98
Views
5
CrossRef citations to date
0
Altmetric
Original Research

Liraglutide and Insulin Have Contrary Effects on Adipogenesis of Human Adipose-Derived Stem Cells via Wnt Pathway

, ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 3075-3087 | Published online: 01 Sep 2020

References

  • Hammarstedt A, Gogg S, Hedjazifar S, et al. Impaired adipogenesis and dysfunctional adipose tissue in human hypertrophic obesity. Physio Rev. 2018;98:1911–1941.
  • Grant RW, Dixit VD. Adipose tissue as an immunological organ. Obesity. 2015;23:512–518. doi:10.1002/oby.21003
  • Cai X, Hayashi S, Fang C, et al. Pu’erh tea extract-mediated protection against hepatosteatosis and insulin resistance in mice with diet-induced obesity is associated with the induction of de novo lipogenesis in visceral adipose tissue. J Gastroenterol. 2017;52:1240–1251. doi:10.1007/s00535-017-1332-3
  • Arner E, Westermark PO, Spalding KL, et al. Adipocyte turnover: relevance to human adipose tissue morphology. Diabetes. 2010;59:105–109. doi:10.2337/db09-0942
  • Laudes M. Role of WNT signalling in the determination of human mesenchymal stem cells into preadipocytes. J Mol Endocrinol. 2011;46:R65–72. doi:10.1530/JME-10-0169
  • Flier JS. Starvation in the midst of plenty: reflections on the history and biology of insulin and leptin. Endocr Rev. 2019;40:1–16. doi:10.1210/er.2018-00179
  • Hall KD, Guyenet SJ, Leibel RL. The carbohydrate-insulin model of obesity is difficult to reconcile with current evidence. JAMA Inter Med. 2018;178:1103–1105. doi:10.1001/jamainternmed.2018.2920
  • Brown E, Cuthbertson DJ, Wilding JP. Newer GLP-1 receptor agonists and obesity-diabetes. Peptides. 2018;100:61–67. doi:10.1016/j.peptides.2017.12.009
  • Aroda VR. A review of GLP-1 receptor agonists: evolution and advancement, through the lens of randomised controlled trials. Diabetes Obes Metab. 2018;20:22–33. doi:10.1111/dom.13162
  • Muller TD, Finan B, Bloom SR, et al. Glucagon-like peptide 1 (GLP-1). Mol Metab. 2019;30:72–130. doi:10.1016/j.molmet.2019.09.010
  • Aamir K, Khan HU, Sethi G, et al. Wnt signaling mediates TLR pathway and promote unrestrained adipogenesis and metaflammation: therapeutic targets for obesity and type 2 diabetes. Pharmacol Res. 2020;152:104602. doi:10.1016/j.phrs.2019.104602
  • Chen N, Wang J-Q. Wnt/β-catenin signaling and obesity. Front Physiol. 2018;9:792. doi:10.3389/fphys.2018.00792
  • Lu H-Y, Li X-F, Mu P-W, et al. Dickkopf-1 promotes the differentiation and adipocytokines secretion via canonical Wnt signaling pathway in primary cultured human preadipocytes. Obes Res Clin Pract. 2016;10:454–464. doi:10.1016/j.orcp.2015.08.016
  • Carswell KA, Lee MJ, Fried SK. Culture of isolated human adipocytes and isolated adipose tissue. Methods Mol Biol. 2012;806:203–214.
  • Xiao-ying H, Guan H-Y, Liang W-W, et al. Exendin-4 modifies adipogenesis of human adipose-derived stromal cells isolated from omentum through multiple mechanisms. Int J Obes. 2018;42(5):1051–1061. doi:10.1038/s41366-018-0024-2
  • Hong-yun L, Gao Z-G, Zhao Z-Y, et al. Transient hypoxia reprograms differentiating adipocytes for enhanced insulin sensitivity and triglyceride accumulation. Int J Obes. 2016;40:121–128. doi:10.1038/ijo.2015.137
  • Su X, Peng D. The exchangeable apolipoproteins in lipid metabolism and obesity. Clin Chim Acta. 2020;503:128–135. doi:10.1016/j.cca.2020.01.015
  • Andersen A, Lund A, Knop FK, et al. Glucagon-like peptide 1 in health and disease. Nat Rev Endocrinol. 2018;14:390–403. doi:10.1038/s41574-018-0016-2
  • Sun K, Kusminski CM, Scherer PE. Adipose tissue remodeling and obesity. J Clin Invest. 2011;121:2094–2101. doi:10.1172/JCI45887
  • Salans LB, Cushman SW, Weismann RE. Studies of human adipose tissue. Adipose cell size and number in nonobese and obese patients. J Clin Invest. 1973;52(4):929–941. doi:10.1172/JCI107258
  • Hirsch J, Batchelor B. Adipose tissue cellularity in human obesity. Clin Endocrinol Metab. 1976;5:299–311. doi:10.1016/S0300-595X(76)80023-0
  • Spalding KL, Arner E, Westermark PO, et al. Dynamics of fat cell turnover in humans. Nature. 2008;453:783–787. doi:10.1038/nature06902
  • Arner P, Andersson DP, Thorne A, et al. Variations in the size of the major omentum are primarily determined by fat cell number. J Clin Endocrinol Metab. 2013;98:E897–901. doi:10.1210/jc.2012-4106
  • Wang Y, Rimm EB, Stampfer MJ, et al. Comparison of abdominal adiposity and overall obesity in predicting risk of type 2 diabetes among men. Am J Clin Nutr. 2005;81:555–563. doi:10.1093/ajcn/81.3.555
  • Phillips LK, Prins JB. The link between abdominal obesity and the metabolic syndrome. Curr Hypertens Rep. 2008;10:156–164. doi:10.1007/s11906-008-0029-7
  • Yang J, Ren J, Song J, et al. Glucagon-like peptide 1 regulates adipogenesis in 3T3-L1 preadipocytes. Int J Mol Med. 2013;31:1429–1435. doi:10.3892/ijmm.2013.1350
  • Chen J, Zhao H, Ma X, et al. GLP-1/GLP-1R signaling in regulation of adipocyte differentiation and lipogenesis. Cell Physiol Biochem. 2017;42(3):1165–1176. doi:10.1159/000478872
  • Zhang Y, Chen S, Liu B, et al. Exendin-4 promotes proliferation of adipose-derived stem cells through ERK and JNK signaling pathways. Vitr Cell Dev Biol - Anim. 2016;52:598–606. doi:10.1007/s11626-016-0003-7
  • Challa TD, Beaton N, Arnold M, et al. Regulation of adipocyte formation by GLP-1/GLP-1R signaling. J Biol Chem. 2012;287:6421–6430. doi:10.1074/jbc.M111.310342
  • He M, Su H, Gao W, et al. Reversal of obesity and insulin resistance by a non-peptidic glucagon-like peptide-1 receptor agonist in diet-induced obese mice. PLoS One. 2010;5:e14205. doi:10.1371/journal.pone.0014205
  • Sanz C, Vazquez P, Blazquez C, et al. Signaling and biological effects of glucagon-like peptide 1 on the differentiation of mesenchymal stem cells from human bone marrow. Am J Physiol Endocrinol Metab. 2010;298:E634–643. doi:10.1152/ajpendo.00460.2009
  • Lee HM, Joo BS, Lee CH, et al. Effect of Glucagon-like Peptide-1 on the differentiation of adipose-derived stem cells into osteoblasts and adipocytes. J Menopausal Med. 2015;21:93–103. doi:10.6118/jmm.2015.21.2.93
  • Yang YQ, Ju DP, Zhang MT, et al. Chronic high doses of insulin stimulates the breakdown of pig fat cells. Journal Biol Eng. 2009;1:16–22.
  • Zhang J, Hupfeld CJ, Taylor SS, et al. Insulin disrupts beta-adrenergic signalling to protein kinase A in adipocytes. Nature. 2005;437:569–573. doi:10.1038/nature04140
  • Faulds KJ, Egelston JN, Sedivy LJ, et al. Glycogen synthase kinase-3 (GSK-3) activity regulates mRNA methylation in mouse embryonic stem cells. J Biol Chem. 2018;293:10731–10743. doi:10.1074/jbc.RA117.001298
  • Kanazawa A, Tsukada S, Sekine A, et al. Association of the gene encoding wingless-type mammary tumor virus integration-site family member 5B (WNT5B) with type 2 diabetes. Am J Hum Genet. 2004;75:832–843. doi:10.1086/425340
  • Liu X, Klein PS. Glycogen synthase kinase-3 and alternative splicing. Wiley Interdiscip Rev RNA. 2018;9:e1501. doi:10.1002/wrna.1501
  • Benjamin WB, Pentyala SN, Woodgett JR, et al. ATP citrate-lyase and glycogen synthase kinase-3 beta in 3T3-L1 cells during differentiation into adipocytes. Biochem J. 1994;300:477–482. doi:10.1042/bj3000477
  • Gould TD, Chen G, Manji HK. In vivo evidence in the brain for lithium inhibition of glycogen synthase kinase-3. Neuropsychopharmacology. 2004;29:32–38. doi:10.1038/sj.npp.1300283