512
Views
16
CrossRef citations to date
0
Altmetric
Review

Type 2 Diabetes-Associated Genetic Polymorphisms as Potential Disease Predictors

, , , ORCID Icon & ORCID Icon
Pages 2689-2706 | Published online: 18 Dec 2019

References

  • Carrera Boada CA , Martinez-Moreno JM . Pathophysiology of diabetes mellitus type 2: beyond the duo “insulin resistance-secretion deficit”. Nutr Hosp . 2013;28(Suppl 2):78–87. doi:10.3305/nh.2013.28.sup2.6717
  • Danaei G , Finucane MM , Lu Y , et al. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet . 2011;378(9785):31–40. doi:10.1016/S0140-6736(11)60679-X 21705069
  • Shaw JE , Sicree RA , Zimmet PZ . Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract . 2010;87(1):4–14. doi:10.1016/j.diabres.2009.10.007 19896746
  • O’Rahilly S , Barroso I , Wareham NJ . Genetic factors in type 2 diabetes: the end of the beginning? Science . 2005;307(5708):370–373. doi:10.1126/science.1104346 15662000
  • Prokopenko I , McCarthy MI , Lindgren CM . Type 2 diabetes: new genes, new understanding. Trends Genet . 2008;24(12):613–621. doi:10.1016/j.tig.2008.09.004 18952314
  • Mahajan A , Taliun D , Thurner M , et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat Genet . 2018;50(11):1505–1513. doi:10.1038/s41588-018-0241-6 30297969
  • McCarthy MI , Zeggini E . Genome-wide association studies in type 2 diabetes. Curr Diab Rep . 2009;9(2):164–171. doi:10.1007/s11892-009-0027-4 19323962
  • Wheeler E , Barroso I . Genome-wide association studies and type 2 diabetes. Brief Funct Genomics . 2011;10(2):52–60. doi:10.1093/bfgp/elr008 21436302
  • Zheng JS , Li K , Huang T , et al. Genetic risk score of nine type 2 diabetes risk variants that interact with erythrocyte phospholipid alpha-linolenic acid for type 2 diabetes in Chinese hans: a case-control study. Nutrients . 2017;9(4):376. doi:10.3390/nu9040376
  • Lall K , Magi R , Morris A , Metspalu A , Fischer K . Personalized risk prediction for type 2 diabetes: the potential of genetic risk scores. Genet Med . 2017;19(3):322–329. doi:10.1038/gim.2016.103 27513194
  • Kong X , Xing X , Zhang X , Hong J , Yang W . Early-onset type 2 diabetes is associated with genetic variants of beta-cell function in the Chinese Han population. Diabetes Metab Res Rev . 2019;e3214.31465628
  • Meigs JB , Shrader P , Sullivan LM , et al. Genotype score in addition to common risk factors for prediction of type 2 diabetes. N Engl J Med . 2008;359(21):2208–2219. doi:10.1056/NEJMoa0804742 19020323
  • van Hoek M , Dehghan A , Witteman JC , et al. Predicting type 2 diabetes based on polymorphisms from genome-wide association studies: a population-based study. Diabetes . 2008;57(11):3122–3128. doi:10.2337/db08-0425 18694974
  • Cornelis MC , Qi L , Zhang C , et al. Joint effects of common genetic variants on the risk for type 2 diabetes in U.S. men and women of European ancestry. Ann Intern Med . 2009;150(8):541–550. doi:10.7326/0003-4819-150-8-200904210-00008 19380854
  • Lyssenko V , Jonsson A , Almgren P , et al. Clinical risk factors, DNA variants, and the development of type 2 diabetes. N Engl J Med . 2008;359(21):2220–2232. doi:10.1056/NEJMoa0801869 19020324
  • Groop L , Forsblom C , Lehtovirta M , et al. Metabolic consequences of a family history of NIDDM (the Botnia study): evidence for sex-specific parental effects. Diabetes . 1996;45(11):1585–1593. doi:10.2337/diab.45.11.1585 8866565
  • Herder C , Kowall B , Tabak AG , Rathmann W . The potential of novel biomarkers to improve risk prediction of type 2 diabetes. Diabetologia . 2014;57(1):16–29. doi:10.1007/s00125-013-3061-3 24078135
  • Abuissa H , Bel DS , J H O Jr. Strategies to prevent type 2 diabetes. Curr Med Res Opin . 2005;21(7):1107–1114. doi:10.1185/030079905X50606 16004680
  • Schwingshackl L , Hoffmann G , Lampousi AM , et al. Food groups and risk of type 2 diabetes mellitus: a systematic review and meta-analysis of prospective studies. Eur J Epidemiol . 2017;32(5):363–375. doi:10.1007/s10654-017-0246-y 28397016
  • Kong X , Zhang X , Xing X , Zhang B , Hong J , Yang W . The association of type 2 diabetes loci identified in genome-wide association studies with metabolic syndrome and its components in a chinese population with type 2 diabetes. PLoS One . 2015;10(11):e0143607. doi:10.1371/journal.pone.0143607 26599349
  • Zyriax BC , Salazar R , Hoeppner W , Vettorazzi E , Herder C , Windler E . The association of genetic markers for type 2 diabetes with prediabetic status – cross-sectional data of a diabetes prevention trial. PLoS One . 2013;8(9):e75807. doi:10.1371/journal.pone.0075807 24098730
  • Yasuda K , Miyake K , Horikawa Y , et al. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat Genet . 2008;40(9):1092–1097. doi:10.1038/ng.207 18711367
  • Stancakova A , Kuulasmaa T , Paananen J , et al. Association of 18 confirmed susceptibility loci for type 2 diabetes with indices of insulin release, proinsulin conversion, and insulin sensitivity in 5,327 nondiabetic Finnish men. Diabetes . 2009;58(9):2129–2136. doi:10.2337/db09-0117 19502414
  • Khan IA , Vattam KK , Jahan P , Mukkavali KK , Hasan Q , Rao P . Correlation between KCNQ1 and KCNJ11 gene polymorphisms and type 2 and post-transplant diabetes mellitus in the Asian Indian population. Genes Dis . 2015;2(3):276–282. doi:10.1016/j.gendis.2015.02.009 30258870
  • Fukuda H , Imamura M , Tanaka Y , et al. A single nucleotide polymorphism within DUSP9 is associated with susceptibility to type 2 diabetes in a Japanese population. PLoS One . 2012;7(9):e46263. doi:10.1371/journal.pone.0046263 23029454
  • Rees SD , Hydrie MZ , Shera AS , et al. Replication of 13 genome-wide association (GWA)-validated risk variants for type 2 diabetes in Pakistani populations. Diabetologia . 2011;54(6):1368–1374. doi:10.1007/s00125-011-2063-2 21350842
  • Bao XY , Peng B , Yang MS . Replication study of novel risk variants in six genes with type 2 diabetes and related quantitative traits in the Han Chinese lean individuals. Mol Biol Rep . 2012;39(3):2447–2454. doi:10.1007/s11033-011-0995-8 21643948
  • Kamura Y , Iwata M , Maeda S , et al. FTO gene polymorphism is associated with type 2 diabetes through its effect on increasing the maximum BMI in Japanese men. PLoS One . 2016;11(11):e0165523. doi:10.1371/journal.pone.0165523 27820839
  • Hertel JK , Johansson S , Sonestedt E , et al. FTO, type 2 diabetes, and weight gain throughout adult life: a meta-analysis of 41,504 subjects from the Scandinavian HUNT, MDC, and MPP studies. Diabetes . 2011;60(5):1637–1644. doi:10.2337/db10-1340 21398525
  • Ortega-Azorin C , Sorli JV , Asensio EM , et al. Associations of the FTO rs9939609 and the MC4R rs17782313 polymorphisms with type 2 diabetes are modulated by diet, being higher when adherence to the Mediterranean diet pattern is low. Cardiovasc Diabetol . 2012;11:137. doi:10.1186/1475-2840-11-137 23130628
  • Scott LJ , Mohlke KL , Bonnycastle LL , et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science . 2007;316(5829):1341–1345. doi:10.1126/science.1142382 17463248
  • Tamaki M , Fujitani Y , Hara A , et al. The diabetes-susceptible gene SLC30A8/ZnT8 regulates hepatic insulin clearance. J Clin Invest . 2013;123(10):4513–4524. doi:10.1172/JCI68807 24051378
  • Mtiraoui N , Turki A , Nemr R , et al. Contribution of common variants of ENPP1, IGF2BP2, KCNJ11, MLXIPL, PPARgamma, SLC30A8 and TCF7L2 to the risk of type 2 diabetes in Lebanese and Tunisian Arabs. Diabetes Metab . 2012;38(5):444–449. doi:10.1016/j.diabet.2012.05.002 22749234
  • Bonnycastle LL , Willer CJ , Conneely KN , et al. Common variants in maturity-onset diabetes of the young genes contribute to risk of type 2 diabetes in Finns. Diabetes . 2006;55(9):2534–2540. doi:10.2337/db06-0178 16936201
  • Marcil V , Amre D , Seidman EG , et al. Hepatocyte nuclear factor 4 alpha polymorphisms and the metabolic syndrome in French-Canadian youth. PLoS One . 2015;10(2):e0117238. doi:10.1371/journal.pone.0117238 25671620
  • Kooner JS , Saleheen D , Sim X , et al. Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci. Nat Genet . 2011;43(10):984–989. doi:10.1038/ng.921 21874001
  • Rao P , Wang H , Fang H , et al. Association between IGF2BP2 polymorphisms and type 2 diabetes mellitus: a case-control study and meta-analysis. Int J Environ Res Public Health . 2016;13:6. doi:10.3390/ijerph13060574
  • Lasram K , Ben Halim N , Benrahma H , et al. Contribution of CDKAL1 rs7756992 and IGF2BP2 rs4402960 polymorphisms in type 2 diabetes, diabetic complications, obesity risk and hypertension in the Tunisian population. J Diabetes . 2015;7(1):102–113. doi:10.1111/1753-0407.12147 24636221
  • Chauhan G , Spurgeon CJ , Tabassum R , et al. Impact of common variants of PPARG, KCNJ11, TCF7L2, SLC30A8, HHEX, CDKN2A, IGF2BP2, and CDKAL1 on the risk of type 2 diabetes in 5,164 Indians. Diabetes . 2010;59(8):2068–2074. doi:10.2337/db09-1386 20424228
  • Gamboa-Melendez MA , Huerta-Chagoya A , Moreno-Macias H , et al. Contribution of common genetic variation to the risk of type 2 diabetes in the Mexican Mestizo population. Diabetes . 2012;61(12):3314–3321. doi:10.2337/db11-0550 22923468
  • Chen G , Xu Y , Lin Y , et al. Association study of genetic variants of 17 diabetes-related genes/loci and cardiovascular risk and diabetic nephropathy in the Chinese She population. J Diabetes . 2013;5(2):136–145. doi:10.1111/1753-0407.12025 23298195
  • Hu C , Zhang R , Wang C , et al. PPARG, KCNJ11, CDKAL1, CDKN2A-CDKN2B, IDE-KIF11-HHEX, IGF2BP2 and SLC30A8 are associated with type 2 diabetes in a Chinese population. PLoS One . 2009;4(10):e7643. doi:10.1371/journal.pone.0007643 19862325
  • Xiao S , Zeng X , Fan Y , et al. Gene polymorphism association with type 2 diabetes and related gene–gene and gene–environment interactions in a Uyghur Population. Med Sci Monit . 2016;22:474–487. doi:10.12659/msm.895347 26873362
  • Wen J , Ronn T , Olsson A , et al. Investigation of type 2 diabetes risk alleles support CDKN2A/B, CDKAL1, and TCF7L2 as susceptibility genes in a Han Chinese cohort. PLoS One . 2010;5(2):e9153. doi:10.1371/journal.pone.0009153 20161779
  • Corella D , Coltell O , Sorli JV , et al. Polymorphism of the transcription factor 7-like 2 gene (TCF7L2) interacts with obesity on type-2 diabetes in the PREDIMED study emphasizing the heterogeneity of genetic variants in type-2 diabetes risk prediction: time for obesity-specific genetic risk scores. Nutrients . 2016;8(12):793.
  • Cauchi S , Meyre D , Dina C , et al. Transcription factor TCF7L2 genetic study in the French population: expression in human beta-cells and adipose tissue and strong association with type 2 diabetes. Diabetes . 2006;55(10):2903–2908. doi:10.2337/db06-0474 17003360
  • Sale MM , Smith SG , Mychaleckyj JC , et al. Variants of the transcription factor 7-like 2 (TCF7L2) gene are associated with type 2 diabetes in an African-American population enriched for nephropathy. Diabetes . 2007;56(10):2638–2642. doi:10.2337/db07-0012 17601994
  • Ciccacci C , Di Fusco D , Cacciotti L , et al. TCF7L2 gene polymorphisms and type 2 diabetes: association with diabetic retinopathy and cardiovascular autonomic neuropathy. Acta Diabetol . 2013;50(5):789–799. doi:10.1007/s00592-012-0418-x 22843023
  • Wang J , Zhang J , Li L , et al. Association of rs12255372 in the TCF7L2 gene with type 2 diabetes mellitus: a meta-analysis. Braz J Med Biol Res . 2013;46(4):382–393. doi:10.1590/1414-431x20132677 23579632
  • Nanfa D , Sobngwi E , Atogho-Tiedeu B , et al. Association between the TCF7L2 rs12255372 (G/T) gene polymorphism and type 2 diabetes mellitus in a Cameroonian population: a pilot study. Clin Transl Med . 2015;4:17. doi:10.1186/s40169-015-0058-1 25995831
  • Liu Z , Zhang YW , Feng QP , et al. [Association analysis of 30 type 2 diabetes candidate genes in Chinese Han population]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao . 2006;28(2):124–128.16733889
  • Phani NM , Guddattu V , Bellampalli R , et al. Population specific impact of genetic variants in KCNJ11 gene to type 2 diabetes: a case-control and meta-analysis study. PLoS One . 2014;9(9):e107021. doi:10.1371/journal.pone.0107021 25247988
  • Abdelhamid I , Lasram K , Meiloud G , et al. E23K variant in KCNJ11 gene is associated with susceptibility to type 2 diabetes in the Mauritanian population. Prim Care Diabetes . 2014;8(2):171–175. doi:10.1016/j.pcd.2013.10.006 24332549
  • Synofzik M , Haack TB , Kopajtich R , et al. Absence of BiP co-chaperone DNAJC3 causes diabetes mellitus and multisystemic neurodegeneration. Am J Hum Genet . 2014;95(6):689–697. doi:10.1016/j.ajhg.2014.10.013 25466870
  • Li ZP , Zhang M , Gao J , Zhou GY , Li SQ , An ZM . Relation between ADIPOQ gene polymorphisms and type 2 diabetes. Genes . 2015;6(3):512–519. doi:10.3390/genes6030512 26184318
  • Han X , Luo Y , Ren Q , et al. Implication of genetic variants near SLC30A8, HHEX, CDKAL1, CDKN2A/B, IGF2BP2, FTO, TCF2, KCNQ1, and WFS1 in type 2 diabetes in a Chinese population. BMC Med Genet . 2010;11:81. doi:10.1186/1471-2350-11-81 20509872
  • Klimentidis YC , Lemas DJ , Wiener HH , et al. CDKAL1 and HHEX are associated with type 2 diabetes-related traits among Yup’ik people. J Diabetes . 2014;6(3):251–259. doi:10.1111/1753-0407.12093 24112421
  • Mencarelli M , Zulian A , Cancello R , et al. A novel missense mutation in the signal peptide of the human POMC gene: a possible additional link between early-onset type 2 diabetes and obesity. Eur J Hum Genet . 2012;20(12):1290–1294. doi:10.1038/ejhg.2012.103 22643178
  • Deeb SS , Fajas L , Nemoto M , et al. A Pro12Ala substitution in PPARgamma2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat Genet . 1998;20(3):284–287. doi:10.1038/3099 9806549
  • Dong F , Zhang BH , Zheng SL , et al. Association between SLC30A8 rs13266634 polymorphism and risk of T2DM and IGR in Chinese population: a systematic review and meta-analysis. Front Endocrinol (Lausanne) . 2018;9:564. doi:10.3389/fendo.2018.00564 30319545
  • Fan M , Li W , Wang L , et al. Association of SLC30A8 gene polymorphism with type 2 diabetes, evidence from 46 studies: a meta-analysis. Endocrine . 2016;53(2):381–394. doi:10.1007/s12020-016-0870-4 26832344
  • Voight BF , Scott LJ , Steinthorsdottir V , et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet . 2010;42(7):579–589. doi:10.1038/ng.609 20581827
  • Teslovich TM , Musunuru K , Smith AV , et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature . 2010;466(7307):707–713. doi:10.1038/nature09270 20686565
  • de Assuncao TM , Lomberk G , Cao S , et al. New role for Kruppel-like factor 14 as a transcriptional activator involved in the generation of signaling lipids. J Biol Chem . 2014;289(22):15798–15809. doi:10.1074/jbc.M113.544346 24759103
  • Parker-Katiraee L , Carson AR , Yamada T , et al. Identification of the imprinted KLF14 transcription factor undergoing human-specific accelerated evolution. PLoS Genet . 2007;3(5):e65. doi:10.1371/journal.pgen.0030065 17480121
  • Okamura K , Nakai K . Retrotransposition as a source of new promoters. Mol Biol Evol . 2008;25(6):1231–1238. doi:10.1093/molbev/msn071 18367464
  • Kong A , Steinthorsdottir V , Masson G , et al. Parental origin of sequence variants associated with complex diseases. Nature . 2009;462(7275):868–874. doi:10.1038/nature08625 20016592
  • Small KS , Todorcevic M , Civelek M , et al. Regulatory variants at KLF14 influence type 2 diabetes risk via a female-specific effect on adipocyte size and body composition. Nat Genet . 2018;50(4):572–580. doi:10.1038/s41588-018-0088-x 29632379
  • Dimas AS , Lagou V , Barker A , et al. Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity. Diabetes . 2014;63(6):2158–2171. doi:10.2337/db13-0949 24296717
  • Small KS , Hedman AK , Grundberg E , et al. Identification of an imprinted master trans regulator at the KLF14 locus related to multiple metabolic phenotypes. Nat Genet . 2011;43(6):561–564. doi:10.1038/ng1011-1040c 21572415
  • Yamagata K , Senokuchi T , Lu M , et al. Voltage-gated K+ channel KCNQ1 regulates insulin secretion in MIN6 beta-cell line. Biochem Biophys Res Commun . 2011;407(3):620–625. doi:10.1016/j.bbrc.2011.03.083 21426901
  • Mulder H , Nagorny CL , Lyssenko V , Groop L . Melatonin receptors in pancreatic islets: good morning to a novel type 2 diabetes gene. Diabetologia . 2009;52(7):1240–1249. doi:10.1007/s00125-009-1359-y 19377888
  • Chen YH , Xu SJ , Bendahhou S , et al. KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science . 2003;299(5604):251–254. doi:10.1126/science.1077771 12522251
  • Demolombe S , Franco D , de Boer P , et al. Differential expression of KvLQT1 and its regulator IsK in mouse epithelia. Am J Physiol Cell Physiol . 2001;280(2):C359–372. doi:10.1152/ajpcell.2001.280.2.C359 11208532
  • Tan JT , Nurbaya S , Gardner D , Ye S , Tai ES , Ng DP . Genetic variation in KCNQ1 associates with fasting glucose and beta-cell function: a study of 3,734 subjects comprising three ethnicities living in Singapore. Diabetes . 2009;58(6):1445–1449. doi:10.2337/db08-1138 19252135
  • Zeggini E , Scott LJ , Saxena R , et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet . 2008;40(5):638–645. doi:10.1038/ng.120 18372903
  • Simonis-Bik AM , Nijpels G , van Haeften TW , et al. Gene variants in the novel type 2 diabetes loci CDC123/CAMK1D, THADA, ADAMTS9, BCL11A, and MTNR1B affect different aspects of pancreatic beta-cell function. Diabetes . 2010;59(1):293–301. doi:10.2337/db12-1627 19833888
  • Jonsson A , Ladenvall C , Ahluwalia TS , et al. Effects of common genetic variants associated with type 2 diabetes and glycemic traits on alpha- and beta-cell function and insulin action in humans. Diabetes . 2013;62(8):2978–2983. doi:10.2337/db12-1627 23557703
  • Ullrich S , Su J , Ranta F , et al. Effects of I(Ks) channel inhibitors in insulin-secreting INS-1 cells. Pflugers Arch . 2005;451(3):428–436. doi:10.1007/s00424-005-1479-2 16133261
  • Liu Y , Zhou DZ , Zhang D , et al. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes in the population of mainland China. Diabetologia . 2009;52(7):1315–1321. doi:10.1007/s00125-009-1375-y 19448982
  • Yu W , Ma RC , Hu C , et al. Association between KCNQ1 genetic variants and obesity in Chinese patients with type 2 diabetes. Diabetologia . 2012;55(10):2655–2659. doi:10.1007/s00125-012-2636-8 22790062
  • Kong X , Hong J , Chen Y , et al. Association of genetic variants with isolated fasting hyperglycaemia and isolated postprandial hyperglycaemia in a Han Chinese population. PLoS One . 2013;8(8):e71399. doi:10.1371/journal.pone.0071399 23990951
  • Xu H , Dembski M , Yang Q , et al. Dual specificity mitogen-activated protein (MAP) kinase phosphatase-4 plays a potential role in insulin resistance. J Biol Chem . 2003;278(32):30187–30192. doi:10.1074/jbc.M302010200 12777378
  • Emanuelli B , Eberle D , Suzuki R , Kahn CR . Overexpression of the dual-specificity phosphatase MKP-4/DUSP-9 protects against stress-induced insulin resistance. Proc Natl Acad Sci U S A . 2008;105(9):3545–3550. doi:10.1073/pnas.0712275105 18296638
  • Mizuno TM . Fat Mass and Obesity Associated (FTO) gene and hepatic glucose and lipid metabolism. Nutrients . 2018;10(11):1600. doi:10.3390/nu10111600
  • Gerken T , Girard CA , Tung YC , et al. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science . 2007;318(5855):1469–1472. doi:10.1126/science.1151710 17991826
  • Sanchez-Pulido L , Andrade-Navarro MA , The FTO . (fat mass and obesity associated) gene codes for a novel member of the non-heme dioxygenase superfamily. BMC Biochem . 2007;8:23. doi:10.1186/1471-2091-8-23 17996046
  • Jia G , Yang CG , Yang S , et al. Oxidative demethylation of 3-methylthymine and 3-methyluracil in single-stranded DNA and RNA by mouse and human FTO. FEBS Lett . 2008;582(23–24):3313–3319. doi:10.1016/j.febslet.2008.08.019 18775698
  • Han Z , Niu T , Chang J , et al. Crystal structure of the FTO protein reveals basis for its substrate specificity. Nature . 2010;464(7292):1205–1209. doi:10.1038/nature08921 20376003
  • Frayling TM , Timpson NJ , Weedon MN , et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science . 2007;316(5826):889–894. doi:10.1126/science.1141634 17434869
  • Dina C , Meyre D , Gallina S , et al. Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet . 2007;39(6):724–726. doi:10.1038/ng2048 17496892
  • Speliotes EK , Willer CJ , Berndt SI , et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet . 2010;42(11):937–948. doi:10.1038/ng.686 20935630
  • Hinney A , Nguyen TT , Scherag A , et al. Genome wide association (GWA) study for early onset extreme obesity supports the role of fat mass and obesity associated gene (FTO) variants. PLoS One . 2007;2(12):e1361. doi:10.1371/journal.pone.0001361 18159244
  • Yang J , Loos RJ , Powell JE , et al. FTO genotype is associated with phenotypic variability of body mass index. Nature . 2012;490(7419):267–272. doi:10.1038/nature11401 22982992
  • Zhang X , Qi Q , Zhang C , et al. FTO genotype and 2-year change in body composition and fat distribution in response to weight-loss diets: the POUNDS LOST Trial. Diabetes . 2012;61(11):3005–3011. doi:10.2337/db11-1799 22891219
  • Abdullah A , Peeters A , de Courten M , Stoelwinder J . The magnitude of association between overweight and obesity and the risk of diabetes: a meta-analysis of prospective cohort studies. Diabetes Res Clin Pract . 2010;89(3):309–319. doi:10.1016/j.diabres.2010.04.012 20493574
  • Tanaka S , Honda M , Wu B , Kazumi T . Clinical features of normal weight Japanese patients with type 2 diabetes who had formerly been obese. J Atheroscler Thromb . 2011;18(2):115–121. doi:10.5551/jat.5926 21071881
  • Park JY , Lee KU , Kim CH , et al. Past and current obesity in Koreans with non-insulin-dependent diabetes mellitus. Diabetes Res Clin Pract . 1997;35(1):49–56. doi:10.1016/S0168-8227(96)01363-0 9113475
  • Ragvin A , Moro E , Fredman D , et al. Long-range gene regulation links genomic type 2 diabetes and obesity risk regions to HHEX, SOX4, and IRX3. Proc Natl Acad Sci U S A . 2010;107(2):775–780. doi:10.1073/pnas.0911591107 20080751
  • Ihara A , Yamagata K , Nammo T , et al. Functional characterization of the HNF4alpha isoform (HNF4alpha8) expressed in pancreatic beta-cells. Biochem Biophys Res Commun . 2005;329(3):984–990. doi:10.1016/j.bbrc.2005.02.072 15752752
  • Nammo T , Yamagata K , Hamaoka R , et al. Expression profile of MODY3/HNF-1alpha protein in the developing mouse pancreas. Diabetologia . 2002;45(8):1142–1153. doi:10.1007/s00125-002-0892-8 12189445
  • Marcil V , Delvin E , Sane AT , Tremblay A , Levy E . Oxidative stress influences cholesterol efflux in THP-1 macrophages: role of ATP-binding cassette A1 and nuclear factors. Cardiovasc Res . 2006;72(3):473–482. doi:10.1016/j.cardiores.2006.08.024 17070507
  • Parviz F , Matullo C , Garrison WD , et al. Hepatocyte nuclear factor 4alpha controls the development of a hepatic epithelium and liver morphogenesis. Nat Genet . 2003;34(3):292–296. doi:10.1038/ng1175 12808453
  • Boj SF , Parrizas M , Maestro MA , Ferrer J . A transcription factor regulatory circuit in differentiated pancreatic cells. Proc Natl Acad Sci U S A . 2001;98(25):14481–14486. doi:10.1073/pnas.241349398 11717395
  • Briancon N , Weiss MC . In vivo role of the HNF4alpha AF-1 activation domain revealed by exon swapping. EMBO J . 2006;25(6):1253–1262. doi:10.1038/sj.emboj.7601021 16498401
  • Nakhei H , Lingott A , Lemm I , Ryffel GU . An alternative splice variant of the tissue specific transcription factor HNF4alpha predominates in undifferentiated murine cell types. Nucleic Acids Res . 1998;26(2):497–504. doi:10.1093/nar/26.2.497 9421506
  • Thomas H , Jaschkowitz K , Bulman M , et al. A distant upstream promoter of the HNF-4alpha gene connects the transcription factors involved in maturity-onset diabetes of the young. Hum Mol Genet . 2001;10(19):2089–2097. doi:10.1093/hmg/10.19.2089 11590126
  • Eeckhoute J , Moerman E , Bouckenooghe T , et al. Hepatocyte nuclear factor 4 alpha isoforms originated from the P1 promoter are expressed in human pancreatic beta-cells and exhibit stronger transcriptional potentials than P2 promoter-driven isoforms. Endocrinology . 2003;144(5):1686–1694. doi:10.1210/en.2002-0024 12697672
  • Hansen SK , Parrizas M , Jensen ML , et al. Genetic evidence that HNF-1alpha-dependent transcriptional control of HNF-4alpha is essential for human pancreatic beta cell function. J Clin Invest . 2002;110(6):827–833. doi:10.1172/JCI0215085 12235114
  • Gardner DS , Tai ES . Clinical features and treatment of maturity onset diabetes of the young (MODY). Diabetes Metab Syndr Obes . 2012;5:101–108. doi:10.2147/DMSO 22654519
  • Yamagata K , Furuta H , Oda N , et al. Mutations in the hepatocyte nuclear factor-4alpha gene in maturity-onset diabetes of the young (MODY1). Nature . 1996;384(6608):458–460. doi:10.1038/384458a0 8945471
  • Bellanne-Chantelot C , Carette C , Riveline JP , et al. The type and the position of HNF1A mutation modulate age at diagnosis of diabetes in patients with maturity-onset diabetes of the young (MODY)-3. Diabetes . 2008;57(2):503–508. doi:10.2337/db07-0859 18003757
  • Cho YS , Chen CH , Hu C , et al. Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians. Nat Genet . 2011;44(1):67–72. doi:10.1038/ng.1019 22158537
  • Jafar-Mohammadi B , Groves CJ , Gjesing AP , et al. A role for coding functional variants in HNF4A in type 2 diabetes susceptibility. Diabetologia . 2011;54(1):111–119. doi:10.1007/s00125-010-1916-4 20878384
  • Bartoov-Shifman R , Hertz R , Wang H , Wollheim CB , Bar-Tana J , Walker MD . Activation of the insulin gene promoter through a direct effect of hepatocyte nuclear factor 4 alpha. J Biol Chem . 2002;277(29):25914–25919. doi:10.1074/jbc.M201582200 11994285
  • Rhee J , Inoue Y , Yoon JC , et al. Regulation of hepatic fasting response by PPARgamma coactivator-1alpha (PGC-1): requirement for hepatocyte nuclear factor 4alpha in gluconeogenesis. Proc Natl Acad Sci U S A . 2003;100(7):4012–4017. doi:10.1073/pnas.0730870100 12651943
  • Byrne MM , Sturis J , Fajans SS , et al. Altered insulin secretory responses to glucose in subjects with a mutation in the MODY1 gene on chromosome 20. Diabetes . 1995;44(6):699–704. doi:10.2337/diab.44.6.699 7789636
  • Saxena R , Voight BF , Lyssenko V , et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science . 2007;316(5829):1331–1336. doi:10.1126/science.1142358 17463246
  • Zeggini E , Weedon MN , Lindgren CM , et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science . 2007;316(5829):1336–1341. doi:10.1126/science.1142364 17463249
  • Miralles F , Portha B . Early development of beta-cells is impaired in the GK rat model of type 2 diabetes. Diabetes . 2001;50(Suppl 1):S84–S88. doi:10.2337/diabetes.50.2007.S84 11272209
  • Louveau I , Gondret F . Regulation of development and metabolism of adipose tissue by growth hormone and the insulin-like growth factor system. Domest Anim Endocrinol . 2004;27(3):241–255. doi:10.1016/j.domaniend.2004.06.004 15451072
  • Christiansen J , Kolte AM , Hansen T , Nielsen FC . IGF2 mRNA-binding protein 2: biological function and putative role in type 2 diabetes. J Mol Endocrinol . 2009;43(5):187–195. doi:10.1677/JME-09-0016 19429674
  • Groenewoud MJ , Dekker JM , Fritsche A , et al. Variants of CDKAL1 and IGF2BP2 affect first-phase insulin secretion during hyperglycaemic clamps. Diabetologia . 2008;51(9):1659–1663. doi:10.1007/s00125-008-1083-z 18618095
  • Duesing K , Fatemifar G , Charpentier G , et al. Evaluation of the association of IGF2BP2 variants with type 2 diabetes in French Caucasians. Diabetes . 2008;57(7):1992–1996. doi:10.2337/db07-1789 18430866
  • Huang Q , Yin JY , Dai XP , et al. IGF2BP2 variations influence repaglinide response and risk of type 2 diabetes in Chinese population. Acta Pharmacol Sin . 2010;31(6):709–717. doi:10.1038/aps.2010.47 20523342
  • Wu HH , Liu NJ , Yang Z , et al. IGF2BP2 and obesity interaction analysis for type 2 diabetes mellitus in Chinese Han population. Eur J Med Res . 2014;19:40. doi:10.1186/2047-783X-19-40 25062844
  • Chistiakov DA , Nikitin AG , Smetanina SA , et al. The rs11705701 G>A polymorphism of IGF2BP2 is associated with IGF2BP2 mRNA and protein levels in the visceral adipose tissue – a link to type 2 diabetes susceptibility. Rev Diabet Stud . 2012;9(2–3):112–122. doi:10.1900/RDS.2012.9.112 23403707
  • Ruchat SM , Elks CE , Loos RJ , et al. Evidence of interaction between type 2 diabetes susceptibility genes and dietary fat intake for adiposity and glucose homeostasis-related phenotypes. J Nutrigenet Nutrigenomics . 2009;2(4–5):225–234. doi:10.1159/000259341 20215779
  • Chan SH , Lim WK , Michalski ST , et al. Germline hemizygous deletion of CDKN2A-CDKN2B locus in a patient presenting with Li-Fraumeni syndrome. Rev Diabet Stud . 2016;1:16015. doi:10.1038/npjgenmed.2016.15
  • Cunnington MS , Santibanez Koref M , Mayosi BM , Burn J , Chromosome KB . 9p21 SNPs associated with multiple disease phenotypes correlate with ANRIL expression. PLoS Genet . 2010;6(4):e1000899. doi:10.1371/journal.pgen.1000899 20386740
  • Qian Y , Lu F , Dong M , et al. Cumulative effect and predictive value of genetic variants associated with type 2 diabetes in Han Chinese: a case-control study. PLoS One . 2015;10(1):e0116537. doi:10.1371/journal.pone.0116537 25587982
  • Takeuchi F , Serizawa M , Yamamoto K , et al. Confirmation of multiple risk Loci and genetic impacts by a genome-wide association study of type 2 diabetes in the Japanese population. Diabetes . 2009;58(7):1690–1699. doi:10.2337/db08-1494 19401414
  • Cauchi S , Meyre D , Durand E , et al. Post genome-wide association studies of novel genes associated with type 2 diabetes show gene-gene interaction and high predictive value. PLoS One . 2008;3(5):e2031. doi:10.1371/journal.pone.0002031 18461161
  • Moritani M , Yamasaki S , Kagami M , et al. Hypoplasia of endocrine and exocrine pancreas in homozygous transgenic TGF-beta1. Mol Cell Endocrinol . 2005;229(1–2):175–184. doi:10.1016/j.mce.2004.08.007 15607541
  • Russo L , Lumeng CN . Properties and functions of adipose tissue macrophages in obesity. Immunology . 2018;155(4):407–417. doi:10.1111/imm.2018.155.issue-4 30229891
  • Liu Z , Habener JF . Wnt signaling in pancreatic islets. Adv Exp Med Biol . 2010;654:391–419.20217507
  • Maschio DA , Oliveira RB , Santos MR , Carvalho CP , Barbosa-Sampaio HC , Collares-Buzato CB . Activation of the Wnt/beta-catenin pathway in pancreatic beta cells during the compensatory islet hyperplasia in prediabetic mice. Biochem Biophys Res Commun . 2016;478(4):1534–1540. doi:10.1016/j.bbrc.2016.08.146 27576200
  • Yao DD , Yang L , Wang Y , et al. Geniposide promotes beta-cell regeneration and survival through regulating beta-catenin/TCF7L2 pathway. Cell Death Dis . 2015;6:e1746. doi:10.1038/cddis.2015.107 25950476
  • Sladek R , Rocheleau G , Rung J , et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature . 2007;445(7130):881–885. doi:10.1038/nature05616 17293876
  • Steinthorsdottir V , Thorleifsson G , Reynisdottir I , et al. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat Genet . 2007;39(6):770–775. doi:10.1038/ng2043 17460697
  • Saxena R , Elbers CC , Guo Y , et al. Large-scale gene-centric meta-analysis across 39 studies identifies type 2 diabetes loci. Am J Hum Genet . 2012;90(3):410–425. doi:10.1016/j.ajhg.2011.12.022 22325160
  • Acharya S , Al-Elq A , Al-Nafaie A , Muzaheed M , Al-Ali A . Type 2 diabetes mellitus susceptibility gene TCF7L2 is strongly associated with hyperglycemia in the Saudi Arabia Population of the eastern province of Saudi Arabia. Eur Rev Med Pharmacol Sci . 2015;19(16):3100–3106.26367734
  • Struewing I , Boyechko T , Barnett C , Beildeck M , Byers SW , Mao CD . The balance of TCF7L2 variants with differential activities in Wnt-signaling is regulated by lithium in a GSK3beta-independent manner. Biochem Biophys Res Commun . 2010;399(2):245–250. doi:10.1016/j.bbrc.2010.07.062 20654575
  • Xia Q , Deliard S , Yuan CX , Johnson ME , Grant SF . Characterization of the transcriptional machinery bound across the widely presumed type 2 diabetes causal variant, rs7903146, within TCF7L2. Eur J Hum Genet . 2015;23(1):103–109. doi:10.1038/ejhg.2014.48 24667787
  • Shao W , Wang D , Chiang YT , et al. The Wnt signaling pathway effector TCF7L2 controls gut and brain proglucagon gene expression and glucose homeostasis. Diabetes . 2013;62(3):789–800. doi:10.2337/db12-0365 22966074
  • Nadkarni P , Chepurny OG , Holz GG . Regulation of glucose homeostasis by GLP-1. Prog Mol Biol Transl Sci . 2014;121:23–65.24373234
  • Cho YM , Kieffer TJ . K-cells and glucose-dependent insulinotropic polypeptide in health and disease. Vitam Horm . 2010;84:111–150.21094898
  • Li R , Ou J , Li L , Yang Y , Zhao J , Wu R . The Wnt signaling pathway effector TCF7L2 mediates olanzapine-induced weight gain and insulin resistance. Front Pharmacol . 2018;9:379. doi:10.3389/fphar.2018.00379 29713286
  • Liu H , Fergusson MM , Wu JJ , et al. Wnt signaling regulates hepatic metabolism. Sci Signal . 2011;4(158):ra6. doi:10.1126/scisignal.2001249 21285411
  • Ross SE , Hemati N , Longo KA , et al. Inhibition of adipogenesis by Wnt signaling. Science . 2000;289(5481):950–953. doi:10.1126/science.289.5481.950 10937998
  • Inagaki N , Gonoi T , Clement J , et al. Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Science . 1995;270(5239):1166–1170. doi:10.1126/science.270.5239.1166 7502040
  • Aguilar-Bryan L , JPt C , Gonzalez G , Kunjilwar K , Babenko A , Bryan J . Toward understanding the assembly and structure of KATP channels. Physiol Rev . 1998;78(1):227–245. doi:10.1152/physrev.1998.78.1.227 9457174
  • McTaggart JS , Clark RH , Ashcroft FM . The role of the KATP channel in glucose homeostasis in health and disease: more than meets the islet. J Physiol . 2010;588(Pt 17):3201–3209. doi:10.1113/jphysiol.2010.191767 20519313
  • Ashcroft FM . K(ATP) channels and insulin secretion: a key role in health and disease. Biochem Soc Trans . 2006;34(Pt 2):243–246. doi:10.1042/BST0340243 16545085
  • Wang DD , Chen X , Yang Y , Liu CX . Association of Kir6.2 gene rs5219 variation with type 2 diabetes: A meta-analysis of 21,464 individuals. Prim Care Diabetes . 2018;12(4):345–353. doi:10.1016/j.pcd.2018.03.004 29685723
  • Gloyn AL , Pearson ER , Antcliff JF , et al. Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N Engl J Med . 2004;350(18):1838–1849. doi:10.1056/NEJMoa032922 15115830
  • Karunakaran U , Park KG . A systematic review of oxidative stress and safety of antioxidants in diabetes: focus on islets and their defense. Diabetes Metab J . 2013;37(2):106–112. doi:10.4093/dmj.2013.37.2.106 23641350
  • Chen H , Yu M , Li M , et al. Polymorphic variations in manganese superoxide dismutase (MnSOD), glutathione peroxidase-1 (GPX1), and catalase (CAT) contribute to elevated plasma triglyceride levels in Chinese patients with type 2 diabetes or diabetic cardiovascular disease. Mol Cell Biochem . 2012;363(1–2):85–91. doi:10.1007/s11010-011-1160-3 22167619
  • Bid HK , Konwar R , Saxena M , Chaudhari P , Agrawal CG , Banerjee M . Association of glutathione S-transferase (GSTM1, T1 and P1) gene polymorphisms with type 2 diabetes mellitus in north Indian population. J Postgrad Med . 2010;56(3):176–181. doi:10.4103/0022-3859.68633 20739761
  • Jha JC , Gray SP , Barit D , et al. Genetic targeting or pharmacologic inhibition of NADPH oxidase nox4 provides renoprotection in long-term diabetic nephropathy. J Am Soc Nephrol . 2014;25(6):1237–1254. doi:10.1681/ASN.2013070810 24511132
  • Banerjee M , Vats P , Kushwah AS , Srivastava N . Interaction of antioxidant gene variants and susceptibility to type 2 diabetes mellitus. Br J Biomed Sci . 2019;76(4)1–6.30295133
  • Adachi Y , Yamamoto K , Okada T , Yoshida H , Harada A , Mori K . ATF6 is a transcription factor specializing in the regulation of quality control proteins in the endoplasmic reticulum. Cell Struct Funct . 2008;33(1):75–89. doi:10.1247/csf.07044 18360008
  • Tirasophon W , Welihinda AA , Kaufman RJ . A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease (Ire1p) in mammalian cells. Genes Dev . 1998;12(12):1812–1824. doi:10.1101/gad.12.12.1812 9637683
  • Kim I , Xu W , Reed JC . Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov . 2008;7(12):1013–1030. doi:10.1038/nrd2755 19043451
  • Puigserver P , Adelmant G , Wu Z , et al. Activation of PPARgamma coactivator-1 through transcription factor docking. Science . 1999;286(5443):1368–1371. doi:10.1126/science.286.5443.1368 10558993
  • Puigserver P , Wu Z , Park CW , Graves R , Wright M , Spiegelman BM . A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell . 1998;92(6):829–839. doi:10.1016/S0092-8674(00)81410-5 9529258
  • Liang H , Ward WF . PGC-1alpha: a key regulator of energy metabolism. Adv Physiol Educ . 2006;30(4):145–151. doi:10.1152/advan.00052.2006 17108241
  • Petersen KF , Befroy D , Dufour S , et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science . 2003;300(5622):1140–1142. doi:10.1126/science.1082889 12750520
  • Kelley DE , He J , Menshikova EV , Ritov VB . Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes . 2002;51(10):2944–2950. doi:10.2337/diabetes.51.10.2944 12351431
  • Antonopoulos AS , Margaritis M , Coutinho P , et al. Adiponectin as a link between type 2 diabetes and vascular NADPH oxidase activity in the human arterial wall: the regulatory role of perivascular adipose tissue. Diabetes . 2015;64(6):2207–2219. doi:10.2337/db14-1011 25552596
  • Alkhateeb A , Al-Azzam S , Zyadine R , Abuarqoub D . Genetic association of adiponectin with type 2 diabetes in Jordanian Arab population. Gene . 2013;512(1):61–63. doi:10.1016/j.gene.2012.09.095 23041553
  • Beltcheva O , Boyadzhieva M , Angelova O , Mitev V , Kaneva R , Atanasova I . The rs266729 single-nucleotide polymorphism in the adiponectin gene shows association with gestational diabetes. Arch Gynecol Obstet . 2014;289(4):743–748. doi:10.1007/s00404-013-3029-z 24068295
  • Cox AJ , Lambird JE , An SS , et al. Variants in adiponectin signaling pathway genes show little association with subclinical CVD in the diabetes heart study. Obesity (Silver Spring) . 2013;21(9):E456–E462. doi:10.1002/oby.20184 23670978
  • Chakraborti CK . Role of adiponectin and some other factors linking type 2 diabetes mellitus and obesity. World J Diabetes . 2015;6(15):1296–1308. doi:10.4239/wjd.v6.i15.1296 26557957
  • Koh EH , Park JY , Park HS , et al. Essential role of mitochondrial function in adiponectin synthesis in adipocytes. Diabetes . 2007;56(12):2973–2981. doi:10.2337/db07-0510 17827403
  • Chistiakov DA , Potapov VA , Smetanina SA , Bel’chikova LN , Suplotova LA , Nosikov VV . The carriage of risk variants of CDKAL1 impairs beta-cell function in both diabetic and non-diabetic patients and reduces response to non-sulfonylurea and sulfonylurea agonists of the pancreatic KATP channel. Acta Diabetol . 2011;48(3):227–235. doi:10.1007/s00592-011-0299-4 21611789
  • Pascoe L , Tura A , Patel SK , et al. Common variants of the novel type 2 diabetes genes CDKAL1 and HHEX/IDE are associated with decreased pancreatic beta-cell function. Diabetes . 2007;56(12):3101–3104. doi:10.2337/db07-0634 17804762
  • Liang J , Pei Y , Liu X , et al. The CDKAL1 gene is associated with impaired insulin secretion and glucose-related traits: the Cardiometabolic Risk in Chinese (CRC) study. Clin Endocrinol (Oxf) . 2015;83(5):651–655. doi:10.1111/cen.2015.83.issue-5 26119585
  • Nfor ON , Wu MF , Lee CT , et al. Body mass index modulates the association between CDKAL1 rs10946398 variant and type 2 diabetes among Taiwanese women. Sci Rep . 2018;8(1):13235.30185902
  • Dubern B , Lubrano-Berthelier C , Mencarelli M , et al. Mutational analysis of the pro-opiomelanocortin gene in French obese children led to the identification of a novel deleterious heterozygous mutation located in the alpha-melanocyte stimulating hormone domain. Pediatr Res . 2008;63(2):211–216. doi:10.1203/PDR.0b013e31815ed62b 18091355
  • Lee YS , Challis BG , Thompson DA , et al. A POMC variant implicates beta-melanocyte-stimulating hormone in the control of human energy balance. Cell Metab . 2006;3(2):135–140. doi:10.1016/j.cmet.2006.01.006 16459314
  • Mountjoy KG . Functions for pro-opiomelanocortin-derived peptides in obesity and diabetes. Biochem J . 2010;428(3):305–324. doi:10.1042/BJ20091957 20504281
  • Parton LE , Ye CP , Coppari R , et al. Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity. Nature . 2007;449(7159):228–232.17728716
  • Fick LJ , Belsham DD . Nutrient sensing and insulin signaling in neuropeptide-expressing immortalized, hypothalamic neurons: A cellular model of insulin resistance. Cell Cycle . 2010;9(16):3186–3193. doi:10.4161/cc.9.16.12601 20697199
  • Butler AA , Kesterson RA , Khong K , et al. A unique metabolic syndrome causes obesity in the melanocortin-3 receptor-deficient mouse. Endocrinology . 2000;141(9):3518–3521. doi:10.1210/endo.141.9.7791 10965927
  • Barzilai N , She L , Liu L , et al. Decreased visceral adiposity accounts for leptin effect on hepatic but not peripheral insulin action. Am J Physiol . 1999;277(2):E291–E298. doi:10.1152/ajpendo.1999.277.2.E291 10444425
  • Saremi L , Lotfipanah S , Mohammadi M , et al. The Pro12Ala polymorphism in the PPAR-gamma2 gene is not associated with an increased risk of NAFLD in Iranian patients with type 2 diabetes mellitus. Cell Mol Biol Lett . 2019;24:12. doi:10.1186/s11658-019-0138-0 30923554
  • Motavallian A , Andalib S , Vaseghi G , Mirmohammad-Sadeghi H , Amini M . Association between PRO12ALA polymorphism of the PPAR-gamma2 gene and type 2 diabetes mellitus in Iranian patients. Indian J Hum Genet . 2013;19(2):239–244. doi:10.4103/0971-6866.116126 24019628
  • Gupta AC , Chaudhory AK . Sukriti, et al. Peroxisome proliferators-activated receptor gamma2 Pro12Ala variant is associated with body mass index in non-alcoholic fatty liver disease patients. Hepatol Int . 2010;5(1):575–580. doi:10.1007/s12072-010-9225-z 21442055
  • Beaven SW , Tontonoz P . Nuclear receptors in lipid metabolism: targeting the heart of dyslipidemia. Annu Rev Med . 2006;57:313–329. doi:10.1146/annurev.med.57.121304.131428 16409152
  • Altshuler D , Hirschhorn JN , Klannemark M , et al. The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet . 2000;26(1):76–80. doi:10.1038/79216 10973253
  • Chan KH , Niu T , Ma Y , et al. Common genetic variants in peroxisome proliferator-activated receptor-gamma (PPARG) and type 2 diabetes risk among Women’s Health Initiative postmenopausal women. J Clin Endocrinol Metab . 2013;98(3):E600–E604. doi:10.1210/jc.2012-3644 23386649
  • Phani NM , Vohra M , Rajesh S , et al. Implications of critical PPARgamma2, ADIPOQ and FTO gene polymorphisms in type 2 diabetes and obesity-mediated susceptibility to type 2 diabetes in an Indian population. Mol Genet Genomics . 2016;291(1):193–204. doi:10.1007/s00438-015-1097-4 26243686
  • Masugi J , Tamori Y , Mori H , Koike T , Kasuga M . Inhibitory effect of a proline-to-alanine substitution at codon 12 of peroxisome proliferator-activated receptor-gamma 2 on thiazolidinedione-induced adipogenesis. Biochem Biophys Res Commun . 2000;268(1):178–182. doi:10.1006/bbrc.2000.2096 10652233
  • Valve R , Sivenius K , Miettinen R , et al. Two polymorphisms in the peroxisome proliferator-activated receptor-gamma gene are associated with severe overweight among obese women. J Clin Endocrinol Metab . 1999;84(10):3708–3712. doi:10.1210/jcem.84.10.6061 10523018
  • Chang YC , Liu PH , Yu YH , et al. Validation of type 2 diabetes risk variants identified by genome-wide association studies in Han Chinese population: a replication study and meta-analysis. PLoS One . 2014;9(4):e95045. doi:10.1371/journal.pone.0095045 24736664
  • Kang ES , Kim MS , Kim YS , et al. A polymorphism in the zinc transporter gene SLC30A8 confers resistance against posttransplantation diabetes mellitus in renal allograft recipients. Diabetes . 2008;57(4):1043–1047. doi:10.2337/db07-0761 18162509
  • Kleiner S , Gomez D , Megra B , et al. Mice harboring the human SLC30A8 R138X loss-of-function mutation have increased insulin secretory capacity. Proc Natl Acad Sci U S A . 2018;115(32):E7642–E7649. doi:10.1073/pnas.1721418115 30038024
  • Chimienti F , Devergnas S , Favier A , Seve M . Identification and cloning of a beta-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules. Diabetes . 2004;53(9):2330–2337. doi:10.2337/diabetes.53.9.2330 15331542
  • Ortega RM , Rodriguez-Rodriguez E , Aparicio A , et al. Poor zinc status is associated with increased risk of insulin resistance in Spanish children. Br J Nutr . 2012;107(3):398–404. doi:10.1017/S0007114511003114 22277170
  • Lee CC , Haffner SM , Wagenknecht LE , et al. Insulin clearance and the incidence of type 2 diabetes in Hispanics and African Americans: the IRAS Family Study. Diabetes Care . 2013;36(4):901–907. doi:10.2337/dc12-1316 23223351
  • Rutter GA , Chimienti F . SLC30A8 mutations in type 2 diabetes. Diabetologia . 2015;58(1):31–36. doi:10.1007/s00125-014-3405-7 25287711
  • Scuteri A , Sanna S , Chen WM , et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet . 2007;3(7):e115. doi:10.1371/journal.pgen.0030115 17658951
  • Achenbach P , Lampasona V , Landherr U , et al. Autoantibodies to zinc transporter 8 and SLC30A8 genotype stratify type 1 diabetes risk. Diabetologia . 2009;52(9):1881–1888. doi:10.1007/s00125-009-1438-0 19590848
  • Cornelis MC , Hu FB . Gene-environment interactions in the development of type 2 diabetes: recent progress and continuing challenges. Annu Rev Nutr . 2012;32:245–259. doi:10.1146/annurev-nutr-071811-150648 22540253