173
Views
8
CrossRef citations to date
0
Altmetric
Original Research

Evaluation of Urinary Neutrophil Gelatinase Associated Lipocalin and Kidney Injury Molecule-1 as Diagnostic Markers for Early Nephropathy in Patients with Type 2 Diabetes Mellitus

ORCID Icon, , , , ORCID Icon, , , , , , ORCID Icon & ORCID Icon show all
Pages 2199-2207 | Published online: 24 Jun 2020

References

  • Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the international diabetes federation diabetes Atlas, 9th edition. Elsevier BV. 2019;57:1–10.
  • Zhu Y, Zhang C. Prevalence of gestational diabetes and risk of progression to type 2 diabetes: a global perspective. Curr Diab Rep. 2016;16(1):7. doi:10.1007/s11892-015-0699-x
  • Harding JL, Pavkov ME, Magliano DJ, Shaw JE, Gregg EW. Global trends in diabetes complications: a review of current evidence. Diabetologia. 2019;62(1):3–16.
  • Thomas B. The global burden of diabetic kidney disease: time trends and gender gaps. Curr Diab Rep. 2019;19(4):18. doi:10.1007/s11892-019-1133-6
  • Dagenais GR, Gerstein HC, Zhang X, et al. Variations in diabetes prevalence in Low-, Middle-, and High-Income Countries: results from the prospective urban and rural epidemiological study. Diabetes Care. 2016;39(5):780–787. doi:10.2337/dc15-2338
  • Buse JB, Wexler DJ, Tsapas A, et al. 2019 update to: management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2020;43(2):487–493. doi:10.2337/dci19-0066
  • Ezzati M, Zhou B, Riley L, et al. Challenges of monitoring global diabetes prevalence. Lancet Diabetes Endocrinol. 2017;5(3):162. doi:10.1016/S2213-8587(17)30036-0
  • Ivanac-Jankovic R, Lovcic V, Magas S, Sklebar D, Kes P. The novella about diabetic nephropathy. Acta Clin Croat. 2015;54(1):83–91.
  • Patzer RE, McClellan WM. Influence of race, ethnicity and socioeconomic status on kidney disease. Nat Rev Nephrol. 2012;8(9):533–541. doi:10.1038/nrneph.2012.117
  • Zheng JM, Jiang ZH, Chen DJ, Wang SS, Zhao WJ, Li LJ. Pathological significance of urinary complement activation in diabetic nephropathy: a full view from the development of the disease. J Diabetes Investig. 2019;10(3):738–744. doi:10.1111/jdi.12934
  • Afroz T, Sagar R, Reddy S, Gandhe S, Rajaram KG. Clinical and histological correlation of diabetic nephropathy. Saudi J Kidney Dis Transpl. 2017;28(4):836–841.
  • Jiang H, Shao X, Jia S, et al. The mitochondria-targeted metabolic tubular injury in diabetic kidney disease. Cell Physiol Biochem. 2019;52(2):156–171.
  • Satirapoj B. Tubulointerstitial biomarkers for diabetic nephropathy. J Diabetes Res. 2018;2018:2852398. doi:10.1155/2018/2852398
  • Cai L, Rubin J, Han W, Venge P, Xu S. The origin of multiple molecular forms in urine of HNL/NGAL. Clin J Am Soc Nephrol. 2010;5(12):2229–2235. doi:10.2215/CJN.00980110
  • Castillo-Rodriguez E, Fernandez-Prado R, Martin-Cleary C, et al. Kidney injury marker 1 and neutrophil gelatinase-associated lipocalin in chronic kidney disease. Nephron. 2017;136(4):263–267. doi:10.1159/000447649
  • Colombo M, Looker HC, Farran B, et al. Serum kidney injury molecule 1 and beta2-microglobulin perform as well as larger biomarker panels for prediction of rapid decline in renal function in type 2 diabetes. Diabetologia. 2019;62(1):156–168. doi:10.1007/s00125-018-4741-9
  • Furuya F, Ishii T, Kitamura K. Chronic inflammation and progression of diabetic kidney disease. Contrib Nephrol. 2019;198:33–39.
  • Jagadesan I, Agarwal I, Chaturvedi S, Jose A, Sahni RD, Fleming JJ. Urinary neutrophil gelatinase associated lipocalin - a sensitive marker for urinary tract infection in children. Indian J Nephrol. 2019;29(5):340–344. doi:10.4103/ijn.IJN_276_18
  • Kamianowska M, Szczepanski M, Kulikowska EE, Bebko B, Wasilewska A. The tubular damage markers: neutrophil gelatinase-associated lipocalin and kidney injury molecule-1 in newborns with intrauterine growth restriction. Neonatology. 2019;115(2):169–174. doi:10.1159/000494102
  • Komosinska-Vassev K, Olczyk P, Kuznik-Trocha K, et al. Circulating C1q/TNF-related protein 3, omentin-1 and NGAL in obese patients with type 2 diabetes during insulin therapy. J Clin Med. 2019;8(6):805. doi:10.3390/jcm8060805
  • Members) ISoNKB. Kidney international supplements. Off J Int Soc Nephrol. 2013;3(1):19–62.
  • Zhao X, Chen X, Zhang Y, et al. Kidney injury molecule-1 is upregulated in renal lipotoxicity and mediates palmitate-induced tubular cell injury and inflammatory response. Int J Mol Sci. 2019;20(14):14. doi:10.3390/ijms20143406
  • Tanase DM, Gosav EM, Radu S, et al. The predictive role of the biomarker Kidney Molecule-1 (KIM-1) in Acute Kidney Injury (AKI) cisplatin-induced nephrotoxicity. Int J Mol Sci. 2019;20(20):5238. doi:10.3390/ijms20205238
  • Sun IO, Shin SH, Cho AY, Yoon HJ, Chang MY, Lee KY. Clinical significance of NGAL and KIM-1 for acute kidney injury in patients with scrub typhus. PLoS One. 2017;12(4):e0175890. doi:10.1371/journal.pone.0175890
  • Mishra J, Ma Q, Prada A, et al. Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J Am Soc Nephrol. 2003;14(10):2534–2543. doi:10.1097/01.ASN.0000088027.54400.C6
  • Khawaja S, Jafri L, Siddiqui I, Hashmi M, Ghani F. The utility of neutrophil gelatinase-associated Lipocalin (NGAL) as a marker of acute kidney injury (AKI) in critically ill patients. Biomark Res. 2019;7(1):4. doi:10.1186/s40364-019-0155-1
  • Khan FA, Fatima SS, Khan GM, Shahid S. Evaluation of kidney injury molecule-1 as a disease progression biomarker in diabetic nephropathy. Pak J Med Sci. 2019;35(4):992–996. doi:10.12669/pjms.35.4.154
  • Kim SY, Jeong TD, Lee W, et al. Plasma neutrophil gelatinase-associated lipocalin as a marker of tubular damage in diabetic nephropathy. Ann Lab Med. 2018;38(6):524–529. doi:10.3343/alm.2018.38.6.524
  • Li A, Yi B, Liu Y, et al. Urinary NGAL and RBP are biomarkers of normoalbuminuric renal insufficiency in type 2 diabetes mellitus. J Immunol Res. 2019;2019:5063089. doi:10.1155/2019/5063089
  • Kuwabara T, Mori K, Mukoyama M, et al. Urinary neutrophil gelatinase-associated lipocalin levels reflect damage to glomeruli, proximal tubules, and distal nephrons. Kidney Int. 2009;75(3):285–294. doi:10.1038/ki.2008.499
  • Satirapoj B, Pooluea P, Nata N, Supasyndh O. Urinary biomarkers of tubular injury to predict renal progression and end stage renal disease in type 2 diabetes mellitus with advanced nephropathy: a prospective cohort study. J Diabetes Complications. 2019;33(9):675–681. doi:10.1016/j.jdiacomp.2019.05.013
  • Tervaert TW, Mooyaart AL, Amann K, et al. Pathologic classification of diabetic nephropathy. J Am Soc Nephrol. 2010;21(4):556–563. doi:10.1681/ASN.2010010010
  • Zhu X, Xiong X, Yuan S, et al. Validation of the interstitial fibrosis and tubular atrophy on the new pathological classification in patients with diabetic nephropathy: a single-center study in China. J Diabetes Complications. 2016;30(3):537–541. doi:10.1016/j.jdiacomp.2015.12.002
  • Singh S, Sonkar SK, Sonkar GK, Mahdi AA. Diabetic kidney disease: a systematic review on the role of epigenetics as diagnostic and prognostic marker. Diabetes Metab Res Rev. 2019;35(5):e3155. doi:10.1002/dmrr.3155
  • Aslan O, Demir M, Koseoglu M. Kidney injury molecule levels in type 2 diabetes mellitus. J Clin Lab Anal. 2016;30(6):1031–1036. doi:10.1002/jcla.21976
  • Sueud T, Hadi NR, Abdulameer R, Jamil DA, Al-Aubaidy HA. Assessing urinary levels of IL-18, NGAL and albumin creatinine ratio in patients with diabetic nephropathy. Diabetes Metab Syndr. 2019;13(1):564–568. doi:10.1016/j.dsx.2018.11.022
  • Li L, Zhang X, Li Z, et al. Renal pathological implications in type 2 diabetes mellitus patients with renal involvement. J Diabetes Complications. 2017;31(1):114–121. doi:10.1016/j.jdiacomp.2016.10.024
  • Fernando B, Alli-Shaik A, Hemage RKD, et al. Pilot study of renal urinary biomarkers for diagnosis of CKD of uncertain etiology. Kidney Int Rep. 2019;4(10):1401–1411. doi:10.1016/j.ekir.2019.07.009
  • Zylka A, Dumnicka P, Kusnierz-Cabala B, et al. Markers of glomerular and tubular damage in the early stage of kidney disease in type 2 diabetic patients. Mediators Inflamm. 2018;2018:7659243. doi:10.1155/2018/7659243
  • Kapoula GV, Kontou PI, Bagos PG. Diagnostic accuracy of neutrophil gelatinase-associated lipocalin for predicting early diabetic nephropathy in patients with type 1 and type 2 diabetes mellitus: a systematic review and meta-analysis. J Appl Lab Med. 2019;4(1):78–94. doi:10.1373/jalm.2018.028530
  • de Carvalho JA, Tatsch E, Hausen BS, et al. Urinary kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin as indicators of tubular damage in normoalbuminuric patients with type 2 diabetes. Clin Biochem. 2016;49(3):232–236. doi:10.1016/j.clinbiochem.2015.10.016
  • Kim SS, Song SH, Kim IJ, et al. Clinical implication of urinary tubular markers in the early stage of nephropathy with type 2 diabetic patients. Diabetes Res Clin Pract. 2012;97(2):251–257. doi:10.1016/j.diabres.2012.02.019
  • Liu R, Zhu H, Yang JH, et al. Can urine albumin/creatinine ratio replace 24 hours urinary albumin?. Zhonghua Nei Ke Za Zhi. 2019;58(5):377–381. doi:10.3760/cma.j.issn.0578-1426.2019.05.009