • Argenta LC , Morykwas MJ . Vacuum-assisted closure: a new method for wound control and treatment: clinical experience. Ann Plast Surg . 1997;38(6):563–576; discussion 577.9188971
  • Jacobs S , Simhaee DA , Marsano A , Fomovsky GM , Niedt G , Wu JK . Efficacy and mechanisms of vacuum-assisted closure (VAC) therapy in promoting wound healing: a rodent model. JPRAS . 2009;62(10):1331–1338. doi:10.1016/j.bjps.2008.03.024 18617451
  • Nissen NN , Polverini PJ , Koch AE , Volin MV , Gamelli RL , DiPietro LA . Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing. Am J Pathol . 1998;152(6):1445–1452.9626049
  • Yan X , Chen B , Lin Y , et al. Acceleration of diabetic wound healing by collagen-binding vascular endothelial growth factor in diabetic rat model. Diabetes Res Clin Pract . 2010;90(1):66–72. doi:10.1016/j.diabres.2010.07.001 20667614
  • Li Z , Yu A . Complications of negative pressure wound therapy: a mini review. Wound Repair Regen . 2014;22(4):457–461. doi:10.1111/wrr.12190 24852446
  • Bartel DP . MicroRNAs: genomics, biogenesis, mechanism, and function. Cell . 2004;116(2):281–297.14744438
  • Ambros V . The functions of animal microRNAs. Nature . 2004;431(7006):350–355. doi:10.1038/nature02871 15372042
  • Roy S , Sen CK . miRNA in wound inflammation and angiogenesis. Microcirculation . 2012;19(3):224–232. doi:10.1111/j.1549-8719.2011.00156.x 22211762
  • Nicoli S , Standley C , Walker P , Hurlstone A , Fogarty KE , Lawson ND . MicroRNA-mediated integration of haemodynamics and Vegf signalling during angiogenesis. Nature . 2010;464(7292):1196–1200. doi:10.1038/nature08889 20364122
  • Hu J , Zeng L , Huang J , Wang G , Lu H . miR-126 promotes angiogenesis and attenuates inflammation after contusion spinal cord injury in rats. Brain Res . 2015;1608:191–202. doi:10.1016/j.brainres.2015.02.036 25724143
  • Fish JE , Santoro MM , Morton SU , et al. miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell . 2008;15(2):272–284. doi:10.1016/j.devcel.2008.07.008 18694566
  • Wang S , Aurora AB , Johnson BA , et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell . 2008;15(2):261–271. doi:10.1016/j.devcel.2008.07.002 18694565
  • Rawal S , Munasinghe PE , Shindikar A , et al. Down-regulation of proangiogenic microRNA-126 and microRNA-132 are early modulators of diabetic cardiac microangiopathy. Cardiovasc Res . 2017;113(1):90–101. doi:10.1093/cvr/cvw235 28065883
  • Barutta F , Bruno G , Matullo G , et al. MicroRNA-126 and micro-/macrovascular complications of type 1 diabetes in the EURODIAB prospective complications study. Acta Diabetol . 2017;54(2):133–139. doi:10.1007/s00592-016-0915-4 27696070
  • Rezk NA , Sabbah NA , Saad MS . Role of MicroRNA 126 in screening, diagnosis, and prognosis of diabetic patients in Egypt. IUBMB Life . 2016;68(6):452–458. doi:10.1002/iub.1502 27118517
  • Zhang J , Sun XJ , Chen J , et al. Increasing the miR-126 expression in the peripheral blood of patients with diabetic foot ulcers treated with maggot debridement therapy. J Diabetes Complications . 2017;31(1):241–244. doi:10.1016/j.jdiacomp.2016.07.026 27623390
  • Jansen F , Yang X , Hoelscher M , et al. Endothelial microparticle-mediated transfer of MicroRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles. Circulation . 2013;128(18):2026–2038. doi:10.1161/CIRCULATIONAHA.113.001720 24014835
  • Chamorro-Jorganes A , Araldi E , Suarez Y . MicroRNAs as pharmacological targets in endothelial cell function and dysfunction. Pharmacol Res . 2013;75:15–27. doi:10.1016/j.phrs.2013.04.002 23603154
  • Dumville JC , Hinchliffe RJ , Cullum N , et al. Negative pressure wound therapy for treating foot wounds in people with diabetes mellitus. Cochrane Database Syst Rev . 2013;10(10):Cd010318.24132761
  • Dumville JC , Land L , Evans D , Peinemann F . Negative pressure wound therapy for treating leg ulcers. Cochrane Database Syst Rev . 2015;14;(7):CD011354. doi:10.1002/14651858.CD011354.
  • Nelson EA , O’Meara S , Craig D , et al. A series of systematic reviews to inform a decision analysis for sampling and treating infected diabetic foot ulcers. Health Technol Assess . 2006;10(12):iii-iv, ix-x, 1–221.
  • Li X , Liu J , Liu Y , et al. Negative pressure wound therapy accelerates rats diabetic wound by promoting agenesis. Int J Clin Exp Med . 2015;8(3):3506–3513.26064242
  • Xia CY , Yu AX , Qi B , Zhou M , Li ZH , Wang WY . Analysis of blood flow and local expression of angiogenesisassociated growth factors in infected wounds treated with negative pressure wound therapy. Mol Med Rep . 2014;9(5):1749–1754. doi:10.3892/mmr.2014.1997 24584462
  • Fitch MJ , Campagnolo L , Kuhnert F , Stuhlmann H . Egfl7, a novel epidermal growth factor-domain gene expressed in endothelial cells. Dev Dyn . 2004;230(2):316–324. doi:10.1002/dvdy.20063 15162510
  • Ma Z , Shou K , Li Z , Jian C , Qi B , Yu A . Negative pressure wound therapy promotes vessel destabilization and maturation at various stages of wound healing and thus influences wound prognosis. Exp Ther Med . 2016;11(4):1307–1317. doi:10.3892/etm.2016.3083 27073441
  • Barrientos S , Brem H , Stojadinovic O , Tomic-Canic M . Clinical application of growth factors and cytokines in wound healing. Wound Repair Regen . 2014;22(5):569–578. doi:10.1111/wrr.12205 24942811
  • Herter EK , Xu Landen N . Non-coding RNAs: new players in skin wound healing. Adv Wound Care . 2017;6(3):93–107. doi:10.1089/wound.2016.0711
  • van Solingen C , Seghers L , Bijkerk R , et al. Antagomir-mediated silencing of endothelial cell specific microRNA-126 impairs ischemia-induced angiogenesis. J Cell Mol Med . 2009;13(8a):1577–1585. doi:10.1111/j.1582-4934.2008.00613.x 19120690
  • Sessa R , Seano G , Di Blasio L , et al. The miR-126 regulates angiopoietin-1 signaling and vessel maturation by targeting p85beta. Biochim Biophys Acta . 2012;1823(10):1925–1935. doi:10.1016/j.bbamcr.2012.07.011 22867989
  • Zou J , Li WQ , Li Q , et al. Two functional microRNA-126s repress a novel target gene p21-activated kinase 1 to regulate vascular integrity in zebrafish. Circ Res . 2011;108(2):201–209. doi:10.1161/CIRCRESAHA.110.225045 21148433
  • Park CW , Kim HW , Lim JH , et al. Vascular endothelial growth factor inhibition by dRK6 causes endothelial apoptosis, fibrosis, and inflammation in the heart via the Akt/eNOS axis in db/db mice. Diabetes . 2009;58(11):2666–2676. doi:10.2337/db09-0136 19675133
  • Ueki K , Fruman DA , Yballe CM , et al. Positive and negative roles of p85alpha and p85beta regulatory subunits of phosphoinositide 3-kinase in insulin signaling. J Biol Chem . 2017;292(13):5608. doi:10.1074/jbc.A117.305602 28363934
  • Ortega FJ , Mercader JM , Moreno-Navarrete JM , et al. Profiling of circulating microRNAs reveals common microRNAs linked to type 2 diabetes that change with insulin sensitization. Diabetes Care . 2014;37(5):1375–1383. doi:10.2337/dc13-1847 24478399
  • Meng S , Cao JT , Zhang B , Zhou Q , Shen CX , Wang CQ . Downregulation of microRNA-126 in endothelial progenitor cells from diabetes patients, impairs their functional properties, via target gene Spred-1. J Mol Cell Cardiol . 2012;53(1):64–72. doi:10.1016/j.yjmcc.2012.04.003 22525256
  • Tsumaru S , Masumoto H , Minakata K , et al. Therapeutic angiogenesis by local sustained release of microRNA-126 using poly lactic-co-glycolic acid nanoparticles in murine hindlimb ischemia. J Vasc Surg . 2018;68(4):1209-1215.
  • Laterza OF , Lim L , Garrett-Engele PW , et al. Plasma MicroRNAs as sensitive and specific biomarkers of tissue injury. Clin Chem . 2009;55(11):1977–1983. doi:10.1373/clinchem.2009.131797 19745058
  • Chen X , Liang H , Zhang J , Zen K , Zhang CY . Secreted microRNAs: a new form of intercellular communication. Trends Cell Biol . 2012;22(3):125–132. doi:10.1016/j.tcb.2011.12.001 22260888