356
Views
5
CrossRef citations to date
0
Altmetric
Review

Research Progress on the Experimental Animal Model of Gestational Diabetes Mellitus

ORCID Icon, , , , , , & ORCID Icon show all
Pages 4235-4247 | Published online: 09 Nov 2020

References

  • Chiefari E, Arcidiacono B, Foti D, Brunetti A. Gestational diabetes mellitus: an updated overview. J Endocrinol Invest. 2017;40(9):899–909. doi:10.1007/s40618-016-0607-5
  • Xin L. Research progress of experimental gestational diabetes rat model. Prog Mod Obstet Gynecol. 2012;21(8):648–650.
  • Koopmans SJ, VanderMeulen J, Wijdenes J, Corbijn H, Dekker R. The existence of an insulin-stimulated glucose and non-essential but not essential amino acid substrate interaction in diabetic pigs. BMC Biochem. 2011;12:25. doi:10.1186/1471-2091-12-25
  • Yu W, Wu N, Li L, OuYang H, Qian M, Shen HA. Review of research progress on glycemic variability and gestational diabetes. Diabetes Metab Syndr Obes. 2020;13:2729–2741. doi:10.2147/DMSO.S261486
  • Yuan N, Zhai H, Du D, Shan X, Wang M. Advances in pathogenesis of gestational diabetes mellitus. J Guangxi Med Univ. 2019;36(2):321–324.
  • Song D, Ran L, Jiang R, Yingjie W. Progress of animal models in diabetes research. Chin J Comp Med. 2016;26(9):83–87.
  • Baeyens L, Hindi S, Sorenson RL, German MS. Beta-Cell adaptation in pregnancy. Diabetes Obes Metab. 2016;18(Suppl 1):63–70. doi:10.1111/dom.12716
  • Moyce BL, Dolinsky VW. Maternal beta-cell adaptations in pregnancy and placental signalling: implications for gestational diabetes. Int J Mol Sci. 2018;19(11):3467. doi:10.3390/ijms19113467
  • Lenzen S. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia. 2008;51(2):216–226. doi:10.1007/s00125-007-0886-7
  • RAKIETEN N, RAKIETEN ML, NADKARNI MR. Studies on the diabetogenic action of streptozotocin (NSC-37917). Cancer Chemother Rep.1963;29:91-98
  • Jiang J, Chunwei W, Xing L, et al. Establishment of gestational diabetes rat model with different doses of streptozotocin. J Guiyang Med Coll. 2010;35(3):221–223.
  • Cui Y, Yang D, Zhang Q, et al. Comparative study on STZ induced type 2 and type 1 diabetic rat models. J Med Res. 2018;47(5):36–38.
  • Hao Q, Song C. Establishment of gestational diabetes mellitus mouse model by two methods. World Latest Med Inf Abstr. 2019;19(6):185–186.
  • Jia L, Wei B, Ta N, Chen B. Comparison of the stability of different doses of streptozotocin in the establishment of gestational diabetes mellitus rat model. J Fourth Mi Med Univ. 2009;30(22):2500–2502.
  • Zhuang J, Ying H, Wang D. Study on the establishment of gestational diabetes mellitus rat model with low-dose streptozotocin. Prog Mod Obstet Gynecol. 2014;8:607–610.
  • Drews G, Kramer C, Dufer M, Krippeit-Drews P. Contrasting effects of alloxan on islets and single mouse pancreatic beta-cells. Biochem J. 2000;352(Pt 2):389–397. doi:10.1042/bj3520389
  • Gai W, Schott-Ohly P, Schulte IWS, Gleichmann H. Differential target molecules for toxicity induced by streptozotocin and alloxan in pancreatic islets of mice in vitro. Exp Clin Endocrinol Diabetes. 2004;112(1):29–37. doi:10.1055/s-2004-815724
  • Liang J, Yang S, Wen M, Wei S. Establishment of diabetic pregnancy rat model by alloxan. Chin Maternal Child Health Res. 2006;17(6):454–456.
  • Shui Y, Xia X, Zhang Q, Zhang C, Yuanzhe W. Changes of dipeptidyl peptidase 4 activity in alloxan induced diabetic pregnant rats. Southeast Natl Defense Med. 2015;6:568–571.
  • Linxia L, Wang Y, Yan Q, et al. Establishment of gestational hyperglycemia animal model by continuous intravenous infusion of hypertonic glucose. Shanghai Med. 2006;29(5):306–308.
  • Zhang J. Establishment of mouse model of gestational diabetes mellitus induced by high fat and high sugar diet and Study on lipid metabolism characteristics: internal medicine. Ningxia Medical University; 2013. Available from: http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D421746. Accessed October 09, 2020.
  • Huang B, Huang C, Zhao H, et al. Impact of GPR1 signaling on maternal high-fat feeding and placenta metabolism in mice. Am J Physiol Endocrinol Metab. 2019;316(6):E987–E997. doi:10.1152/ajpendo.00437.2018
  • Vuong B, Odero G, Rozbacher S, et al. Exposure to gestational diabetes mellitus induces neuroinflammation, derangement of hippocampal neurons, and cognitive changes in rat offspring. J Neuroinflammation. 2017;14(1):80. doi:10.1186/s12974-017-0859-9
  • Ren J, Ding Y, Yin L, et al. Effects of high-sucrose/high-fat diet feeding time on establishment of a mouse model of gestational diabetes mellitus. J Hyg Res. 2018;47(1):128–133.
  • Retnakaran R, Hanley AJ, Raif N, Connelly PW, Sermer M, Zinman B. C-reactive protein and gestational diabetes: the central role of maternal obesity. J Clin Endocrinol Metab. 2003;88(8):3507–3512. doi:10.1210/jc.2003-030186
  • Wolf M, Sandler L, Hsu K, Vossen-Smirnakis K, Ecker JL, Thadhani R. First-trimester C-reactive protein and subsequent gestational diabetes. Diabetes Care. 2003;26(3):819–824. doi:10.2337/diacare.26.3.819
  • Qiu C, Williams MA, Vadachkoria S, Frederick IO, Luthy DA. Increased maternal plasma leptin in early pregnancy and risk of gestational diabetes mellitus. Obstet Gynecol. 2004;103(3):519–525. doi:10.1097/01.AOG.0000113621.53602.7a
  • Kautzky-Willer A, Pacini G, Tura A, et al. Increased plasma leptin in gestational diabetes. Diabetologia. 2001;44(2):164–172. doi:10.1007/s001250051595
  • Zhou G, Cong L. Research progress on the relationship between adiponectin and pregnancy. Foreign Med. 2007;34(3):159–161.
  • Chen L, Huang X, Yang Y, et al. Establishment of gestational diabetes mellitus mouse model induced by high fat diet combined with STZ. Chin J Comp Med. 2016;26(3):15–18.
  • Tang M, Wenting X, Wang C, Wang L. Optimization of high fat diet combined with streptozotocin in induced gestational diabetes rat model. J Jiangsu Univ. 2018;28(5):393–396.
  • Yang R, Qingwang L, Zhao R. Comparison of the effects of alloxan and streptozotocin on diabetic mice. J Northwest Agric Forest Univ. 2006;34(2):17–20.
  • Abdul AS, John CM, Mohamed YN, et al. Animal model of gestational diabetes mellitus with pathophysiological resemblance to the human condition induced by multiple factors (Nutritional, pharmacological, and stress) in rats. Biomed Res Int. 2016;2016:9704607.
  • Kaufmann RC, Amankwah KS, Dunaway G, Maroun L, Arbuthnot J, Roddick JJ. An animal model of gestational diabetes. Am J Obstet Gynecol. 1981;141(5):479–482. doi:10.1016/S0002-9378(15)33263-4
  • Yamashita H, Shao J, Qiao L, Pagliassotti M, Friedman JE. Effect of spontaneous gestational diabetes on fetal and postnatal hepatic insulin resistance in Lepr(db/+) mice. Pediatr Res. 2003;53(3):411–418. doi:10.1203/01.PDR.0000049667.58071.7D
  • Yamashita H, Shao J, Ishizuka T, et al. Leptin administration prevents spontaneous gestational diabetes in heterozygous Lepr(db/+) mice: effects on placental leptin and fetal growth. Endocrinology. 2001;142(7):2888–2897. doi:10.1210/endo.142.7.8227
  • Holemans K, Caluwaerts S, Poston L, Van Assche FA. Diet-induced obesity in the rat: a model for gestational diabetes mellitus. Am J Obstet Gynecol. 2004;190(3):858–865. doi:10.1016/j.ajog.2003.09.025
  • Fujinaka Y, Takane K, Yamashita H, Vasavada RC. Lactogens promote beta cell survival through JAK2/STAT5 activation and Bcl-XL upregulation. J Biol Chem. 2007;282(42):30707–30717. doi:10.1074/jbc.M702607200
  • Banerjee RR, Cyphert HA, Walker EM, et al. Gestational diabetes mellitus from inactivation of prolactin receptor and MafB in Islet beta-Cells. Diabetes. 2016;65(8):2331–2341. doi:10.2337/db15-1527
  • Arumugam R, Fleenor D, Freemark M. Knockdown of prolactin receptors in a pancreatic beta cell line: effects on DNA synthesis, apoptosis, and gene expression. Endocrine. 2014;46(3):568–576. doi:10.1007/s12020-013-0073-1
  • Nteeba J, Kubota K, Wang W, et al. Pancreatic prolactin receptor signaling regulates maternal glucose homeostasis. J Endocrinol. 2019;241(1):71–83. doi:10.1530/JOE-18-0518
  • Demirci C, Ernst S, Alvarez-Perez JC, et al. Loss of HGF/c-Met signaling in pancreatic beta-cells leads to incomplete maternal beta-cell adaptation and gestational diabetes mellitus. Diabetes. 2012;61(5):1143–1152.
  • Kim H, Toyofuku Y, Lynn FC, et al. Serotonin regulates pancreatic beta cell mass during pregnancy. Nat Med. 2010;16(7):804–808. doi:10.1038/nm.2173
  • Martin-Montalvo A, Lopez-Noriega L, Jimenez-Moreno C, et al. Transient PAX8 expression in Islets during pregnancy correlates with beta-cell survival, revealing a novel candidate gene in gestational diabetes mellitus. Diabetes. 2019;68(1):109–118. doi:10.2337/db18-0285
  • Pasek RC, Gannon M. Advancements and challenges in generating accurate animal models of gestational diabetes mellitus. Am J Physiol Endocrinol Metab. 2013;305(11):E1327–E1338. doi:10.1152/ajpendo.00425.2013
  • Moore MC, Menon R, Coate KC, et al. Diet-induced impaired glucose tolerance and gestational diabetes in the dog. J Appl Physiol. 2011;110(2):458–467. doi:10.1152/japplphysiol.00768.2010
  • Ford SP, Zhang L, Zhu M, et al. Maternal obesity accelerates fetal pancreatic β-cell but not α-cell development in sheep: prenatal consequences. Am J Physiol Regul Integr Comp Physiol. 2009;297(3):R835–R843. doi:10.1152/ajpregu.00072.2009
  • Dickinson JE, Meyer BA, Chmielowiec S, Palmer SM. Streptozocin-induced diabetes mellitus in the pregnant ewe. Am J Obstet Gynecol. 1991;165(6 Pt 1):1673–1677. doi:10.1016/0002-9378(91)90013-H
  • Miodovnik M, Mimouni F, Berk M, Clark KE. Alloxan-induced diabetes mellitus in the pregnant ewe: metabolic and cardiovascular effects on the mother and her fetus. Am J Obstet Gynecol. 1989;160(5 Pt 1):1239–1244. doi:10.1016/0002-9378(89)90203-2
  • Lips JP, Jongsma HW, Eskes TK. Alloxan-induced diabetes mellitus in pregnant sheep and chronic fetal catheterization. Lab Anim. 1988;22(1):16–22. doi:10.1258/002367788780746638
  • Ramsay TG, Wolverton CK, Steele NC. Alteration in IGF-I mRNA content of fetal swine tissues in response to maternal diabetes. Am J Physiol. 1994;267(5 Pt 2):R1391–R1396.
  • Ezekwe MO, Ezekwe EI, Sen DK, Ogolla F. Effects of maternal streptozotocin-diabetes on fetal growth, energy reserves and body composition of newborn pigs. J Anim Sci. 1984;59(4):974–980. doi:10.2527/jas1984.594974x
  • Ryan EA, Tobin BW, Tang J, Finegood DT. A new model for the study of mild diabetes during pregnancy. Syngeneic islet-transplanted STZ-induced diabetic rats. Diabetes. 1993;42(2):316–323. doi:10.2337/diab.42.2.316
  • Damasceno DC, Netto AO, Iessi IL, et al. Streptozotocin-induced diabetes models: pathophysiological mechanisms and fetal outcomes. Biomed Res Int. 2014;2014:819065. doi:10.1155/2014/819065
  • American Diabetes Association. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes–2020. Diabetes Care. 2020;43(Suppl1):S14–s31. doi:10.2337/dc20-S002
  • ACOG Practice Bulletin No. 190: Gestational Diabetes Mellitus. Obstet Gynecol. 2018;131(2):e49–e64.
  • Hod M, Kapur A, Sacks DA, et al. The International Federation of Gynecology and Obstetrics (FIGO) Initiative on gestational diabetes mellitus: A pragmatic guide for diagnosis, management, and care. Int J Gynaecol Obstet. 2015;131 Suppl 3:S173–S211.
  • Metzger BE, Gabbe SG, Persson B, et al. International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care. 2010;33(3):676–682.
  • Diagnostic criteria and classification of hyperglycaemia first detected in pregnancy: a World Health Organization Guideline. Diabetes Res Clin Pract. 2014;103(3):341–363.
  • Society. CD. Guidelines for the prevention and control of type 2 diabetes in China (2017 Edition). Chin J Pract Intern Med. 2018;38 (4):292–344.
  • endocrinology Cso. Experts consensus on management of glycemic variability of diabetes mellitus. Drug Evaluation. 2017;014(17):5–8,14.