372
Views
42
CrossRef citations to date
0
Altmetric
Original Research

miRNA-221-3p in Endothelial Progenitor Cell-Derived Exosomes Accelerates Skin Wound Healing in Diabetic Mice

, , , , , , , , ORCID Icon & show all
Pages 1259-1270 | Published online: 22 Apr 2020

References

  • Patel S, Srivastava S, Singh MR, et al. Mechanistic insight into diabetic wounds: pathogenesis, molecular targets and treatment strategies to pace wound healing[J]. Biomed Pharmacother. 2019;112:108615. doi:10.1016/j.biopha.2019.108615
  • Paschou SA, Stamou M, Vuagnat H, et al. Pain management of chronic wounds: diabetic ulcers and beyond[J]. Maturitas. 2018;117:17–21. doi:10.1016/j.maturitas.2018.08.013
  • Balaji S, King A, Crombleholme TM, et al. The role of endothelial progenitor cells in postnatal vasculogenesis: implications for therapeutic neovascularization and wound healing[J]. Adv Wound Care. 2013;2(6):283–295. doi:10.1089/wound.2012.0398
  • Drela E, Stankowska K, Kulwas A, et al. Endothelial progenitor cells in diabetic foot syndrome[J]. Adv Clin Exp Med. 2012;21(2):249–254.
  • Li X, Chen C, Wei L, et al. Exosomes derived from endothelial progenitor cells attenuate vascular repair and accelerate reendothelialization by enhancing endothelial function[J]. Cytotherapy. 2016;18(2):253–262. doi:10.1016/j.jcyt.2015.11.009
  • Beuzelin D, Kaeffer B. Exosomes and miRNA-Loaded biomimetic nanovehicles, a focus on their potentials preventing type-2 diabetes linked to metabolic syndrome[J]. Front Immunol. 2018;9:2711. doi:10.3389/fimmu.2018.02711
  • Li X, Jiang C, Zhao J. Human endothelial progenitor cells-derived exosomes accelerate cutaneous wound healing in diabetic rats by promoting endothelial function[J]. J Diabetes Complications. 2016;30(6):986–992. doi:10.1016/j.jdiacomp.2016.05.009
  • Qin B, Cao Y, Yang H, et al. MicroRNA-221/222 regulate ox-LDL-induced endothelial apoptosis via Ets-1/p21 inhibition[J]. Mol Cell Biochem. 2015;405(1–2):115–124. doi:10.1007/s11010-015-2403-5
  • Li Y, Shen Z, Yu XY. Transport of microRNAs via exosomes[J]. Nat Rev Cardiol. 2015;12(4):198. doi:10.1038/nrcardio.2014.207-c1
  • Zhou Z, Shu B, Xu Y, et al. microRNA-203 modulates wound healing and scar formation via suppressing hes1 expression in epidermal stem cells[J]. Cell Physiol Biochem. 2018;49(6):2333–2347. doi:10.1159/000493834
  • Liang X, Zhang L, Wang S, et al. Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a[J]. J Cell Sci. 2016;129(11):2182–2189. doi:10.1242/jcs.170373
  • Wang C, Chen L, Huang Y, et al. Exosome-delivered TRPP2 siRNA inhibits epithelial-mesenchymal transition of FaDu cells[J]. Oncol Lett. 2019;17(2):1953–1961. doi:10.3892/ol.2018.9752
  • Ye CL, Shen B, Ren XD, et al. An increase in opening of BK(Ca) channels in smooth muscle cells in streptozotocin-induced diabetic mice[J]. Acta Pharmacol Sin. 2004;25(6):744–750.
  • Wu K, Shen B, Jiang F, et al. TRPP2 enhances metastasis by regulating epithelial-mesenchymal transition in laryngeal squamous cell carcinoma[J]. Cell Physiol Biochem. 2016;39(6):2203–2215. doi:10.1159/000447914
  • Fang Y, Wang P, Xia L, et al. Aberrantly hydroxymethylated differentially expressed genes and the associated protein pathways in osteoarthritis[J]. PeerJ. 2019;7:e6425. doi:10.7717/peerj.6425
  • Brem H, Tomic-Canic M. Cellular and molecular basis of wound healing in diabetes[J]. J Clin Invest. 2007;117(5):1219–1222. doi:10.1172/JCI32169
  • Bus SA, Waaijman R, Arts M, et al. Effect of custom-made footwear on foot ulcer recurrence in diabetes: a multicenter randomized controlled trial[J]. Diabetes Care. 2013;36(12):4109–4116. doi:10.2337/dc13-0996
  • Alavi A, Sibbald RG, Mayer D, et al. Diabetic foot ulcers: part I. Pathophysiology and prevention[J]. J Am Acad Dermatol. 2014;70(1):19–20. doi:10.1016/j.jaad.2013.06.055
  • Menghini R, Uccioli L, Vainieri E, et al. Expression of tissue inhibitor of metalloprotease 3 is reduced in ischemic but not neuropathic ulcers from patients with type 2 diabetes mellitus[J]. Acta Diabetol. 2013;50(6):907–910. doi:10.1007/s00592-013-0478-6
  • Losi P, Briganti E, Errico C, et al. Fibrin-based scaffold incorporating VEGF- and bFGF-loaded nanoparticles stimulates wound healing in diabetic mice[J]. Acta Biomater. 2013;9(8):7814–7821. doi:10.1016/j.actbio.2013.04.019
  • Carmeliet P. Angiogenesis in health and disease[J]. Nat Med. 2003;9(6):653–660. doi:10.1038/nm0603-653
  • Broughton GN, Janis JE, Attinger CE. The basic science of wound healing[J]. Plast Reconstr Surg. 2006;117(7Suppl):12S–34S. doi:10.1097/01.prs.0000225430.42531.c2
  • Kim JY, Song SH, Kim KL, et al. Human cord blood-derived endothelial progenitor cells and their conditioned media exhibit therapeutic equivalence for diabetic wound healing[J]. Cell Transplant. 2010;19:1635–1644. doi:10.3727/096368910X516637
  • Ackermann M, Pabst AM, Houdek JP, et al. Priming with proangiogenic growth factors and endothelial progenitor cells improves revascularization in linear diabetic wounds[J]. Int J Mol Med. 2014;33(4):833–839. doi:10.3892/ijmm.2014.1630
  • Critser PJ, Yoder MC. Endothelial colony-forming cell role in neoangiogenesis and tissue repair[J]. Curr Opin Organ Transplant. 2010;15(1):68–72. doi:10.1097/MOT.0b013e32833454b5
  • Zhang M, Malik AB, Rehman J. Endothelial progenitor cells and vascular repair[J]. Curr Opin Hematol. 2014;21(3):224–228. doi:10.1097/MOH.0000000000000041
  • Zhang J, Chen C, Hu B, et al. Exosomes derived from human endothelial progenitor cells accelerate cutaneous wound healing by promoting angiogenesis through Erk1/2 signaling[J]. Int J Biol Sci. 2016;12(12):1472–1487. doi:10.7150/ijbs.15514
  • Gildea JJ, Carlson JM, Schoeffel CD, et al. Urinary exosome miRNome analysis and its applications to salt sensitivity of blood pressure[J]. Clin Biochem. 2013;46(12):1131–1134. doi:10.1016/j.clinbiochem.2013.05.052
  • Xin H, Li Y, Chopp M. Exosomes/miRNAs as mediating cell-based therapy of stroke[J]. Front Cell Neurosci. 2014;8:377. doi:10.3389/fncel.2014.00377
  • Deiuliis JA. MicroRNAs as regulators of metabolic disease: pathophysiologic significance and emerging role as biomarkers and therapeutics[J]. Int J Obes (Lond). 2016;40(1):88–101. doi:10.1038/ijo.2015.170
  • Li Y, Song YH, Li F, Yang T, Lu YW, Geng YJ. MicroRNA-221 regulates high glucose-induced endothelial dysfunction[J]. Biochem Biophys Res Commun. 2009;381(1):81–83. doi:10.1016/j.bbrc.2009.02.013
  • Liu HN, Li X, Wu N, et al. Serum microRNA-221 as a biomarker for diabetic retinopathy in patients associated with type 2 diabetes[J]. Int J Ophthalmol. 2018;11(12):1889–1894. doi:10.18240/ijo.2018.12.02
  • Presta LG, Chen H, O’Connor SJ, et al. Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders[J]. Cancer Res. 1997;57(20):4593–4599.
  • Yamagishi S. Role of advanced glycation end products (AGEs) and receptor for AGEs (RAGE) in vascular damage in diabetes[J]. Biochim Biophys Acta. 2011;46(4):217–224.
  • Fukami K, Yamagishi S, Okuda S. Role of AGEs–RAGE system in cardiovascular disease[J]. Curr Pharm Des. 2014;20(14):2395–2402. doi:10.2174/13816128113199990475
  • Jurikova M, Danihel L, Polak S, et al. Ki67, PCNA, and MCM proteins: markers of proliferation in the diagnosis of breast cancer[J]. Acta Histochem. 2016;118(5):544–552. doi:10.1016/j.acthis.2016.05.002
  • Ingham M, Schwartz GK. Cell-Cycle Therapeutics Come of Age[J]. J Clin Oncol. 2017;35(25):2949–2959. doi:10.1200/JCO.2016.69.0032
  • Huang JH, Yin XM, Xu Y, et al. Systemic administration of exosomes released from mesenchymal stromal cells attenuates apoptosis, inflammation, and promotes angiogenesis after spinal cord injury in rats[J]. J Neurotrauma. 2017;34(24):3388–3396. doi:10.1089/neu.2017.5063
  • Perets N, Hertz S, London M, et al. Intranasal administration of exosomes derived from mesenchymal stem cells ameliorates autistic-like behaviors of BTBR mice[J]. Mol Autism. 2018;9:57. doi:10.1186/s13229-018-0240-6