86
Views
4
CrossRef citations to date
0
Altmetric
Original Research

ANGPTL8 Gene Polymorphism rs2278426 Is Related to Carotid Intima–Media Thickness in T2DM

ORCID Icon, , , , , , , , , , , , & show all
Pages 4519-4528 | Published online: 20 Nov 2020

References

  • Kahn SE. Clinical review 135: the importance of beta-cell failure in the development and progression of type 2 diabetes. J Clin Endocrinol Metab. 2001;86(9):4047–4058. doi:10.1210/jcem.86.9.7713
  • Carracher AM, Marathe PH, Close KL. International Diabetes Federation 2017. J Diabetes. 2018;10(5):353–356. doi:10.1111/1753-0407.12644
  • NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants [published correction appears in Lancet. 2017 Feb 4;389(10068):e2]. Lancet. 2016;387(10027):1513–1530. doi:10.1016/S0140-6736(16)00618-8.
  • Beckman JA, Creager MA, Libby P. Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA. 2002;287(19):2570–2581. doi:10.1001/jama.287.19.2570
  • Vamos EP, Millett C, Parsons C, et al. Nationwide study on trends in hospital admissions for major cardiovascular events and procedures among people with and without diabetes in England, 2004–2009. Diabetes Care. 2012;35(2):265–272. doi:10.2337/dc11-1682
  • Pignoli P, Tremoli E, Poli A, et al. Intimal plus medial thickness of the arterial wall: a direct measurement with ultrasound imaging. Circulation. 1986;74(6):1399–1406. doi:10.1161/01.cir.74.6.1399
  • Wikstrand J. Methodological considerations of ultrasound measurement of carotid artery intima-media thickness and lumen diameter. Clin Physiol Funct Imaging. 2007;27(6):341–345. doi:10.1111/j.1475-097X.2007.00757.x
  • Bots ML, Mulder PG, Hofman A, et al. Reproducibility of carotid vessel wall thickness measurements. The Rotterdam Study. J Clin Epidemiol. 1994;47(8):921–930. doi:10.1016/0895-4356(94)90196-1
  • Persson J, Formgren J, Israelsson B, et al. Ultrasound-determined intima-media thickness and atherosclerosis. Direct and indirect validation. Arterioscler Thromb. 1994;14(2):261–264. doi:10.1161/01.atv.14.2.261
  • Espeland MA, Craven TE, Riley WA, et al. Reliability of longitudinal ultrasonographic measurements of carotid intimal-medial thicknesses. Asymptomatic Carotid Artery Progression Study Research Group. Stroke. 1996;27(3):480–485. doi:10.1161/01.str.27.3.480
  • Coskun U, Yildiz A, Esen OB, et al. Relationship between carotid intima-media thickness and coronary angiographic findings: a prospective study. Cardiovasc Ultrasound. 2009;7:59. doi:10.1186/1476-7120-7-59
  • Geroulakos G, O’Gorman DJ, Kalodiki E, et al. The carotid intima-media thickness as a marker of the presence of severe symptomatic coronary artery disease. Eur Heart J. 1994;15(6):781–785. doi:10.1093/oxfordjournals.eurheartj.a060585
  • Crouse JR, Toole JF, McKinney WM, et al. Risk factors for extracranial carotid artery atherosclerosis. Stroke. 1987;18(6):990–996. doi:10.1161/01.str.18.6.990
  • Poli A, Tremoli E, Colombo A, et al. Ultrasonographic measurement of the common carotid artery wall thickness in hypercholesterolemic patients. A new model for the quantitation and follow-up of preclinical atherosclerosis in living human subjects. Atherosclerosis. 1988;70(3):253–261. doi:10.1016/0021-9150(88)90176-1
  • Tell GS, Howard G, McKinney WM. Risk factors for site specific extracranial carotid artery plaque distribution as measured by B-mode ultrasound. J Clin Epidemiol. 1989;42(6):551–559. doi:10.1016/0895-4356(89)90151-0
  • Salonen R, Salonen JT. Progression of carotid atherosclerosis and its determinants: a population-based ultrasonography study. Atherosclerosis. 1990;81(1):33–40. doi:10.1016/0021-9150(90)90056-o
  • Salonen R, Salonen JT. Carotid atherosclerosis in relation to systolic and diastolic blood pressure: kuopio Ischaemic Heart Disease Risk Factor Study. Ann Med. 1991;23(1):23–27. doi:10.3109/07853899109147926
  • Taskinen MR, Borén J. New insights into the pathophysiology of dyslipidemia in type 2 diabetes. Atherosclerosis. 2015;239(2):483–495. doi:10.1016/j.atherosclerosis.2015.01.039
  • Taskinen MR. Type 2 diabetes as a lipid disorder. Curr Mol Med. 2005;5(3):297–308. doi:10.2174/1566524053766086
  • Chapman MJ, Ginsberg HN, Amarenco P, et al. Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management. Eur Heart J. 2011;32(11):1345–1361. doi:10.1093/eurheartj/ehr112
  • Isomaa B, Almgren P, Tuomi T, et al. Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care. 2001;24(4):683–689. doi:10.2337/diacare.24.4.683
  • Nichols GA, Hillier TA, Erbey JR, et al. Congestive heart failure in type 2 diabetes: prevalence, incidence, and risk factors. Diabetes Care. 2001;24(9):1614–1619. doi:10.2337/diacare.24.9.1614
  • Ma X, Lu R, Gu N, et al. Polymorphisms in the glucagon-like peptide 1 receptor (GLP-1R) gene are associated with the risk of coronary artery disease in chinese han patients with type 2 diabetes mellitus: a case-control study. J Diabetes Res. 2018;2018:1054192. doi:10.1155/2018/1054192
  • Ezhilarasi K, Dhamodharan U, Vijay V. BSMI single nucleotide polymorphism in vitamin D receptor gene is associated with decreased circulatory levels of serum 25-hydroxyvitamin D among micro and macrovascular complications of type 2 diabetes mellitus. Int J Biol Macromol. 2018;116:346–353. doi:10.1016/j.ijbiomac.2018.05.026
  • Hanson RL, Leti F, Tsinajinnie D, et al. The Arg59Trp variant in ANGPTL8 (betatrophin) is associated with total and HDL-cholesterol in American Indians and Mexican Americans and differentially affects cleavage of ANGPTL3. Mol Genet Metab. 2016;118(2):128–137. doi:10.1016/j.ymgme.2016.04.007
  • Liu J, Yagi K, Nohara A, et al. High frequency of type 2 diabetes and impaired glucose tolerance in Japanese subjects with the angiopoietin-like protein 8 R59W variant. J Clin Lipidol. 2018;12(2):331–337. doi:10.1016/j.jacl.2017.12.011
  • Dang F, Wu R, Wang P, et al. Fasting and feeding signals control the oscillatory expression of angptl8 to modulate lipid metabolism. Sci Rep. 2016;6:36926. doi:10.1038/srep36926
  • Zhang R, Abou-Samra AB. A dual role of lipasin (betatrophin) in lipid metabolism and glucose homeostasis: consensus and controversy. Cardiovasc Diabetol. 2014;13:133. doi:10.1186/s12933-014-0133-8
  • Ren G, Kim JY, Smas CM. Identification of RIFL, a novel adipocyte-enriched insulin target gene with a role in lipid metabolism. Am J Physiol Endocrinol Metab. 2012;303(3):E334–51. doi:10.1152/ajpendo.00084.2012
  • Stephens JM. RIFL aims to be a new player in lipid metabolism. Am J Physiol Endocrinol Metab. 2012;303(3):E332–3. doi:10.1152/ajpendo.00169.2012
  • Zhang R. Lipasin, a novel nutritionally-regulated liver-enriched factor that regulates serum triglyceride levels. Biochem Biophys Res Commun. 2012;424(4):786–792. doi:10.1016/j.bbrc.2012.07.038
  • Rong Guo X, Li Wang X, Chen Y, et al. ANGPTL8/betatrophin alleviates insulin resistance via the Akt-GSK3β or Akt-FoxO1 pathway in HepG2 cells. Exp Cell Res. 2016;345(2):158–167. doi:10.1016/j.yexcr.2015.09.012
  • Hu H, Sun W, Yu S, et al. Increased circulating levels of betatrophin in newly diagnosed type 2 diabetic patients. Diabetes Care. 2014;37(10):2718–2722. doi:10.2337/dc14-0602
  • Chen X, Lu P, He W, et al. Circulating betatrophin levels are increased in patients with type 2 diabetes and associated with insulin resistance. J Clin Endocrinol Metab. 2015;100(1):E96–100. doi:10.1210/jc.2014-2300
  • Ebert T, Kralisch S, Hoffmann A, et al. Circulating angiopoietin-like protein 8 is independently associated with fasting plasma glucose and type 2 diabetes mellitus. J Clin Endocrinol Metab. 2014;99(12):E2510–7. doi:10.1210/jc.2013-4349
  • Chen CC, Susanto H, Chuang WH, et al. Higher serum betatrophin level in type 2 diabetes subjects is associated with urinary albumin excretion and renal function. Cardiovasc Diabetol. 2016;15:3. doi:10.1186/s12933-015-0326-9
  • Wang YY, Zhang D, Jiang ZY, et al. Positive association between betatrophin and diabetic retinopathy risk in type 2 diabetes patients. Horm Metab Res. 2016;48(3):169–173. doi:10.1055/s-0035-1550009
  • Yin Y, Ding X, Peng L, et al. Increased serum ANGPTL8 concentrations in patients with prediabetes and type 2 diabetes. J Diabetes Res. 2017;2017:8293207. doi:10.1155/2017/8293207
  • Shimamura M, Matsuda M, Kobayashi S, et al. Angiopoietin-like protein 3, a hepatic secretory factor, activates lipolysis in adipocytes. Biochem Biophys Res Commun. 2003;301(2):604–609. doi:10.1016/s0006-291x(02)03058-9
  • Ye J, Qin Y, Wang D, et al. The relationship between circulating ANGPTL8/betatrophin concentrations and adult obesity: a meta-analysis. Dis Markers. 2019;2019:5096860. doi:10.1155/2019/5096860
  • El-Lebedy D. Interaction between endothelial nitric oxide synthase rs1799983, cholesteryl ester-transfer protein rs708272 and angiopoietin-like protein 8 rs2278426 gene variants highly elevates the risk of type 2 diabetes mellitus and cardiovascular disease. Cardiovasc Diabetol. 2018;17(1):97. doi:10.1186/s12933-018-0742-8
  • Fu Z, Berhane F, Fite A, et al. Elevated circulating lipasin/betatrophin in human type 2 diabetes and obesity. Sci Rep. 2014;4:5013. doi:10.1038/srep05013
  • Espes D, Martinell M, Carlsson PO. Increased circulating betatrophin concentrations in patients with type 2 diabetes. Int J Endocrinol. 2014;2014:323407. doi:10.1155/2014/323407
  • Trebotic LK, Klimek P, Thomas A, et al. Circulating betatrophin is strongly increased in pregnancy and gestational diabetes mellitus. PLoS One. 2015;10(9):e0136701. doi:10.1371/journal.pone.0136701
  • Ebert T, Kralisch S, Wurst U, et al. Betatrophin levels are increased in women with gestational diabetes mellitus compared to healthy pregnant controls. Eur J Endocrinol. 2015;173(1):1–7. doi:10.1530/EJE-14-0815
  • Luo D, Chen X, Yang W, et al. Angiopoietin-like 8 improves insulin resistance and attenuates adipose tissue inflammation in diet-induced obese mice. Exp Clin Endocrinol Diabetes. 2020;128(5):290–296. doi:10.1055/a-0725-7897
  • Mamputu JC, Desfaits AC, Renier G. Lipoprotein lipase enhances human monocyte adhesion to aortic endothelial cells. J Lipid Res. 1997;38(9):1722–1729.
  • Mamputu JC, Levesque L, Renier G. Proliferative effect of lipoprotein lipase on human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2000;20(10):2212–2219. doi:10.1161/01.atv.20.10.2212
  • Kovrov O, Kristensen KK, Larsson E, et al. On the mechanism of angiopoietin-like protein 8 for control of lipoprotein lipase activity. J Lipid Res. 2019;60(4):783–793. doi:10.1194/jlr.M088807
  • Abu-Farha M, Melhem M, Abubaker J, et al. ANGPTL8/Betatrophin R59W variant is associated with higher glucose level in non-diabetic Arabs living in Kuwaits. Lipids Health Dis. 2016;15:26. doi:10.1186/s12944-016-0195-6
  • Ghasemi H, Karimi J, Khodadadi I, et al. Association between rs2278426 (C/T) and rs892066 (C/G) variants of ANGPTL8 (betatrophin) and susceptibility to type2 diabetes mellitus. J Clin Lab Anal. 2019;33(1):e22649. doi:10.1002/jcla.22649