180
Views
9
CrossRef citations to date
0
Altmetric
Original Research

MicroRNAs and Risk Factors for Diabetic Nephropathy in Egyptian Children and Adolescents with Type 1 Diabetes

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 2485-2494 | Published online: 13 Jul 2020

References

  • Maggiore U, Budde K, Heemann U, et al.; ERA-EDTA DESCARTES working group. Long-term risks of kidney living donation: review and position paper by the ERA-EDTA DESCARTES working group. Nephrol Dial Transplant. 2017;32(2):216–223. doi:10.1093/ndt/gfw429
  • Liu R, Li G, Cui XF, Zhang DL, Yang QH, Mu XY. Methodological evaluation and comparison of five urinary albumin measurements. J Clin Lab Anal. 2011;25:324–329. doi:10.1002/jcla.20477
  • Kim SS, Song SH, Kim IJ, et al. Urinary cystatin c and tubular proteinuria predict progression of diabetic nephropathy. Diabetes Care. 2013;36(3):656–661. doi:10.2337/dc12-0849
  • Zhou B, Zou H, Xu G. Clinical utility of serum cystatin c in predicting diabetic nephropathy among patients with diabetes mellitus: a meta-analysis. Kidney Blood Press Res. 2016;41(6):919–928. doi:10.1159/000452593
  • Levey AS, Coresh J, Tighiouart H, Greene T, Inker LA. Strengths and limitations of estimated and measured GFR. Nat Rev Nephrol. 2019;15(12):785–786. doi:10.1038/s41581-019-0213-9
  • Simpson K, Wonnacott A, Fraser DJ, Bowen T. MicroRNAs in diabetic nephropathy: from biomarkers to therapy. Curr Diab Rep. 2016;16(3):35. doi:10.1007/s11892-016-0724-8
  • Wu H, Kong L, Zhou S, et al. The role of microRNAs in diabetic nephropathy. J Diabetes Res. 2014;4:920134. doi:10.1155/2014/920134
  • Li Z, Rana TM. Therapeutic targeting of microRNAs: current status and future challenges. Nat Rev Drug Discov. 2014;13:622–638. doi:10.1038/nrd4359
  • El-Samahy MH, Adly AA, Elhenawy YI, et al. Urinary miRNA-377 and miRNA-216a as biomarkers of nephropathy and subclinical atherosclerotic risk in pediatric patients with type 1 diabetes. J Diabetes Complications. 2018;32(2):185–192. doi:10.1016/j.jdiacomp.2017.10.014
  • Tang J, Yao D, Yan H, Chen X, Wang L, Zhan H. The role of MicroRNAs in the pathogenesis of diabetic nephropathy. Int J Endocrinol. 2019;2019:871906. doi:10.1155/2019/8719060
  • Kato M, Wang L, Putta S, et al. Post-transcriptional up-regulation of Tsc-22 by Ybx1, a Target of miR-216a, mediates TGF-β-induced collagen expression in kidney cells. J Biol Chem. 2010;285(44):34004–34015. doi:10.1074/jbc.M110.165027
  • Kantharidis P, Wang B, Carew RM, Lan HY. Diabetes complications: the micro RNA perspective. Diabetes. 2011;60:1832–1837. doi:10.2337/db11-0082
  • Fu Y, Zhang Y, Wang Z. Regulation of NADPH oxidase activity is associated with miRNA-25-mediated NOX4 expression in experimental diabetic nephropathy. Am J Nephrol. 2010;32(6):581–589. doi:10.1159/000322105
  • Simeoli R, Fierabracci A. Insights into the role of MicroRNAs in the onset and development of diabetic neuropathy. Int J Mol Sci. 2019;20:4627. doi:10.3390/ijms20184627
  • National Heart, Lung and Blood Institute. The fourth report on diagnosis, evaluation and treatment of high BP in children and adolescents. Pediatrics. 2004;114:555–576. doi:10.1542/peds.114.2.S2.555
  • American Diabetes Association. Standards of medical care in diabetes—2020. Diabetes Care. 2020;43(Supplement 1):S1–S2. doi:10.2337/dc20-Sint
  • Garg V, Kuman M, Mahapatra HS, Chitkora A, Gadpoyle AK, Sekhan V. Novel urinary biomarkers in prediabetic nephropathy. Clin Exp Nephrol. 2015;19(5):895–900. doi:10.1007/s10157-015-1085-3
  • Lange T, Stracke S, Rettig R, et al. Identification of miR-16 as an endogenous reference gene for the normalization of urinary exosomal miRNA expression data from CKD patients. PLoS One. 2017;12(8):e0183435. doi:10.1371/journal.pone.0183435
  • Wang X, Zhang X, Yuan J, et al. Evaluation of the performance of serum miRNAs as normalizers in microRNA studies focused on cardiovascular disease. J Thorac Dis. 2018;10(5):2599–2607. doi:10.21037/jtd.2018.04.128
  • Livak KJ, Schmittgen TD. Analysis of the relative gene expression data using real time quantitative PCR and the 2−∆∆Ct method. Methods. 2001;25:402–408. doi:10.1006/meth.2001.1262
  • Wang LP, Gao YZ, Song B, et al. MicroRNAs in the progress of diabetic nephropathy: a systematic review and meta-Analysis. Evid Based Complement Alternat Med. 2019;3513179. doi:10.1155/2019/351317
  • Srivastava SP, Hedayat AF, Kanasaki K, Goodwin JE. MicroRNA crosstalk influences epithelial-to-mesenchymal, endothelial-to-mesenchymal, and macrophage-to-mesenchymal transitions in the kidney. Front Pharmacol. 2019;10:904. doi:10.3389/fphar.2019.00904
  • Wang Q, Wang Y, Mintoetal AW. MicroRNA-377 is upregulated and can lead to increased fibronectin production in diabetic nephropathy. FASEB J. 2008;22(12):4126–4135. doi:10.1096/fj.08-112326
  • Ma J, Zhang L, Hao J, Li N, Tang J, Hao L. Up-regulation of microRNA-93 inhibits TGF-β1-induced EMT and renal fibrogenesis by down-regulation of Orai1. J Pharmacol Sci. 2018;136(4):218–227. doi:10.1016/j.jphs.2017.12.010
  • Long J, Wang Y, Wang W, Chang BHJ, Danesh FR. Identification of microRNA-93 as a novel regulator of vascular endothelial growth factor in hyperglycemic conditions. J Biol Chem. 2010;285(30):23457–23465. doi:10.1074/jbc.M110.136168
  • Li H, Zhu X, Zhang J, Shi J. MicroRNA-25 inhibits high glucose-induced apoptosis in renal tubular epithelial cells via PTEN/AKT pathway. Biomed Pharmacother. 2017;96:471–479. doi:10.1016/j.biopha.2017.10.019
  • Gholaminejad A, Abdul Tehrani H, Fesharaki MG. Identification of candidate microRNA biomarkers in diabetic nephropathy: a meta-analysis of profiling studies. J Nephrol. 2018;31(6):813. doi:10.1007/s40620-018-0511-5
  • Liu Y, Li H, Liu J. Variations in MicroRNA-25 expression influence the severity of diabetic kidney disease. J Am Soc Nephrol. 2017;28(12):3627–3638. doi:10.1681/ASN.2015091017
  • Zhong X, Chung ACK, Chen HY, et al. MiR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes. Diabetologia. 2013;56(3):663–674. doi:10.1007/s00125-012-2804-x
  • McClelland AD, Herman-Edelstein M, Komers R, et al. miR-21 promotes renal fibrosis in diabetic nephropathy by targeting PTEN and SMAD7. Clin Sci. 2015;129(12):1237–1249. doi:10.1042/CS20150427
  • Zhang Z, Peng H, Chen J, et al. MicroRNA-21 protects from mesangial cell proliferation induced by diabetic nephropathy in db/db mice. FEBS Lett. 2009;583(12):2009–2014. doi:10.1016/j.febslet.2009.05.021
  • Xu X, Kriegel AJ, Liu Y, et al. Delayed ischemic preconditioning contributes to renal protection by upregulation of miR-21. Kidney Int. 2012;82(11):1167–1175. doi:10.1038/ki.2012.241
  • Wang JY, Gao YB, Zhang N, et al. MicroRNA-21 overexpression enhances TGF-β1-induced epithelial-to-mesenchymal transition by target smad7 and aggravates renal damage in diabetic nephropathy. Mol Cell Endocrinol. 2014;392(1–2):163–172. doi:10.1016/j.mce.2014.05.018
  • Fouad M, Salem I, Elhefnawy K, Raafat N, Faisal A. MicroRNA-21 as an early marker of nephropathy in patients with type 1 diabetes. Indian J Nephrol. 2020;30(1):21–22. doi:10.4103/ijn.IJN_80_19
  • Kölling M, Kaucsar T, Schauerteetal C. Therapeutic miR21 silencing ameliorates diabetic kidney disease in mice. Mol Ther. 2017;25(1):165–180. doi:10.1016/j.ymthe.2016.08.001