299
Views
22
CrossRef citations to date
0
Altmetric
Review

Plasma Adipsin as a Biomarker and Its Implication in Type 2 Diabetes Mellitus

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1855-1861 | Published online: 28 May 2020

References

  • Oguntibeju O. Pathophysiology and Complications of Diabetes Mellitus. BoD–Books on Demand; 2012.
  • WHO. Classification of Diabetes Mellitus. World Health Organization; 2019:1–40. Licence: CC BY-NC-SA 3.0 IGO 2019.
  • Wondafrash DZ, Nire’a AT, Tafere GG, Desta DM, Berhe DA, Zewdie KA. Thioredoxin-interacting protein as a novel potential therapeutic target in diabetes mellitus and its underlying complications. Diabetes Metab Syndr Obes. 2020;13:43. doi:10.2147/DMSO.S232221
  • Afroz A, Ali L, Karim MN, et al. Glycaemic control for people with type 2 diabetes mellitus in Bangladesh-an urgent need for optimization of management plan. Sci Rep. 2019;9(1):1–10. doi:10.1038/s41598-019-46766-9
  • Baynes HW. Classification, pathophysiology, diagnosis and management of diabetes mellitus. J Diabetes Metab. 2015;6(5):1–9.
  • ADA. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2014;37(Supplement 1):S81–S90. doi:10.2337/dc14-S081
  • Asmelash D, Asmelash Y. The burden of undiagnosed diabetes mellitus in adult African population: a systematic review and meta-analysis. J Diabetes Res. 2019;2019:1–8. doi:10.1155/2019/4134937
  • Fan W. Epidemiology in diabetes mellitus and cardiovascular disease. Cardiovasc Endocrinol. 2017;6(1):8–16. doi:10.1097/XCE.0000000000000116
  • Piero M, Nzaro G, Njagi J. Diabetes mellitus-a devastating metabolic disorder. Asian J Biomed Pharm Sci. 2015;5(40):1.
  • Elekofehinti OO, Ejelonu OC, Kamdem JP, Akinlosotu OB, Adanlawo IG. Saponins as adipokines modulator: a possible therapeutic intervention for type 2 diabetes. World J Diabetes. 2017;8(7):337. doi:10.4239/wjd.v8.i7.337
  • Kohei K. Pathophysiology of type 2 diabetes and its treatment policy. Jpn Med Assoc J. 2010;53(1):41–46.
  • Zaccardi F, Webb DR, Yates T, Davies MJ. Pathophysiology of type 1 and type 2 diabetes mellitus: a 90-year perspective. Postgrad Med J. 2016;92(1084):63–69. doi:10.1136/postgradmedj-2015-133281
  • Heng L, Comyn O, Peto T, et al. Diabetic retinopathy: pathogenesis, clinical grading, management and future developments. Diabet Med. 2013;30(6):640–650. doi:10.1111/dme.12089
  • Wang W, Lo AC. Diabetic retinopathy: pathophysiology and treatments. Int J Mol Sci. 2018;19(6):1–14.
  • Skyler JS, Bakris GL, Bonifacio E, et al. Differentiation of diabetes by pathophysiology, natural history, and prognosis. Diabetes. 2017;66(2):241–255. doi:10.2337/db16-0806
  • Lyons TJ, Basu A. Biomarkers in diabetes: hemoglobin A1c, vascular and tissue markers. Transl Res. 2012;159(4):303–312. doi:10.1016/j.trsl.2012.01.009
  • Diwaker A, Kishore D, Singh V, Mahapatra SP. The novel biomarkers in diabetes. J Assoc Physicians India. 2019;67(7):65–69.
  • Punthakee Z, Goldenberg R, Katz P. Définition, classification et diagnostic du diabète, du prédiabète et du syndrome métabolique. Can J Diabetes. 2018;42:S10–S15. doi:10.1016/j.jcjd.2017.10.003
  • Riaz S. Study of protein biomarkers of diabetes mellitus type 2 and therapy with vitamin B1. J Diabetes Res. 2015;2015:1–10. doi:10.1155/2015/150176
  • Yimer EM, Zewdie KA, Hishe HZ. Netrin as a novel biomarker and its therapeutic implications in diabetes mellitus and diabetes-associated complications. J Diabetes Res. 2018;2018:1–20. doi:10.1155/2018/8250521
  • Laakso M. Biomarkers for type 2 diabetes. Mol Metab. 2019;27:S139–S146. doi:10.1016/j.molmet.2019.06.016
  • Lu B, Zhao M, Jiang W, et al. Independent association of circulating level of chemerin with functional and early morphological vascular changes in newly diagnosed type 2 diabetic patients. Medicine. 2015;94(47):1–8. doi:10.1097/MD.0000000000001990
  • Mamdouh M, Shaban S, Ibrahim Abushouk A, Zaki MMM, Ahmed OM, Abdel-Daim MM. Adipokines: potential therapeutic targets for vascular dysfunction in type II diabetes mellitus and obesity. J Diabetes Res. 2017;2017:1–11.
  • Blüher M. Adipokines–removing road blocks to obesity and diabetes therapy. Mol Metab. 2014;3(3):230–240. doi:10.1016/j.molmet.2014.01.005
  • Tilg H, Moschen AR. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol. 2006;6(10):772–783. doi:10.1038/nri1937
  • Blüher M. Clinical relevance of adipokines. Diabetes Metab J. 2012;36(5):317–327. doi:10.4093/dmj.2012.36.5.317
  • Freitas Lima LC, Braga V, Do Socorro de França Silva M, et al. Adipokines, diabetes and atherosclerosis: an inflammatory association. Front Physiol. 2015;6:304. doi:10.3389/fphys.2015.00304
  • Cook KS, Groves DL, Min HY, Spiegelman BM. A developmentally regulated mRNA from 3T3 adipocytes encodes a novel serine protease homologue. Proc Natl Acad Sci. 1985;82(19):6480–6484. doi:10.1073/pnas.82.19.6480
  • Zhou Q, Ge Q, Ding Y, et al. Relationship between serum adipsin and the first phase of glucose‐stimulated insulin secretion in individuals with different glucose tolerance. J Diabetes Investig. 2018;9(5):1128–1134. doi:10.1111/jdi.12819
  • Lo JC, Ljubicic S, Leibiger B, et al. Adipsin is an adipokine that improves β cell function in diabetes. Cell. 2014;158(1):41–53. doi:10.1016/j.cell.2014.06.005
  • Gómez-Banoy N, Guseh JS, Li G, et al. Adipsin preserves beta cells in diabetic mice and associates with protection from type 2 diabetes in humans. Nat Med. 2019;25(11):1739–1747. doi:10.1038/s41591-019-0610-4
  • Baas T. Adipsin meets β cells. Sci Bus Exch. 2014;7(30):883–886. doi:10.1038/scibx.2014.883
  • Song N-J, Kim S, Jang B-H, et al. Small molecule-induced complement factor D (Adipsin) promotes lipid accumulation and adipocyte differentiation. PLoS One. 2016;11(9):e0162228. doi:10.1371/journal.pone.0162228
  • Legakis I, Mantzouridis T, Bouboulis G, Chrousos GP. Reciprocal changes of serum adispin and visfatin levels in patients with type 2 diabetes after an overnight fast. Arch Endocrinol Metab. 2016;60(1):76–78. doi:10.1590/2359-3997000000147
  • Karajibani M, Montazerifar F, Sadeghi MB, Keikhaie MA, Dashipour A. Serum fetuin-A and adipsin levels in type II diabetes patients. Int J High Risk Behav Addict. 2019;1–6.
  • Wang J-S, Lee W-J, Lee I-T, et al. Association between serum Adipsin levels and insulin resistance in subjects with various degrees of glucose intolerance. J Endocr Soc. 2019;3(2):403–410. doi:10.1210/js.2018-00359
  • Vasilenko MA, Kirienkova EV, Skuratovskaia DA, et al., editors. The role of production of adipsin and leptin in the development of insulin resistance in patients with abdominal obesity. Dokl Biochem Biophys. 2017;475:271–276. doi:10.1134/S160767291704010X
  • Kumar NP, Nair D, Banurekha V, et al. Type 2 diabetes mellitus coincident with pulmonary or latent tuberculosis results in modulation of adipocytokines. Cytokine. 2016;79:74–81. doi:10.1016/j.cyto.2015.12.026
  • Taşdemir E, Şermet A. The relationship between plasma adipsin, adiponectin, vaspin, visfatin, and leptin levels with glucose metabolism and diabetes parameters. Haydarpasa Numune Med J. 2019;59(2):95–103.
  • Klimontov VV, Bulumbaeva DM, Bgatova NP, et al. Serum adipokine concentrations in patients with type 2 diabetes: the relationships with distribution, hypertrophy and vascularization of subcutaneous adipose tissue. Diabetes mellitus. 2019;22(4):336–347. doi:10.14341/DM10129
  • Cox AJ, Zhang P, Bowden DW, et al. Enteroendocrine and adipokine associations with type 2 diabetes: phenotypic risk scoring approaches. J Gastroenterol Hepatol. 2018;33(7):1357–1364. doi:10.1111/jgh.14057
  • Derosa G, Fogari E, D’Angelo A, et al. Adipocytokine levels in obese and non-obese subjects: an observational study. Inflammation. 2013;36(4):914–920. doi:10.1007/s10753-013-9620-4
  • Azizi M, Tadibi V, Behpour N. The effect of aerobic exercise training on β-cell function and circulating levels of adipsin in community of obese women with type 2 diabetes mellitus. Int J Diabetes Dev Ctries. 2017;37(3):298–304. doi:10.1007/s13410-016-0504-7