95
Views
7
CrossRef citations to date
0
Altmetric
Review

Islet Transplantation Imaging in vivo

, , , &
Pages 3301-3311 | Published online: 23 Sep 2020

References

  • Robertson RP, Harmon J, Tran POT, et al. Beta-cell glucose toxicity, lipotoxicity, and chronic oxidative stress in type 2 diabetes. Diabetes. 2004;53(Suppl Supplement 1):S119–S124. doi:10.2337/diabetes.53.2007.S119
  • Bell GI, Polonsky KS. Diabetes mellitus and genetically programmed defects in β-cell function. Nature. 2001;414(6865):788–791. doi:10.1038/414788a
  • Reiner T, Thurber G, Gaglia J, et al. Accurate measurement of pancreatic islet -cell mass using a second-generation fluorescent exendin-4 analog. Proc Natl Acad Sci U S A. 2011;108(31):12815–12820. doi:10.1073/pnas.1109859108
  • Yang L, Ji W, Xue Y, et al. Imaging beta-cell mass and function in situ and in vivo. J Mol Med (Berl). 2013;91(8):929–938. doi:10.1007/s00109-013-1056-7
  • Wang Y-XJ. Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant Imaging Med Surg. 2011;1(1):35–40. doi:10.3978/j.issn.2223-4292.2011.08.03
  • Medarova Z, Vallabhajosyula P, Tena A, et al. In vivo imaging of autologous islet grafts in the liver and under the kidney capsule in non-human primates. Transplantation. 2009;87(11):1659–1666. doi:10.1097/TP.0b013e3181a5cbc0
  • Koblas T, Girman P, Berkova Z, et al. Magnetic resonance imaging of intrahepatically transplanted islets using paramagnetic beads. Transplant Proc. 2005;37(8):3493–3495. doi:10.1016/j.transproceed.2005.09.142
  • Jirak D, Kríz J, Herynek V, et al. MRI of transplanted pancreatic islets. Magn Reson Med. 2004;52(6):1228–1233. doi:10.1002/mrm.20282
  • Toso C, Vallee J-P, Morel P, et al. Clinical magnetic resonance imaging of pancreatic islet grafts after iron nanoparticle labeling. Am J Transplant. 2008;8(3):701. doi:10.1111/j.1600-6143.2007.02120.x
  • Saudek F, Jirák D, Girman P, et al. Magnetic resonance imaging of pancreatic islets transplanted into the liver in humans. Transplantation. 2010;90(12):1602–1606. doi:10.1097/TP.0b013e3181ffba5e
  • Gálisová A, Herynek V, Swider E, et al. A trimodal imaging platform for tracking viable transplanted pancreatic islets in vivo: F-19 MR, fluorescence, and bioluminescence imaging. Mol Imaging Biol. 2019;21(3):454Y464. doi:10.1007/s11307-018-1270-3
  • Wei W, Ehlerding EB, Lan X, et al. Molecular imaging of β-cells: diabetes and beyond. Adv Drug Deliv Rev. 2019;139(139):16–31. doi:10.1016/j.addr.2018.06.022
  • Liu Y, Song B, Ran X, et al. Molecular imaging of pancreatic islet transplantation. Exp Clin Endocrinol Diabetes. 2014;122(2):79–86. doi:10.1055/s-0033-1363232
  • Ricordi C, Strom TB. Clinical islet transplantation: advances and immunological challenges. Nat Rev Immunol. 2004;4(4):259–268. doi:10.1038/nri1332
  • Ahrens ET, Bulte JWM. Tracking immune cells in vivo using magnetic resonance imaging. Nat Rev Immunol. 2013;13(10):755–763. doi:10.1038/nri3531
  • Kim HS, Choi Y, Song IC, Moon WK. Magnetic resonance imaging and biological properties of pancreatic islets labeled with iron oxide nanoparticles. NMR Biomed. 2009;22(8):852–856. doi:10.1002/nbm.1398
  • Kim HS, Kim H, Park KS, et al. Evaluation of porcine pancreatic islets transplanted in the kidney capsules of diabetic mice using a clinically approved Superparamagnetic Iron Oxide (SPIO) and a 1.5T MR scanner. Korean J Radiol. 2010;11(6):673–682. doi:10.3348/kjr.2010.11.6.673
  • Toso C, Vallee JP, Morel P, et al. Clinical magnetic resonance imaging of pancreatic islet grafts after iron nanoparticle labeling. Am J Transplant. 2008;8:701e6.
  • Evgenov NV, Medarova Z, Dai G, Bonner-Weir S, Moore A. In vivo imaging of islet transplantation. Nat Med. 2006;12(1):144e8. doi:10.1038/nm1316
  • Evgenov NV, Medarova Z, Pratt J, et al. In vivo imaging of immune rejection in transplanted pancreatic islets. Diabetes. 2006;55(9):2419e28. doi:10.2337/db06-0484
  • Jung MJ, Lee SS, Hwang YH, et al. MRI of transplanted surface-labeled pancreatic islets with heparinized superparamagnetic iron oxide nanoparticles. Biomaterials. 2011;32(35):9391e9400. doi:10.1016/j.biomaterials.2011.08.070
  • Yang B, Cai H, Qin W, et al. Bcl-2-functionalized ultrasmall superparamagnetic iron oxide nanoparticles coated with amphiphilic polymer enhance the labeling efficiency of islets for detection by magnetic resonance imaging. Int J Nanomedicine. 2013;8:3977–3990. doi:10.2147/IJN.S52058
  • Herynek V, Gálisová A, Srinivas M, et al. Pre-microporation improves outcome of pancreatic islet labelling for optical and 19F MR imaging. Biol Proced Online. 2017;19(1):6. doi:10.1186/s12575-017-0055-4
  • Barnett BP, Ruiz-Cabello J, Hota P, et al. Use of perfluorocarbon nanoparticles for non-invasive multimodal cell tracking of human pancreatic islets. Contrast Media Mol Imaging. 2011;6(4):251–259. doi:10.1002/cmmi.424
  • Liang S, Louchami K, Holvoet B, et al. Tri-modal in vivo imaging of pancreatic islets transplanted subcutaneously in mice. Mol Imaging Biol. 2018;20(6):940–951.
  • Liang S, Louchami K, Kolster H, et al. In vivo and ex vivo 19-fluorine magnetic resonance imaging and spectroscopy of beta-cells and pancreatic islets using GLUT-2 specific contrast agents. Contrast Media Mol Imaging. 2016;11(6):506–513. doi:10.1002/cmmi.1712
  • Srinivas M, Böhm-Sturm P, Aswendt M, et al. In vivo 19F MRI for cell tracking. J Vis Exp. 2013;25:e50802.
  • Biancone L, Crich SG, Cantaluppi V, et al. Magnetic resonance imaging of gadolinium-labeled pancreatic islets for experimental transplantation. NMR Biomed. 2007;20(1):40–48. doi:10.1002/nbm.1088
  • Demine S, Balhuizen A, Debaille V, et al. Imaging of human insulin secreting cells with Gd-DOTA-P88, a paramagnetic contrast agent targeting the beta cell biomarker FXYD2γα. Molecules. 2018;23,:2100. doi:10.3390
  • Laurent D, Vinet L, Lamprianou S, et al. Pancreatic β-cell imaging in humans: fiction or option? Diabetes Obes Metab. 2016;18(1):6–15. doi:10.1111/dom.12544
  • Meyer A, Stolz K, Dreher W, et al. Manganese-mediated MRI signals correlate with functional β-cell mass during diabetes progression. Diabetes. 2015;64(6):2138–2147. doi:10.2337/db14-0864
  • Lee JH, Silva AC, Merkle H, Koretsky AP. Manganese-enhanced magnetic resonance imaging of mouse brain after systemic administration of MnCl2: dose-dependent and temporal evolution of T1 contrast. Magn Reson Med. 2005;53:640–648. doi:10.1002/mrm.20368
  • Kelkar SS, Reineke TM. Theranostics: combining imaging and therapy. Bioconjug Chem. 2011;22:1879–1903. doi:10.1021/bc200151q
  • Wang P, Yigit MV, Medarova Z, et al. Combined small interfering RNA therapy and in vivo magnetic resonance imaging in islet transplantation. Diabetes. 2011;60:565–571. doi:10.2337/db10-1400
  • Wang P, Yigit MV, Ran C, et al. A theranostic small interfering RNA nanoprobe protects pancreatic islet grafts from adoptively transferred immune rejection. Diabetes. 2012;61(12):3247–3254. doi:10.2337/db12-0441
  • Barnett BP, Ruiz-Cabello J, Hota P, et al. Fluorocapsules for improved function, immunoprotection, and visualization of cellular therapeutics with MR, US, and CT imaging. Radiology. 2011;258(1):182–191. doi:10.1148/radiol.10092339
  • Wang P, Liu Q, Zhao H, et al. miR-216a-targeting theranostic nanoparticles promote proliferation of insulin-secreting cells in type 1 diabetes animal model. Sci Rep. 2020;10(1):5302. doi:10.1038/s41598-020-62269-4
  • Kumari P, Ghosh B, Biswas S. Nanocarriers for cancer-targeted drug delivery. J Drug Target. 2016;24(3):179–191. doi:10.3109/1061186X.2015.1051049
  • Tai JH, Nguyen B, Wells RG, et al. Imaging of gene expression in live pancreatic islet cell lines using dual-isotope SPECT. J Nucl Med. 2007;49(1):94–102. doi:10.2967/jnumed.107.043430
  • Liu S, Pan Y, Lv J, et al. Feasibility of baculovirus-mediated reporter gene delivery for efficient monitoring of islet transplantation in vivo. Nucl Med Biol. 2014;41(2):171–178. doi:10.1016/j.nucmedbio.2013.10.009
  • Eter WA, Parween S, Joosten L, et al. SPECT-OPT multimodal imaging enables accurate evaluation of radiotracers for β-cell mass assessments. Sci Rep. 2016;6(1):24576. doi:10.1038/srep24576
  • Eter WA, Van der Kroon I, Andralojc K, et al. Non-invasive in vivo determination of viable islet graft volume by 111in-exendin-3. Sci Rep. 2017;7(1):7232. doi:10.1038/s41598-017-07815-3
  • Demine S, Ribeiro RG, Thevenet J, et al. A nanobody-based nuclear imaging tracer targeting dipeptidyl peptidase 6 to determine the mass of human beta cell grafts in mice. Diabetologia. 2020;63(4):825–836. doi:10.1007/s00125-019-05068-5
  • Jodal A, Schibli R, Béhé M. Targets and probes for non-invasive imaging of β-cells. Eur J Nucl Med Mol Imaging. 2017;44(4):712–727. doi:10.1007/s00259-016-3592-1
  • Eich T, Eriksson O, Lundgren T. Visualization of early engraftment in clinical islet transplantation by positron-emission tomography. N Engl J Med. 2007;356(26):2754–2755. doi:10.1056/NEJMc070201
  • Eriksson O, Eich T, Sundin A, et al. Positron emission tomography in clinical islet transplantation. Am J Transplant. 2009;9(12):2816–2824. doi:10.1111/j.1600-6143.2009.02844.x
  • Toso C, Zaidi H, Morel P, et al. Positron-emission tomography imaging of early events after transplantation of islets of langerhans. Transplantation. 2005;79(3):353–355. doi:10.1097/01.TP.0000149501.50870.9D
  • Eich T, Eriksson O, Sundin A, et al. Positron emission tomography: a real-time tool to quantify early islet engraftment in a preclinical large animal model. Transplantation. 2007;84(7):893–898. doi:10.1097/01.tp.0000284730.86567.9f
  • Arifin DR, Bulte JWM. Imaging of pancreatic islet cells. Diabetes Metab Res Rev. 2011;27(8):761–766. doi:10.1002/dmrr.1248
  • Lu Y, Dang H, Middleton B, et al. Long-term monitoring of transplanted islets using positron emission tomography. Mol Ther. 2006;14(6):851–856. doi:10.1016/j.ymthe.2006.08.007
  • Simpson NR, Souza F, Witkowski P, et al. Visualizing pancreatic β-cell mass with [11C]DTBZ. Nucl Med Biol. 2006;33(7):855–864. doi:10.1016/j.nucmedbio.2006.07.002
  • Singhal T, Ding Y-S, Weinzimmer D, et al. Pancreatic beta cell mass PET imaging and quantification with [11C]DTBZ and [18F]FP-(+)-DTBZ in rodent models of diabetes. Mol Imaging Biol. 2011;13(5):973–984. doi:10.1007/s11307-010-0406-x
  • Normandin MD, Petersen KF, Ding Y-S, et al. In vivo imaging of endogenous pancreatic -cell mass in healthy and type 1 diabetic subjects using 18F-fluoropropyl-dihydrotetrabenazine and PET. J Nucl Med. 2012;53(6):908–916. doi:10.2967/jnumed.111.100545
  • Eriksson O, Alavi A. Imaging the islet graft by positron emission tomography. Eur J Nucl Med Mol Imaging. 2012;39(3):533–542. doi:10.1007/s00259-011-1928-4
  • Selvaraju RK, Velikyan I, Johansson L, et al. In vivo imaging of the glucagonlike peptide 1 receptor in the pancreas with 68Ga-labeled DO3A-exendin-4. J Nucl Med. 2013;54(8):1458–1463. doi:10.2967/jnumed.112.114066
  • Junfeng L, Rawson J, Chea J, et al. Evaluation of [68Ga]DO3A-VSCys40- exendin-4 as a PET probe for imaging human transplanted islets in the liver. Sci Rep. 2019;9:5705. doi:10.1038/s41598-019-42172-3
  • Alavi A, Werner TJ. Futility of attempts to detect and quantify beta cells by PET imaging in the pancreas: why it is time to abandon the approach. Diabetologia. 2018;61(12):2512–2515. doi:10.1007/s00125-018-4676-1
  • Hara M, Yin D, Dizon RF, et al. A mouse model for studying intrahepatic islet transplantation. Transplantation. 2004;78(4):615–618. doi:10.1097/01.TP.0000128838.54074.74
  • Hara M, Dizon RF, Glick BS, et al. Imaging pancreatic β-cells in the intact pancreas. Am J Physiol Endocrinol Metab. 2006;290(5):E1041–E1047. doi:10.1152/ajpendo.00365.2005
  • Medarova Z, Bonner-Weir S, Lipes M, et al. Imaging -cell death with a near-infrared probe. Diabetes. 2005;54(6):1780–1788. doi:10.2337/diabetes.54.6.1780
  • Steyn LV, Ananthakrishnan K, Anderson MJ, et al. A synthetic heterobivalent ligand composed of glucagon-like peptide 1 and yohimbine specifically targets β cells within the pancreas. Mol Imaging Biol. 2015;17(4):461–470. doi:10.1007/s11307-014-0817-1
  • Komatsu H, Omori K, Kandeel F, Mullen Y. Surfactants improve live cell imaging of human pancreatic islets. Pancreas. 2018;47(9):1093–1100. doi:10.1097/MPA.0000000000001139
  • Patel M, Gleason A, O’Malley S, et al. Non-invasive bioluminescence imaging of β-cell function in obese-hyperglycemic [ob/ob] mice. PLoS One. 2014;9(9):e106693. doi:10.1371/journal.pone.0106693
  • Virostko J, Radhika A, Poffenberger G, Dula AN, Moore DJ, Powers AC. Bioluminescence imaging reveals dynamics of beta cell loss in the non-obese diabetic (NOD) mouse model. PLoS One. 2013;8(3):e57784. doi:10.1371/journal.pone.0057784
  • Lu Y, Dang H, Middleton B, et al. Bioluminescent monitoring of islet graft survival after transplantation. Mol Ther. 2004;9(3):428–435. doi:10.1016/j.ymthe.2004.01.008
  • Chen X, Zhang X, Larson CS, et al. In vivo bioluminescence imaging of transplanted islets and early detection of graft rejection. Transplantation. 2006;81(10):1421–1427. doi:10.1097/01.tp.0000206109.71181.bf
  • Sekiguchi Y, Owada J, Oishi H, et al. Noninvasive monitoring of ^|^beta;-cell mass and fetal ^|^beta;-cell genesis in mice using bioluminescence imaging. Exp Anim. 2012;61(4):445–451. doi:10.1538/expanim.61.445
  • Katsumata T, Oishi H, Sekiguchi Y, et al. Bioluminescence imaging of β cells and intrahepatic insulin gene activity under normal and pathological conditions. PLoS One. 2013;8(4):e60411. doi:10.1371/journal.pone.0060411
  • Sakata N, Kodama T, Chen R, et al. Monitoring transplanted islets by high-frequency ultrasound. Islets. 2011;3(5):259–266. doi:10.4161/isl.3.5.17058
  • Sakata N, Goto M, Gumpei Y, et al. Intraoperative ultrasound examination is useful for monitoring transplanted islets: a case report. Islets. 2012;4(5):339–342. doi:10.4161/isl.22384
  • Sakata N, Yoshimatsu G, Tsuchiya H, et al. Imaging of transplanted islets by positron emission tomography, magnetic resonance imaging, and ultrasonography. Islets. 2013;5(5):179–187. doi:10.4161/isl.26980
  • Noory M, Renz JF, Rosen PL, Patel H, Schwartzman A, Gruessner RWG. Real-time, intraoperative doppler/ultrasound monitoring of islet infusion during total pancreatectomy with islet autotransplant: a first report. Transplant Proc. 2019;51(10):3428–3430. doi:10.1016/j.transproceed.2019.08.041
  • Knopp T, Gdaniec N, Möddel M. Magnetic particle imaging: from proof of principle to preclinical applications. Phys Med Biol. 2017;62(14):R124–R178. doi:10.1088/1361-6560/aa6c99
  • Wang P, Goodwill PW, Pandit P, et al. Magnetic particle imaging of islet transplantation in the liver and under the kidney capsule in mouse models. Quant Imaging Med Surg. 2018;8(2):114–122. doi:10.21037/qims.2018.02.06
  • Steinberg I, Huland DM, Vermesh O, Frostig HE, Tummers WS, Gambhir SS. Photoacoustic clinical imaging. Photoacoustics. 2019;14:77–98. doi:10.1016/j.pacs.2019.05.001
  • Shi W, Pawlick R, Bruni A, et al. Photoacoustic imaging of angiogenesis in a subcutaneous islet transplant site in a murine model. J Biomed Opt. 2016;21(6):66003. doi:10.1117/1.JBO.21.6.066003
  • Kim J, Piao Y, Hyeon T. Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chem Soc Rev. 2009;38(2):372–390. doi:10.1039/B709883A
  • Burke BP, Cawthorne C, Archibald SJ. Multimodal nanoparticle imaging agents: design and applications. Phil Trans R Soc A. 2017;375(2107):20170261. doi:10.1098/rsta.2017.0261
  • Kang N-Y, Lee JY, Lee SH, et al. Multimodal imaging probe development for pancreatic β cells: from fluorescence to PET. J Am Chem Soc. 2020;142(7):3430–3439. doi:10.1021/jacs.9b11173
  • Mettler E, Trenkler A, Feilen PJ, et al. Magnetic separation of encapsulated islet cells labeled with superparamagnetic iron oxide nano particles. Xenotransplantation. 2013;20(4):219–226. doi:10.1111/xen.12042