98
Views
8
CrossRef citations to date
0
Altmetric
Original Research

Catalpol Promotes the Proliferation and Differentiation of Osteoblasts Induced by High Glucose by Inhibiting KDM7A

ORCID Icon, , , , , , , & show all
Pages 705-712 | Published online: 13 Mar 2020

References

  • Zimmet PZ, Magliano DJ, Herman WH, et al. Diabetes: a 21st century challenge. Lancet Diabetes Endocrinol. 2014;2(1):56–64. doi:10.1016/S2213-8587(13)70112-8
  • Zimmet P, Alberti KG, Magliano DJ, et al. Diabetes mellitus statistics on prevalence and mortality: facts and fallacies. Nat Rev Endocrinol. 2016;12(10):616–622. doi:10.1038/nrendo.2016.105
  • Li XJ, Zhu Z, Han S-L, et al. Bergapten exerts inhibitory effects on diabetes-related osteoporosis via the regulation of the PI3K/AKT, JNK/MAPK and NF-κB signaling pathways in osteoprotegerin knockout mice. Int J Mol Med. 2016;38(6):1661–1672.
  • Chen Z, Zhao GH, Zhang YK, et al. Research on the correlation of diabetes mellitus complicated with osteoporosis with lipid metabolism, adipokines and inflammatory factors and its regression analysis. Eur Rev Med Pharmacol Sci. 2017;21(17):3900–3905.
  • Zhang RX, Li M-X, Jia Z-P. Rehmannia glutinosa: review of botany, chemistry and pharmacology. J Ethnopharmacol2008. 117(2):0–214.
  • Zou GL, Zhong WL, Wu F, et al. Catalpol attenuates cardiomyocyte apoptosis in diabetic cardiomyopathy via Neat1/miR-140-5p/HDAC4 axis. Biochimie. 2019;165:90–99. doi:10.1016/j.biochi.2019.05.005
  • Lin C-M, Wang B-W, Fang W-J, et al. Catalpol ameliorates neointimal hyperplasia in diabetic rats. Planta Med. 2019;85(5):406–411.
  • Lin C, Shyu KG, Wang BW. Catalpol ameliorates neointimal hyperplasia in streptozotocin induced diabetic. Eur J Heart Fail. 2019;21:161.
  • Liu JY, Zheng CZ, Hao XP, et al. Catalpol ameliorates diabetic atherosclerosis in diabetic rabbits. Am J Transl Res. 2016;8:4278–4288.
  • Zhu Y, Wang YM, Jia YC, et al. Catalpol promotes the osteogenic differentiation of bone marrow mesenchymal stem cells via the Wnt/-catenin pathway. Stem Cell Res Ther. 2019;10:14. doi:10.1186/s13287-019-1143-y
  • Chen ZM, Lu M, Zhao FJ, et al. Catalpol promotes proliferation and osteogenic differentiation of rat bone marrow stromal cells. Int J Clin Exp Med. 2017;10(8):11929–11936.
  • Yang X, Wang G, Wang Y, et al. Histone demethylase KDM7A reciprocally regulates adipogenic and osteogenic differentiation via regulation of C/EBPα and canonical Wnt signalling. J Cell Mol Med. 2019. 23(3):2149–2162. doi:10.1111/jcmm.14126
  • Jenuwein T, Allis C. Translating the histone code. Science. 2001;293:1074–1080. doi:10.1126/science.1063127
  • Tsukada YI, Fang J, Erdjument-bromage H, et al. Histone demethylation by a family of JmjC domain-containing proteins. Nature. 2005;439(7078):811–816. doi:10.1038/nature04433
  • Pfau R, Tzatsos A, Kampranis S, et al. Members of a family of JmjC domain-containing oncoproteins immortalize embryonic fibroblasts via a JmjC domain-dependent process. Proc Natl Acad Sci U S A. 2008;105:1907–1912. doi:10.1073/pnas.0711865105
  • Yapeng H, Li X, Cheng L, et al. Genome-wide analysis of soybean JmjC domain-containing proteins suggests evolutionary conservation following whole-genome duplication. Front Plant Sci. 2016;7:1800.
  • Huang C, Xiang Y, Wang Y, et al. Dual-specificity histone demethylase KIAA1718 (KDM7A) regulates neural differentiation through FGF4. Cell Res. 2010;20(2):154–165. doi:10.1038/cr.2010.5
  • Osawa T, Muramatsu M, Wang F, et al. Increased expression of histone demethylase JHDM1D under nutrient starvation suppresses tumor growth via down-regulating angiogenesis. Proc Natl Acad Sci U S A. 2011;108(51):20725–20729. doi:10.1073/pnas.1108462109
  • Son MJ, Kim WK, Oh KJ, et al. Methyltransferase and demethylase profiling studies during brown adipocyte differentiation. BMB Rep. 2016;49(7):388–393. doi:10.5483/BMBRep.2016.49.7.062
  • Yang X. The Role of Histone Demethylase KDM7A in Adipogenic and Osteogenic Commitment of Mesenchymal Stem Cells and the Mechanisms Involved. Tianjin Medical University; 2017.
  • Liu W, Toyosawa S, Furuichi T, et al. Overexpression of Cbfa1 in osteoblasts inhibits osteoblast maturation and causes osteopenia with multiple fractures. J Cell Biol. 2001;155:157–166. doi:10.1083/jcb.200105052
  • Sinha K, Zhou X. Genetic and molecular control of osterix in skeletal formation. J Cell Biochem. 2013;114(5):975–984.
  • Canalis E. Management of endocrine disease: novel anabolic treatments for osteoporosis. Eur J Endocrinol. 2017;178:EJE–17. doi:10.1530/EJE-17-0920
  • Glass DA II, Bialek P, Ahn JD, et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell. 2005;8(5):751–764. doi:10.1016/j.devcel.2005.02.017
  • Nie B, Zhou S, Fang X, Li W, Wang B, Guan S. Implication of receptor activator of NF-κB ligand in Wnt/β-catenin pathway promoting osteoblast-like cell differentiation. J Huazhong Univ Sci Technolog Med Sci. 2012;32(6):818–822. doi:10.1007/s11596-012-1040-4
  • Ross SE, Erickson RL, Gerin I, et al. Microarray analyses during adipogenesis: understanding the effects of Wnt signaling on adipogenesis and the roles of liver X receptor alpha in adipocyte metabolism. Mol Cell Biol. 2002;22(16):5989–5999. doi:10.1128/MCB.22.16.5989-5999.2002