72
Views
4
CrossRef citations to date
0
Altmetric
Original Research

Yu Nu Compound Regulates Autophagy and Apoptosis Through mTOR in vivo and vitro

, , , , , , & show all
Pages 2081-2092 | Published online: 18 Jun 2020

References

  • Yu L, Haoyu W, Jiahua H, Hao Z, Suiqiang F. Research progress on regulation of pancreatic β cell autophagy by chinese medicine. Chinese MED MODERN DISTANCE EDUC CHINA. 2018;16(10):156–158.
  • Caigu H, Changhui Q, Yvmei H, Xuehua Z. Autophagy and the pancreatic beta-cell in human type 2 diabetes. J Fujian Univ TCM February. 2014;24(01):11–14. doi:10.4161/auto.5.7.9511.
  • Marchetti P, Masini M. Autophagy and the pancreatic beta-cell in human type 2 diabetes. Autophagy. 2009;5(7):1055–1056. doi:doi:10.4161/auto.5.7.9511
  • Fang L, Zhou Y, Cao H, et al. Autophagy attenuates diabetic glomerular damage through protection of hyperglycemia-induced podocyte injury. PLoS One. 2013;8(4):e60546. doi:doi:10.1371/journal.pone.0060546
  • Hartleben B, Godel M, Meyer-Schwesinger C, et al. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J Clin Invest. 2010;120(4):1084–1096. doi:doi:10.1172/jci39492
  • Kitada M, Kume S, Takeda-Watanabe A, Kanasaki K, Koya D. Sirtuins and renal diseases: relationship with aging and diabetic nephropathy. Clin Sci. 2012;124(3):153–164. doi:doi:10.1042/cs20120190
  • He Y, Zhang M, Wu Y, et al. Aberrant activation of Notch-1 signaling inhibits podocyte restoration after islet transplantation in a rat model of diabetic nephropathy. Cell Death Dis. 2018;9(10):950. doi:doi:10.1038/s41419-018-0985-z
  • Jones SA, Mills KH, Harris J. Autophagy and inflammatory diseases. Immunol Cell Biol. 2013;91(3):250–258. doi:doi:10.1038/icb.2012.82
  • Chaowen S High glucose induces autophagy in podocytes. Exp cell res. 2013;319(6):779–89.
  • Mizushima N, Levine B. Autophagy in mammalian development and differentiation. Nat Cell Biol. 2010;12(9:823–830. doi:doi:10.1038/ncb0910-823.
  • Zhang XQ, Dong JJ, Cai T, Shen X, Zhou XJ, Liao L. High glucose induces apoptosis via upregulation of Bim expression in proximal tubule epithelial cells. Oncotarget. 8(15):24119–24129. doi:doi:10.18632/oncotarget.15491
  • Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research. Cell. 2010;140(3):0–326.
  • Candeias E, Sebastiao I, Cardoso S, et al. Brain GLP-1/IGF-1 signaling and autophagy mediate exendin-4 protection against apoptosis in type 2 diabetic rats. Mol Neurobiol. 2018;55(5):4030–4050. doi:doi:10.1007/s12035-017-0622-3
  • Xu J, Deng Y, Wang Y, Sun X, Chen S, Fu G. SPAG5-AS1 inhibited autophagy and aggravated apoptosis of podocytes via SPAG5/AKT/mTOR pathway. Cell Prolif. 2020;53(2):e12738. doi:doi:10.1111/cpr.12738
  • Li C, Guan XM, Wang RY, et al. Berberine mitigates high glucose-induced podocyte apoptosis by modulating autophagy via the mTOR/P70S6K/4EBP1 pathway. Life Sci. 243. 117277. doi:10.1016/j.lfs.2020.117277
  • Zheng D, Tao M, Liang X, Li Y, Jin J, He Q. p66Shc regulates podocyte autophagy in high glucose environment through the Notch-PTEN-PI3K/Akt/mTOR pathway. Histol Histopathol. 2019;25:18178. doi:doi:10.14670/hh-18-178
  • Zhou J, Tan SH, Codogno P, Shen HM. Dual suppressive effect of MTORC1 on autophagy: tame the dragon by shackling both the head and the tail. Autophagy. 2013;9(5):803–805. doi:doi:10.4161/auto.23965
  • Lenoir O, Jasiek M, Henique C, et al. Endothelial cell and podocyte autophagy synergistically protect from diabetes-induced glomerulosclerosis. Autophagy. 2015;11(7):1130–1145. doi:doi:10.1080/15548627.2015.1049799
  • Kim WY, Nam SA, Song HC, et al. The role of autophagy in unilateral ureteral obstruction rat model. Nephrology. 2012;17(2):148–159. doi:doi:10.1111/j.1440-1797.2011.01541.x
  • Liu Y, Zhang J, Wang Y, Zeng X. Apelin involved in progression of diabetic nephropathy by inhibiting autophagy in podocytes. Cell Death Dis. 8(8):e3006. doi:doi:10.1038/cddis.2017.414
  • Tharaux PL, Huber TB. How many ways can a podocyte die? Semin Nephrol. 2012;32(4):394–404. doi:doi:10.1016/j.semnephrol.2012.06.011
  • Wang Y, Fan X, Qu H, Gao X, Cheng Y. Strategies and techniques for multi-component drug design from medicinal herbs and traditional Chinese medicine. Curr Top Med Chem. 2012;12(12):1356–1362. doi:doi:10.2174/156802612801319034
  • Ji T, Su SL, Zhu Y, et al. The mechanism of mulberry leaves against renal tubular interstitial fibrosis through ERK1/2 signaling pathway was predicted by network pharmacology and validated in human tubular epithelial cells. Phytother Res. 2019;33(8):2044–2055. doi:doi:10.1002/ptr.6390
  • Boya P, Reggiori F, Codogno P. Emerging regulation and functions of autophagy. Nat Cell Biol. 2013;15(7:713–720. doi:doi:10.1038/ncb2788.
  • Tanida I, Ueno T, Kominami E. LC3 and autophagy. Methods Mol Biol. 2008;445:77–88. doi:doi:10.1007/978-1-59745-157-4_4
  • Wu F, Li S, Zhang N, et al. Hispidulin alleviates high-glucose-induced podocyte injury by regulating protective autophagy. Biomed Pharmacother. 2018;104:307–314. doi:doi:10.1016/j.biopha.2018.05.017
  • Lim JH, Kim HW, Kim MY, et al.Cinacalcet-mediated activation of the CaMKKbeta-LKB1-AMPK pathway attenuates diabetic nephropathy in db/db mice by modulation of apoptosis and autophagy. Cell Death Dis.;9(3):270. doi:10.1038/s41419-018-0324-4
  • Said RS, Mohamed HA, Kamal MM Coenzyme Q10 mitigates ionizing radiation-induced testicular damage in rats through inhibition of oxidative stress and mitochondria-mediated apoptotic cell death. Toxicol Appl Pharmacol. 383:114780. doi:10.1016/j.taap.2019.114780
  • Nechushtan A, Smith CL, Lamensdorf I, Yoon SH, Youle RJ. Bax and Bak coalesce into novel mitochondria-associated clusters during apoptosis. J Cell Biol. 153(6):1265–1276. doi:doi:10.1083/jcb.153.6.1265
  • Zhao X, Chen Y, Tan X, et al. Advanced glycation end-products suppress autophagic flux in podocytes by activating mammalian target of rapamycin and inhibiting nuclear translocation of transcription factor EB. J Pathol. 2018;245(2):235–248. doi:doi:10.1002/path.5077
  • Ravindran S, Kuruvilla V, Wilbur K, Munusamy S. Nephroprotective effects of metformin in diabetic nephropathy. J Cell Physiol. 2017;232(4):731–742. doi:doi:10.1002/jcp.25598
  • Wu J, Zhang R, Torreggiani M, et al. Induction of diabetes in aged C57B6 mice results in severe nephropathy: an association with oxidative stress, endoplasmic reticulum stress, and inflammation. Am J Pathol. 2010;176(5):2163–2176. doi:doi:10.2353/ajpath.2010.090386
  • Godel M, Hartleben B, Herbach N, et al. Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. J Clin Invest. 2011;121(6):2197–2209. doi:doi:10.1172/jci44774
  • Guzman J, Jauregui AN, Merscher-Gomez S, et al. Podocyte-specific GLUT4-deficient mice have fewer and larger podocytes and are protected from diabetic nephropathy. Diabetes. 2014;63(2):701–714. doi:doi:10.2337/db13-0752