105
Views
3
CrossRef citations to date
0
Altmetric
Original Research

Protein Arginine Methyltransferase 4 Regulates Adipose Tissue Lipolysis in Type 1 Diabetic Mice

, , , , , , & show all
Pages 535-544 | Published online: 26 Feb 2020

References

  • Maahs DM, Dabelea D, D’Agostino RB Jr., et al. Glucose control predicts 2-year change in lipid profile in youth with type 1 diabetes. J Pediatr. 2013;162:101–7 e1. doi:10.1016/j.jpeds.2012.06.006
  • Mooradian AD. Dyslipidemia in type 2 diabetes mellitus. Nat Clin Pract Endocrinol Metab. 2009;5:150–159. doi:10.1038/ncpendmet1066
  • Miller M, Stone NJ, Ballantyne C, et al. Triglycerides and cardiovascular disease: a scientific statement from the American Heart Association. Circulation. 2011;123:2292–2333. doi:10.1161/CIR.0b013e3182160726
  • Goldberg IJ, Eckel RH, McPherson R. Triglycerides and heart disease: still a hypothesis? Arterioscler Thromb Vasc Biol. 2011;31:1716–1725. doi:10.1161/ATVBAHA.111.226100
  • Caballero F, Fernandez A, De Lacy AM, et al. Enhanced free cholesterol, SREBP-2 and StAR expression in human NASH. J Hepatol. 2009;50:789–796. doi:10.1016/j.jhep.2008.12.016
  • Brown MS, Goldstein JL. Selective versus total insulin resistance: a pathogenic paradox. Cell Metab. 2008;7:95–96. doi:10.1016/j.cmet.2007.12.009
  • Willecke F, Scerbo D, Nagareddy P, et al. Lipolysis, and not hepatic lipogenesis, is the primary modulator of triglyceride levels in streptozotocin-induced diabetic mice. Arterioscler Thromb Vasc Biol. 2015;35:102–110.
  • Taskinen MR. Diabetic dyslipidaemia: from basic research to clinical practice. Diabetologia. 2003;46:733–749. doi:10.1007/s00125-003-1111-y
  • Johansen RF, Sondergaard E, Linnebjerg H, et al. Attenuated suppression of lipolysis explains the increases in triglyceride secretion and concentration associated with basal insulin peglispro relative to insulin glargine treatment in patients with type 1 diabetes. Diabetes Obes Metab. 2018;20:419–426. doi:10.1111/dom.2018.20.issue-2
  • Bolsoni-Lopes A, Alonso-Vale MI. Lipolysis and lipases in white adipose tissue - an update. Arch Endocrinol Metab. 2015;59:335–342. doi:10.1590/2359-3997000000067
  • Stockli J, Zadoorian A, Cooke KC, et al. ABHD15 regulates adipose tissue lipolysis and hepatic lipid accumulation. Mol Metab. 2019;25:83–94. doi:10.1016/j.molmet.2019.05.002
  • Chakrabarti P, Kim JY, Singh M, et al. Insulin inhibits lipolysis in adipocytes via the evolutionarily conserved mTORC1-Egr1-ATGL-mediated pathway. Mol Cell Biol. 2013;33:3659–3666. doi:10.1128/MCB.01584-12
  • Bedford MT. Arginine methylation at a glance. J Cell Sci. 2007;120:4243–4246. doi:10.1242/jcs.019885
  • Yang Y, Bedford MT. Protein arginine methyltransferases and cancer. Nat Rev Cancer. 2013;13:37–50. doi:10.1038/nrc3409
  • Porta M, Amione C, Barutta F, et al. The co-activator-associated arginine methyltransferase 1 (CARM1) gene is overexpressed in type 2 diabetes. Endocrine. 2019;63:284–292. doi:10.1007/s12020-018-1740-z
  • Kim DI, Park MJ, Lim SK, et al. High-glucose-induced CARM1 expression regulates apoptosis of human retinal pigment epithelial cells via histone 3 arginine 17 dimethylation: role in diabetic retinopathy. Arch Biochem Biophys. 2014;560:36–43. doi:10.1016/j.abb.2014.07.021
  • Kim DI, Park MJ, Choi JH, et al. PRMT1 and PRMT4 regulate oxidative stress-induced retinal pigment epithelial cell damage in SIRT1-dependent and SIRT1-independent manners. Oxid Med Cell Longev. 2015;617919:2015.
  • Bedford MT, Clarke SG. Protein arginine methylation in mammals: who, what, and why. Mol Cell. 2009;33:1–13. doi:10.1016/j.molcel.2008.12.013
  • Cheng D, Cote J, Shaaban S, et al. The arginine methyltransferase CARM1 regulates the coupling of transcription and mRNA processing. Mol Cell. 2007;25:71–83. doi:10.1016/j.molcel.2006.11.019
  • An W, Kim J, Roeder RG. Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53. Cell. 2004;117:735–748. doi:10.1016/j.cell.2004.05.009
  • Quintero CM, Laursen KB, Mongan NP, et al. CARM1 (PRMT4) acts as a transcriptional coactivator during retinoic acid-induced embryonic stem cell differentiation. J Mol Biol. 2018;430:4168–4182. doi:10.1016/j.jmb.2018.08.014
  • Wu Q, Bruce AW, Jedrusik A, et al. CARM1 is required in embryonic stem cells to maintain pluripotency and resist differentiation. Stem Cells. 2009;27:2637–2645. doi:10.1002/stem.v27:11
  • Wang SC, Dowhan DH, Eriksson NA, et al. CARM1/PRMT4 is necessary for the glycogen gene expression programme in skeletal muscle cells. Biochem J. 2012;444:323–331. doi:10.1042/BJ20112033
  • Krones-Herzig A, Mesaros A, Metzger D, et al. Signal-dependent control of gluconeogenic key enzyme genes through coactivator-associated arginine methyltransferase 1. J Biol Chem. 2006;281:3025–3029. doi:10.1074/jbc.M509770200
  • Yadav N, Cheng D, Richard S, et al. CARM1 promotes adipocyte differentiation by coactivating PPARgamma. EMBO Rep. 2008;9:193–198. doi:10.1038/sj.embor.7401151
  • Shin HJ, Kim H, Oh S, et al. AMPK-SKP2-CARM1 signalling cascade in transcriptional regulation of autophagy. Nature. 2016;534:553–557. doi:10.1038/nature18014
  • Morel E, Codogno P. A novel regulator of autophagosome biogenesis and lipid droplet dynamics. EMBO Rep. 2018;19. doi:10.15252/embr.201846858
  • Hoffmann JM, Grunberg JR, Church C, et al. BMP4 gene therapy in mature mice reduces BAT activation but protects from obesity by browning subcutaneous adipose tissue. Cell Rep. 2017;20:1038–1049. doi:10.1016/j.celrep.2017.07.020
  • O’Neill BT, Bhardwaj G, Penniman CM, et al. FoxO transcription factors are critical regulators of diabetes-related muscle atrophy. Diabetes. 2019;68:556–570. doi:10.2337/db18-0416
  • Shu L, Hoo RL, Wu X, et al. A-FABP mediates adaptive thermogenesis by promoting intracellular activation of thyroid hormones in brown adipocytes. Nat Commun. 2017;8:14147.
  • Liu KL, Kuo WC, Lin CY, et al. Prevention of 4-hydroxynonenal-induced lipolytic activation by carnosic acid is related to the induction of glutathione S-transferase in 3T3-L1 adipocytes. Free Radic Biol Med. 2018;121:1–8. doi:10.1016/j.freeradbiomed.2018.04.567
  • Jia P, Wu N, Jia D, et al. Downregulation of MALAT1 alleviates saturated fatty acid-induced myocardial inflammatory injury via the miR-26a/HMGB1/TLR4/NF-kappaB axis. Diabetes Metab Syndr Obes. 2019;12:655–665. doi:10.2147/DMSO.S203151
  • Qi G, Zhou Y, Zhang X, et al. Cordycepin promotes browning of white adipose tissue through an AMP-activated protein kinase (AMPK)-dependent pathway. Acta Pharm Sin B. 2019;9:135–143. doi:10.1016/j.apsb.2018.10.004
  • Kim D, Lim S, Park M, et al. Ubiquitination-dependent CARM1 degradation facilitates Notch1-mediated podocyte apoptosis in diabetic nephropathy. Cell Signal. 2014;26:1774–1782. doi:10.1016/j.cellsig.2014.04.008
  • Yeom CG, Kim DI, Park MJ, et al. Insulin-induced CARM1 upregulation facilitates hepatocyte proliferation. Biochem Biophys Res Commun. 2015;461:568–574. doi:10.1016/j.bbrc.2015.04.099
  • Behera AK, Bhattacharya A, Vasudevan M, et al. p53 mediated regulation of coactivator associated arginine methyltransferase 1 (CARM1) expression is critical for suppression of adipogenesis. FEBS J. 2018;285:1730–1744. doi:10.1111/febs.14440
  • Kowenz-Leutz E, Pless O, Dittmar G, et al. Crosstalk between C/EBPbeta phosphorylation, arginine methylation, and SWI/SNF/Mediator implies an indexing transcription factor code. EMBO J. 2010;29:1105–1115. doi:10.1038/emboj.2010.3
  • Americo ALV, Muller CR, Vecchiatto B, et al. Aerobic exercise training prevents obesity and insulin resistance independent of the renin angiotensin system modulation in the subcutaneous white adipose tissue. PLoS One. 2019;14:e0215896. doi:10.1371/journal.pone.0215896
  • Vroegrijk IO, van Klinken JB, van Diepen JA, et al. CD36 is important for adipocyte recruitment and affects lipolysis. Obesity (Silver Spring). 2013;21:2037–2045. doi:10.1002/oby.20354
  • Zhai W, Xu C, Ling Y, et al. Increased lipolysis in adipose tissues is associated with elevation of systemic free fatty acids and insulin resistance in perilipin null mice. Horm Metab Res. 2010;42:247–253. doi:10.1055/s-0029-1243599
  • Matoba K, Lu Y, Zhang R, et al. Adipose KLF15 controls lipid handling to adapt to nutrient availability. Cell Rep. 2017;21:3129–3140. doi:10.1016/j.celrep.2017.11.032
  • Chaves VE, Frasson D, Kawashita NH. Several agents and pathways regulate lipolysis in adipocytes. Biochimie. 2011;93:1631–1640. doi:10.1016/j.biochi.2011.05.018
  • Liu Y, Wang T, Ji YJ, et al. A C9orf72-CARM1 axis regulates lipid metabolism under glucose starvation-induced nutrient stress. Genes Dev. 2018;32:1380–1397. doi:10.1101/gad.315564.118
  • Demine S, Tejerina S, Bihin B, et al. Mild mitochondrial uncoupling induces HSL/ATGL-independent lipolysis relying on a form of autophagy in 3T3-L1 adipocytes. J Cell Physiol. 2018;233:1247–1265. doi:10.1002/jcp.25994
  • Guo Z, Zhang Z, Yang H, et al. Design and synthesis of potent, selective inhibitors of protein arginine methyltransferase 4 against acute myeloid leukemia. J Med Chem. 2019;62:5414–5433. doi:10.1021/acs.jmedchem.9b00297
  • Nakayama K, Szewczyk MM, Dela Sena C, et al. TP-064, a potent and selective small molecule inhibitor of PRMT4 for multiple myeloma. Oncotarget. 2018;9:18480–18493. doi:10.18632/oncotarget.v9i26