119
Views
2
CrossRef citations to date
0
Altmetric
Original Research

Influence of type-4 dipeptidyl peptidase inhibition on endothelium-dependent relaxation of aortae from a db/db mouse model of type 2 diabetes: a comparison with the effect of glimepiride

ORCID Icon, , , &
Pages 1449-1458 | Published online: 16 Aug 2019

References

  • Aroor AR , Sowers JR , Jia G , DeMarco VG . Pleiotropic effects of the dipeptidylpeptidase-4 inhibitors on the cardiovascular system. Am J Physiol Heart Circ Physiol . 2014;307(4):H477–H492. doi:10.1152/ajpheart.00209.2014 24929856
  • Ahmed HA , May DW , Fagan SC , Segar L . Vascular protection with dipeptidyl peptidase-IV inhibitors in diabetes: experimental and clinical therapeutics. Pharmacotherapy . 2015;35(3):277–297. doi:10.1002/phar.1547 25754657
  • Salheen SM , Panchapakesan U , Pollock CA , Woodman OL . The DPP-4 inhibitor linagliptin and the GLP-1 receptor agonist exendin-4 improve endothelium-dependent relaxation of rat mesenteric arteries in the presence of high glucose. Pharmacol Res . 2015;94:26–33. doi:10.1016/j.phrs.2015.02.003 25697548
  • Pujadas G , De Nigris V , Prattichizzo F , La Sala L , Testa R , Ceriello A . The dipeptidyl peptidase-4 (DPP-4) inhibitor teneligliptin functions as antioxidant on human endothelial cells exposed to chronic hyperglycemia and metabolic high-glucose memory. Endocrine . 2017;56(3):509–520. doi:10.1007/s12020-016-1052-0 27530507
  • Salheen SM , Panchapakesan U , Pollock CA , Woodman OL . The dipeptidyl peptidase-4 inhibitor linagliptin preserves endothelial function in mesenteric arteries from Type 1 diabetic rats without decreasing plasma glucose. PLoS One . 2015;10(11):e0143941. doi:10.1371/journal.pone.0143941 26618855
  • Jyoti U , Kansal SK , Kumar P , Goyal S . Possible vasculoprotective role of linagliptin against sodium arsenite-induced vascular endothelial dysfunction. Naunyn Schmiedebergs Arch Pharmacol . 2016;389(2):167–175. doi:10.1007/s00210-015-1184-4 26497187
  • Widlansky ME , Puppala VK , Suboc TM , et al. Impact of DPP-4 inhibition on acute and chronic endothelial function in humans with type 2 diabetes on background metformin therapy. Vasc Med . 2017;22(3):189–196. doi:10.1177/1358863X16681486 28145158
  • Ayaori M , Iwakami N , Uto-Kondo H , et al. Dipeptidyl peptidase-4 inhibitors attenuate endothelial function as evaluated by flow-mediated vasodilatation in type 2 diabetic patients. J Am Heart Assoc . 2013;2(1):e003277. doi:10.1161/JAHA.112.003277 23525426
  • Kim G , Oh S , Jin SM , Hur KY , Kim JH , Lee MK . The efficacy and safety of adding either vildagliptin or glimepiride to ongoing metformin therapy in patients with type 2 diabetes mellitus. Expert Opin Pharmacother . 2017;18(12):1179–1186. doi:10.1080/14656566.2017.1353080 28714741
  • Jax T , Stirban A , Terjung A , et al. A randomised, active- and placebo-controlled, three-period crossover trial to investigate short-term effects of the dipeptidyl peptidase-4 inhibitor linagliptin on macro- and microvascular endothelial function in type 2 diabetes. Cardiovasc Diabetol . 2017;16(1):13. doi:10.1186/s12933-017-0624-5 28109295
  • Machado HA , Vieira M , Cunha MR , et al. Metformin, but not glimepiride, improves carotid artery diameter and blood flow in patients with type 2 diabetes mellitus. Clinics (Sao Paulo) . 2012;67(7):711–717. doi:10.6061/clinics/2012(07)03 22892913
  • Nomoto H , Miyoshi H , Furumoto T , et al. A randomized controlled trial comparing the effects of sitagliptin and glimepiride on endothelial function and metabolic parameters: Sapporo Athero-Incretin Study 1 (SAIS1). PLoS One . 2016;11(10):e0164255. doi:10.1371/journal.pone.0164255 27711199
  • Jojima T , Suzuki K , Hirama N , Uchida K , Hattori Y . Glimepiride upregulates eNOS activity and inhibits cytokine-induced NF-kappaB activation through a phosphoinoside 3-kinase-Akt-dependent pathway. Diabetes Obes Metab . 2009;11(2):143–149. doi:10.1111/j.1463-1326.2008.00923.x
  • Ma P , Gu B , Xiong W , et al. Glimepiride promotes osteogenic differentiation in rat osteoblasts via the PI3K/Akt/eNOS pathway in a high glucose microenvironment. PLoS One . 2014;9(11):e112243. doi:10.1371/journal.pone.0112243 25391146
  • Nakamura I , Oyama J , Komoda H , et al. Possible effects of glimepiride beyond glycemic control in patients with type 2 diabetes: a preliminary report. Cardiovasc Diabetol . 2014;13:15. doi:10.1186/1475-2840-13-80 24423092
  • Garber AJ , Abrahamson MJ , Barzilay JI , et al. Consensus statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the comprehensive Type 2 diabetes management algorithm – 2017 executive summary. Endocr Pract . 2017;23(2):207–238. doi:10.4158/EP161682.CS 28095040
  • Marx N , Rosenstock J , Kahn SE , et al. Design and baseline characteristics of the CARdiovascular outcome trial of LINAgliptin versus glimepiride in Type 2 diabetes (CAROLINA(R)). Diabetes Vasc Dis Res . 2015;12(3):164–174. doi:10.1177/1479164115570301
  • Darsalia V , Ortsater H , Olverling A , et al. The DPP-4 inhibitor linagliptin counteracts stroke in the normal and diabetic mouse brain: a comparison with glimepiride. Diabetes . 2013;62(4):1289–1296. doi:10.2337/db12-0988 23209191
  • Thomas L , Eckhardt M , Langkopf E , Tadayyon M , Himmelsbach F , Mark M . (R)-8-(3-amino-piperidin-1-yl)-7-but-2-ynyl-3-methyl-1-(4-methyl-quinazolin-2-ylm ethyl)-3,7-dihydro-purine-2,6-dione (BI 1356), a novel xanthine-based dipeptidyl peptidase 4 inhibitor, has a superior potency and longer duration of action compared with other dipeptidyl peptidase-4 inhibitors. J Pharmacol Exp Ther . 2008;325(1):175–182. doi:10.1124/jpet.107.135723 18223196
  • Miller AA , Drummond GR , Schmidt HH , Sobey CG . NADPH oxidase activity and function are profoundly greater in cerebral versus systemic arteries. Circ Res . 2005;97(10):1055–1062. doi:10.1161/01.RES.0000189301.10217.87 16210546
  • Miike T , Kunishiro K , Kanda M , Azukizawa S , Kurahashi K , Shirahase H . Impairment of endothelium-dependent ACh-induced relaxation in aorta of diabetic db/db mice – possible dysfunction of receptor and/or receptor-G protein coupling. Naunyn Schmiedebergs Arch Pharmacol . 2008;377(4–6):401–410. doi:10.1007/s00210-008-0261-3 18228001
  • Cheang WS , Wong WT , Tian XY , et al. Endothelial nitric oxide synthase enhancer reduces oxidative stress and restores endothelial function in db/db mice. Cardiovasc Res . 2011;92(2):267–275. doi:10.1093/cvr/cvr233 21875904
  • Sharkovska Y , Reichetzeder C , Alter M , et al. Blood pressure and glucose independent renoprotective effects of dipeptidyl peptidase-4 inhibition in a mouse model of type-2 diabetic nephropathy. J Hypertens . 2014;32(11):2211–2223; discussion 2223. doi:10.1097/HJH.0000000000000328
  • Kern M , Kloting N , Niessen HG , et al. Linagliptin improves insulin sensitivity and hepatic steatosis in diet-induced obesity. PLoS One . 2012;7(6):e38744. doi:10.1371/journal.pone.0038744 22761701
  • Nagakura T , Yasuda N , Yamazaki K , Ikuta H , Tanaka I . Enteroinsular axis of db/db mice and efficacy of dipeptidyl peptidase IV inhibition. Metabolism . 2003;52(1):81–86. doi:10.1053/meta.2003.50014 12524666
  • Bhatti JS , Bhatti GK , Reddy PH . Mitochondrial dysfunction and oxidative stress in metabolic disorders – a step towards mitochondria based therapeutic strategies. Biochim Biophys Acta Mol Basis Dis . 2017;1863(5):1066–1077. doi:10.1016/j.bbadis.2016.11.010 27836629
  • Leo CH , Hart JL , Woodman OL . 3ʹ,4ʹ-Dihydroxyflavonol restores endothelium-dependent relaxation in small mesenteric artery from rats with type 1 and type2 diabetes. Eur J Pharmacol . 2011;659:193–198. doi:10.1016/j.ejphar.2011.03.018 21453697
  • Dikalov SI , Nazarewicz RR , Bikineyeva A , et al. Nox2-induced production of mitochondrial superoxide in angiotensin II-mediated endothelial oxidative stress and hypertension. Antioxid Redox Signal . 2014;20(2):281–294. doi:10.1089/ars.2012.4918 24053613
  • Malakul W , Thirawarapan S , Suvitayavat W , Woodman OL . Type 1 diabetes and hypercholesterolaemia reveal the contribution of endothelium-derived hyperpolarizing factor to endothelium-dependent relaxation of the rat aorta. Clinical Exp Pharmacol Physiol . 2008;35(2):192–200.17941894
  • Vellecco V , Mitidieri E , Gargiulo A , et al. Vascular effects of linagliptin in non-obese diabetic mice are glucose-independent and involve positive modulation of the endothelial nitric oxide synthase (eNOS)/caveolin-1 (CAV-1) pathway. Diabetes Obes Metab . 2016;18(12):1236–1243. doi:10.1111/dom.12750 27460695
  • Shigiyama F , Kumashiro N , Miyagi M , et al. Linagliptin improves endothelial function in patients with type 2 diabetes: a randomized study of linagliptin effectiveness on endothelial function. J Diabetes Investig . 2017;8(3):330–340. doi:10.1111/jdi.12587
  • Kubota Y , Miyamoto M , Takagi G , et al. The dipeptidyl peptidase-4 inhibitor sitagliptin improves vascular endothelial function in type 2 diabetes. J Korean Med Sci . 2012;27(11):1364–1370. doi:10.3346/jkms.2012.27.11.1364 23166419
  • van Poppel PC , Netea MG , Smits P , Tack CJ . Vildagliptin improves endothelium-dependent vasodilatation in type 2 diabetes. Diabetes Care . 2011;34(9):2072–2077. doi:10.2337/dc10-2421 21788633
  • Kroller-Schon S , Knorr M , Hausding M , et al. Glucose-independent improvement of vascular dysfunction in experimental sepsis by dipeptidyl-peptidase 4 inhibition. Cardiovasc Res . 2012;96(1):140–149. doi:10.1093/cvr/cvs246 22843705
  • Salim HM , Fukuda D , Higashikuni Y , et al. Dipeptidyl peptidase-4 inhibitor, linagliptin, ameliorates endothelial dysfunction and atherogenesis in normoglycemic apolipoprotein-E deficient mice. Vascul Pharmacol . 2016;79:16–23. doi:10.1016/j.vph.2015.08.011 26277250