87
Views
6
CrossRef citations to date
0
Altmetric
Original Research

Renoprotective Effect of Formononetin by Suppressing Smad3 Expression in Db/Db Mice

, , , ORCID Icon &
Pages 3313-3324 | Published online: 28 Sep 2020

References

  • Lovisa S, Zeisberg M, Kalluri R. Partial epithelial-to-mesenchymal transition and other new mechanisms of kidney fibrosis. Trends Endocrinol Metab. 2016;27(10):681–695. doi:10.1016/j.tem.2016.06.004
  • Marshall CB. Rethinking glomerular basement membrane thickening in diabetic nephropathy: adaptive or pathogenic? Am J Physiol Renal Physiol. 2016;311(5):F831–F843. doi:10.1152/ajprenal.00313.2016
  • Liu YW, Hao YC, Chen YJ, et al. Protective effects of sarsasapogenin against early stage of diabetic nephropathy in rats. Phytother Res. 2018;32(8):1574–1582. doi:10.1002/ptr.6088
  • Sun J, Wang Y, Cui W, et al. Role of epigenetic histone modifications in diabetic kidney disease involving renal fibrosis. J Diabetes Res. 2017;2017:7242384. doi:10.1155/2017/7242384
  • Wei Z, Cao J, Zhang X, Yin D, Xu D, Lu G. EPA attenuates epithelial-mesenchymal transition and fibrosis through the TGF-β1/Smad3/ILK pathway in renal tubular epithelial HK-2 cells by up-regulating miR-541. Int J Clin Exp Pathol. 2019;12(7):2516–2525.
  • Jin Z, Gu C, Tian F, Jia Z, Yang J. NDRG2 knockdown promotes fibrosis in renal tubular epithelial cells through TGF-β1/Smad3 pathway. Cell Tissue Res. 2017;369(3):603–610. doi:10.1007/s00441-017-2643-7
  • Feng M, Tang PM, Huang XR, et al. TGF-β mediates renal fibrosis via the Smad3-Erbb4-IR long noncoding RNA axis. Mol Ther. 2018;26(1):148–161. doi:10.1016/j.ymthe.2017.09.024
  • Peng H, Li Y, Wang C, et al. ROCK1 induces endothelial-to-mesenchymal transition in glomeruli to aggravate albuminuria in diabetic nephropathy. Sci Rep. 2016;6(1):20304. doi:10.1038/srep20304
  • Zhao L, Zhao J, Wang X, et al. Serum response factor induces endothelial-mesenchymal transition in glomerular endothelial cells to aggravate proteinuria in diabetic nephropathy. Physiol Genomics. 2016;48(10):711–718. doi:10.1152/physiolgenomics.00082.2016
  • Daehn IS. Glomerular endothelial cell stress and cross-talk with podocytes in early [corrected] diabetic kidney disease. Front Med (Lausanne). 2018;5:76. doi:10.3389/fmed.2018.00076
  • Smith BN, Bhowmick NA. Role of EMT in metastasis and therapy resistance. J Clin Med. 2016;5(2):17. doi:10.3390/jcm5020017
  • Yu CH, Suriguga GM, Liu WJ, et al. High glucose induced endothelial to mesenchymal transition in human umbilical vein endothelial cell. Exp Mol Pathol. 2017;102(3):377–383. doi:10.1016/j.yexmp.2017.03.007
  • Song S, Qiu D, Luo F, et al. Knockdown of NLRP3 alleviates high glucose or TGFB1-induced EMT in human renal tubular cells. J Mol Endocrinol. 2018;61(3):101–113. doi:10.1530/JME-18-0069
  • Zhan J, Liu M, Pan L, He L, Guo Y. Oxidative stress and TGF-β1/smads signaling are involved in Rosa roxburghii fruit extract alleviating renal fibrosis. Evid Based Complement Alternat Med. 2019;2019:4946580. doi:10.1155/2019/4946580
  • Wang T, Li Y, Chen J, Xie L, Xiao T. TGF-β1/Smad3 signaling promotes collagen synthesis in pulmonary artery smooth muscle by down-regulating miR-29b. Int J Clin Exp Pathol. 2018;11(12):5592–5601.
  • Wu Y, Wang L, Wang X, Wang Y, Zhang Q, Liu W. Renalase contributes to protection against renal fibrosis via inhibiting oxidative stress in rats. Int Urol Nephrol. 2018;50(7):1347–1354. doi:10.1007/s11255-018-1820-2
  • Wu X, Guan Y, Yan J, et al. ShenKang injection suppresses kidney fibrosis and oxidative stress via transforming growth factor-β/Smad3 signalling pathway in vivo and in vitro. J Pharm Pharmacol. 2015;67(8):1054–1065. doi:10.1111/jphp.12412
  • Montorfano I, Becerra A, Cerro R, et al. Oxidative stress mediates the conversion of endothelial cells into myofibroblasts via a TGF-β1 and TGF-β2-dependent pathway. Lab Invest. 2014;94(10):1068–1082. doi:10.1038/labinvest.2014.100
  • Qiu L, Ye H, Chen L, Hong Y, Zhong F, Zhang T. Red clover extract ameliorates dyslipidemia in streptozotocin-induced diabetic C57BL/6 mice by activating hepatic PPARα. Phytother Res. 2012;26(6):860–864. doi:10.1002/ptr.3641
  • Lai PK, Chan JY, Cheng L, et al. Isolation of anti-inflammatory fractions and compounds from the root of astragalus membranaceus. Phytother Res. 2013;27(4):581–587. doi:10.1002/ptr.4759
  • Jia WC, Liu G, Zhang CD, Zhang SP. Formononetin attenuates hydrogen peroxide (H2O2)-induced apoptosis and NF-κB activation in RGC-5 cells. Eur Rev Med Pharmacol Sci. 2014;18(15):2191–2197.
  • Oza MJ, Kulkarni YA. Formononetin treatment in type 2 diabetic rats reduces insulin resistance and hyperglycemia. Front Pharmacol. 2018;9:739. doi:10.3389/fphar.2018.00739
  • Oza MJ, Kulkarni YA. Formononetin attenuates kidney damage in type 2 diabetic rats. Life Sci. 2019;219:109–121. doi:10.1016/j.lfs.2019.01.013
  • Do MH, Hur J, Choi J, Kim Y, Park HY, Ha SK. Spatholobus suberectus ameliorates diabetes-induced renal damage by suppressing advanced glycation end products in db/db mice. Int J Mol Sci. 2018;19(9):2774. doi:10.3390/ijms19092774
  • Zhou Z, Zhou X, Dong Y, Li M, Xu Y. Formononetin ameliorates high glucose-induced endothelial dysfunction by inhibiting the JAK/STAT signaling pathway. Mol Med Rep. 2019;20(3):2893–2901. doi:10.3892/mmr.2019.10512
  • Zar Kalai F, Han J, Ksouri R, Abdelly C, Isoda H. Oral administration of nitraria retusa ethanolic extract enhances hepatic lipid metabolism in db/db mice model through the modulation of balance. Food Chem Toxicol. 2014;72:247–256. doi:10.1016/j.fct.2014.07.029
  • Senturk B, Demircan BM, Ozkan AD, et al. Diabetic wound regeneration using heparin-mimetic peptide amphiphile gel in db/db mice. Biomater Sci. 2017;5(7):1293–1303. doi:10.1039/C7BM00251C
  • Pei F, Li BY, Zhang Z, et al. Beneficial effects of phlorizin on diabetic nephropathy in diabetic db/db mice. J Diabetes Complications. 2014;28(5):596–603. doi:10.1016/j.jdiacomp.2014.04.010
  • Jia ZH, Liu ZH, Zheng JM, Zeng CH, Li LS. Combined therapy of rhein and benazepril on the treatment of diabetic nephropathy in db/db mice. Exp Clin Endocrinol Diabetes. 2007;115(9):571–576. doi:10.1055/s-2007-981469
  • Eisenreich A, Leppert U. Update on the protective renal effects of metformin in diabetic nephropathy. Curr Med Chem. 2017;24(31):3397–3412. doi:10.2174/0929867324666170404143102
  • Ravindran S, Kuruvilla V, Wilbur K, Munusamy S. Nephroprotective effects of metformin in diabetic nephropathy. J Cell Physiol. 2017;232(4):731–742. doi:10.1002/jcp.25598
  • Wang J, Wang L, Zhou J, Qin A, Chen Z. The protective effect of formononetin on cognitive impairment in streptozotocin (STZ)-induced diabetic mice. Biomed Pharmacother. 2018;106:1250–1257. doi:10.1016/j.biopha.2018.07.063
  • Nie T, Zhao S, Mao L, et al. The natural compound, formononetin, extracted from astragalus membranaceus increases adipocyte thermogenesis by modulating PPARγ activity. Br J Pharmacol. 2018;175(9):1439–1450. doi:10.1111/bph.14139
  • Einbinder Y, Ohana M, Benchetrit S, et al. Glucagon-like peptide-1 and vitamin D: anti-inflammatory response in diabetic kidney disease in db/db mice and in cultured endothelial cells. Diabetes Metab Res Rev. 2016;32(8):805–815. doi:10.1002/dmrr.2801
  • Mima A. Renal protection by sodium-glucose cotransporter 2 inhibitors and its underlying mechanisms in diabetic kidney disease. J Diabetes Complications. 2018;32(7):720–725. doi:10.1016/j.jdiacomp.2018.04.011
  • Liu Y, Dai W, Ye S. The olive constituent oleuropein exerts nephritic protective effects on diabetic nephropathy in db/db mice. Arch Physiol Biochem. 2019;1–8. doi:10.1080/13813455.2019.1691603
  • Yaribeygi H, Sathyapalan T, Atkin SL, Sahebkar A. Molecular mechanisms linking oxidative stress and diabetes mellitus. Oxid Med Cell Longev. 2020;2020:8609213. doi:10.1155/2020/8609213
  • Singh P, Prasad SM. Antioxidant enzyme responses to the oxidative stress due to chlorpyrifos, dimethoate and dieldrin stress in palak (Spinacia oleracea L.) and their toxicity alleviation by soil amendments in tropical croplands. Sci Total Environ. 2018;630:839–848. doi:10.1016/j.scitotenv.2018.02.203
  • Nikolic-Paterson DJ, Wang S, Lan HY. Macrophages promote renal fibrosis through direct and indirect mechanisms. Kidney Int Suppl. 2014;4(1):34–38. doi:10.1038/kisup.2014.7
  • Zhao JH. Mesangial cells and renal fibrosis. Adv Exp Med Biol. 2019;1165:165–194.
  • Huang S, Liu F, Niu Q, et al. GLIPR-2 overexpression in HK-2 cells promotes cell EMT and migration through ERK1/2 activation. PLoS One. 2013;8(3):e58574. doi:10.1371/journal.pone.0058574
  • Bai X, He T, Liu J, et al. Loureirin B inhibits fibroblast proliferation and extracellular matrix deposition in hypertrophic scar via TGF-β/Smad pathway. Exp Dermatol. 2015;24(5):355–360. doi:10.1111/exd.12665
  • McGrath JC, Lilley E. Implementing guidelines on reporting research using animals (ARRIVE etc.): new requirements for publication in BJP. Br J Pharmacol. 2015;172(13):3189–3193. doi:10.1111/bph.12955