216
Views
6
CrossRef citations to date
0
Altmetric
Review

Toll-like Receptors as a Potential Drug Target for Diabetes Mellitus and Diabetes-associated Complications

ORCID Icon
Pages 4763-4777 | Published online: 04 Dec 2020

References

  • American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2012;35(Supplement_1):S64–71. doi:10.2337/dc12-s064
  • Ganie MA, Kotwal S. Recent advances in management of diabetes mellitus. JIMSA. 2012;25(3):171–175.
  • Piero MN, Nzaro GM, Njagi JM. Diabetes mellitus – a devastating metabolic disorder. AJBPS. 2014;4(40):1–7. doi:10.15272/ajbps.v4i40.645
  • Whiting DR, Guariguata L, Weil C, Shaw J. IDF diabetes atlas: global estimates of prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract. 2011;94(3):311–321. doi:10.1016/j.diabres.2011.10.029
  • Paul D, Paul K. Diabetes mellitus and its complications: a review. Int J Curr Pharm Res. 2012;4(2):12–17.
  • Sayin N, Kara N, Pekel G. Ocular complications of diabetes mellitus. Ocular complications of diabetes mellitus. World J Diabetes. 2015;6(1):92–108. doi:10.4239/wjd.v6.i1.92
  • Umanath K, Lewis JB. Update on diabetic nephropathy: core curriculum. Am J Kidney Dis. 2018;71(6):884–895. doi:10.1053/j.ajkd.2017.10.026
  • Syafril S. Pathophysiology diabetic foot ulcer. Earth Environ Sci. 2018;125.
  • Virella G, Maria F, Lopes-Virella MF. The role of the immune system in the pathogenesis of diabetic complications. Front Pharmacol. 2014;5(126).
  • Forouhi NG, Wareham NJ. Epidemiology of diabetes. Medicine. 2014;12(42):698–702. doi:10.1016/j.mpmed.2014.09.007
  • Mulatu HA, Bayisa T, Berhe T, Woldeyes E. Pattern of antihypertensive treatment and blood pressure control among diabetic outpatients in Addis Ababa, Ethiopia. J Diabetes Metab. 2017;8(4):1–4. doi:10.4172/2155-6156.1000738
  • Tracey ML, Gilmartin M, O’Neill K, et al. Epidemiology of diabetes and complications among adults in the Republic of Ireland 1998–2015: a systematic review and meta-analysis. BMC Public Health. 2016;16(1).
  • Bos M, Agyemang C. Prevalence and complications of diabetes mellitus in Northern Africa, a systematic review. BMC Public Health. 2013;3(1).
  • Nigatu T. Epidemiology, complications and management of diabetes in Ethiopia: a systematic review. J Diabetes. 2012;4(2):174–180.
  • Sakthiswary R, Zakaria Z, Das S. Diabetes mellitus: treatment challenges and the role of some herbal therapies. Middle East J Sci Res. 2014;20(7):786–798.
  • Obimba KC, Belonwu CD, Eziuzor CS. Prophylaxis and treatment of types 1 and 2 diabetes mellitus. Int J Dis Disord. 2014;2(6):065–073.
  • Scheen A, Paquot N. Metformin revisited: a critical review of the benefit–risk balance in at-risk patients with type 2 diabetes. Diabetes Metab. 2013;39(3):179–190. doi:10.1016/j.diabet.2013.02.006
  • Mihailova S, Tsvetkova A, Todorova A. Pharmacological trends in the treatment of diabetes type II: new classes of antidiabetic drugs. Int Arch Med. 2015;2(4):223–228.
  • Pino SC, Kruger AJ, Bortell R. The role of innate immune pathways in type 1 diabetes pathogenesis. Curr Opin Endocrinol Diabetes Obes. 2010;17(2):126–130. doi:10.1097/MED.0b013e3283372819
  • Massimo P, Julie MS, Patrick WN, George SE. Primer: immunity and autoimmunity. Diabetes. 2008;57(11):2872–2882. doi:10.2337/db07-1691
  • Cen X, Liu S, Cheng K. The role of toll-like receptor in inflammation and tumor immunity. Front Pharmacol. 2018;9(878). doi:10.3389/fphar.2018.00878
  • Lee MS. Role of innate immunity in diabetes and metabolism: recent progress in the study of inflammasomes. Immune Netw. 2011;11(2):95–99. doi:10.4110/in.2011.11.2.95
  • Tong Zhou T, Hu Z, Yang S, Sun L, Yu Z, Wang G. Role of adaptive and innate immunity in type 2 diabetes mellitus. J Diabetes Res. 2018;2018:1–9. doi:10.1155/2018/7457269
  • Goldberg RB. Cytokine and cytokine-like inflammation markers, endothelial dysfunction, and imbalanced coagulation in development of diabetes and its complications. J Clin Endocrinol Metab. 2009;94(9):3171–3182.
  • Kolb H, Herrath MV. Immunotherapy for type 1 diabetes: why do current protocols not halt the underlying disease process? Cell Metab. 2017;25(2):233–241. doi:10.1016/j.cmet.2016.10.009
  • Ludvigsson J. Therapies to preserve b-cell function in type 1 diabetes. Drugs. 2016;76:169–185.
  • De Candia P, Prattichizzo F, Garavelli S, et al.Type 2 diabetes: how much of an autoimmune disease? Front Endocrinol (Lausanne). 2019;10(451):1–14.
  • Bianca K, Thomas M. Stulniga, autoimmune aspects of type 2 diabetes mellitus – a mini-review. Gerontology. 2014;60(3):189–196. doi:10.1159/000356747
  • Piero NM, Murugi NJ, Okoth OR, et al. Prevention of type i diabetes mellitus: the role of immune interventions. J Clin Cell Immunol. 2012;S2:005.
  • Kawasaki T, Taro Kawai T. Toll-like receptor signaling pathways. Front Immunol. 2014;5(461):1–8.
  • Jialal I, Kaur H, Devaraj S. Toll-like receptor status in obesity and metabolic syndrome: a translational perspective. J Clin Endocrinol Metab. 2014;99(1):39–48. doi:10.1210/jc.2013-3092
  • El-Zayat SR, Sibaii H, Mannaa FA. Toll-like receptors activation, signaling, and targeting: an overview. Bull Natl Res Cent. 2019;43(187):1–12. doi:10.1186/s42269-019-0227-2
  • Adamczak DM. The role of toll-like receptors and vitamin D in cardiovascular diseases—a review. Int J Mol Sci. 2017;18(2252):1–23. doi:10.3390/ijms18112252
  • Bazi A. Toll-like receptors and targeted therapy in diabetes mellitus. Int J Basic Sci Med. 2017;2(2):71–72.
  • Meredith JH, Hutton GS, Johnson JD, Bruce Verchere C. Role of the TLR signaling molecule TRIF in β-cell function and glucose homeostasis. Islets. 2010;2(2):104–111. doi:10.4161/isl.2.2.11209
  • Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest. 2006;116(11):3015–3025. doi:10.1172/JCI28898
  • Bollyky PL, Bice JB, Sweet IR, et al. The toll-like receptor signaling molecule Myd88 contributes to pancreatic beta-cell homeostasis in response to injury. PLoS One. 2009;4(4):5063. doi:10.1371/journal.pone.0005063
  • Vivot K, Langlois A, Bietiger W, et al. Pro-inflammatory and pro-oxidant status of pancreatic islet in vitro is controlled by TLR-4 and HO-1 pathways. PLoS One. 2014;9(10):e107656.
  • Wen L, Peng J, Li Z, Wong FS. The effect of innate immunity on autoimmune diabetes and the expression of Toll-like receptors on pancreatic islets. J Immunol. 2004;172(5):3173–3180. doi:10.4049/jimmunol.172.5.3173
  • Vives-Pi M, Somoza N, Fernandez-Alvarez J, et al. Evidence of expression of endotoxin receptors CD14, toll-like receptors TLR4 and TLR2 and associated molecule MD-2 and of sensitivity to endotoxin (LPS) in islet beta cells. Clin Exp Immunol. 2003;133(2):208–218. doi:10.1046/j.1365-2249.2003.02211.x
  • Goldberg A, Parolini M, Chin BY, et al. Toll-like receptor 4 suppression leads to islet allograft survival. FASEB J. 2007;21(11):2840–2848. doi:10.1096/fj.06-7910com
  • Kim HS, Han MS, Chung KW, Kim S, Kim E. Toll-like receptor 2 senses b cell death and contributes to the initiation of autoimmune diabetes. Immunity. 2007;27(2):321–333. doi:10.1016/j.immuni.2007.06.010
  • Alibashe-Ahmed M, Berney T, Giovannoni L, Berishvili E. Targeting toll-like receptor 4: a promising strategy to prevent type 1 diabetes occurrence or recurrence. CellR4. 2020;8:e2850.
  • Schulthess FT, Paroni F, Sauter NS, et al. CXCL10 impairs β cell function and viability in diabetes through TLR4 signaling. Cell Metab. 2009;9(2):125–139. doi:10.1016/j.cmet.2009.01.003
  • Alibashe-Ahmed M, Brioudes E, Reith W, Bosco D, Berney T. Toll-like receptor 4 inhibitions prevents autoimmune diabetes in NOD mice. Sci Rep. 2019;9(1):19350. doi:10.1038/s41598-019-55521-z
  • Ji Y, Sun S, Shrestha N, Darragh LB, Shirakawa J. Toll-like receptors TLR2 and TLR4 block the replication of pancreatic β cells in diet-induced obesity. Nat Immunol. 2019;20(6):677–686.
  • Himes RW, Smith CW. Tlr2 is critical for diet-induced metabolic syndrome in a murine model. FASEB J. 2010;24(3):731–739. doi:10.1096/fj.09-141929
  • Razolli DS, Moraes JC, Morari J, et al. TLR4 expression in bone marrow-derived cells is both necessary and sufficient to produce the insulin resistance phenotype in diet-induced obesity. Endocrinology. 2015;156(1):103–113. doi:10.1210/en.2014-1552
  • Vila IK, Badin P-M, Marques M-A, et al. Immune cell Toll-like receptor 4 mediates the development of obesity- and endotoxemia-associated adipose tissue fibrosis. Cell Rep. 2014;7(4):1116–1129. doi:10.1016/j.celrep.2014.03.062
  • Jia L, Vianna CR, Fukuda M, et al. Hepatocyte toll-like receptor 4 regulates obesity-induced inflammation and insulin resistance. Nat Commun. 2014;5(1):3878. doi:10.1038/ncomms4878
  • Lee CC, Avalos AM, Ploegh HL. Accessory molecules for toll-like receptors and their function. Nat Rev Immunol. 2012;12:168–179.
  • McKernan K, Varghese M, Patel R, Singer K. Role of TLR4 in the induction of inflammatory changes in adipocytes and macrophages. Adipocyte. 2020;9(1):212–222. doi:10.1080/21623945.2020.1760674
  • Alegre ML, Chong A. Toll-like receptors (TLRs) in transplantation. Front Biosci (Elite Ed). 2015;1:36–43.
  • Vallejo JG. Role of toll-like receptors in cardiovascular diseases. Clin Sci. 2011;121(1):1–10. doi:10.1042/CS20100539
  • Dekleijn D, Pasterkamp G. Toll-like receptors in cardiovascular diseases. Cardiovasc Res. 2003;60(1):58–67.
  • Kleijn DD, Pasterkamp G. Toll-like receptors in cardiovascular diseases cardiovascular research. Cardiovasc Res. 2003;60(1):58–67. doi:10.1016/S0008-6363(03)00348-1
  • Zhou Y, Little PJ, Downey L, et al. The role of toll-like receptors in atherothrombotic cardiovascular disease. ACS Pharmacol Transl Sci. 2020;3(3):457–471. doi:10.1021/acsptsci.9b00100
  • Mullick AE, Soldau K, Kiosses WB, Bell TA, Tobias PS, Curtiss LK. Increased endothelial expression of toll-like receptor 2 at sites of disturbed blood flow exacerbates early atherogenic events. J Exp Med. 2008;205(2):373–383. doi:10.1084/jem.20071096
  • Mullick AE, Tobias PS, Curtiss LK. Modulation of atherosclerosis in mice by toll-like receptor 2. J Clin Invest. 2005;115(11):3149–3156. doi:10.1172/JCI25482
  • Curtiss LK, Blac AS, Bonnet DJ, Tobias PS. Atherosclerosis induced by endogenous and exogenous toll like receptor (TLR) 1 or TLR6 agonists. J Lipid Res. 2012;53(10):2126–2132. doi:10.1194/jlr.M028431
  • Madan M, Amar S, Giannobile W. Toll-like receptor-2 mediates diet and/or pathogen associated atherosclerosis: proteomic findings. PLoS One. 2008;3(9):e3204. doi:10.1371/journal.pone.0003204
  • Lin M, Yiu WH, Wu HJ. Toll-like receptor 4 promotes tubular inflammation in diabetic nephropathy. J Am Soc Nephrol. 2012;23(1):86–102. doi:10.1681/ASN.2010111210
  • Sawa Y, Takata S, Hatakeyama Y, Ishikawa H, Tsuruga E, Wang T. Expression of toll-like receptor 2 in glomerular endothelial cells and promotion of diabetic nephropathy by porphyromonas gingivalis lipopolysaccharide. PLoS One. 2014;9(5):e97165. doi:10.1371/journal.pone.0097165
  • Devaraj S, Tobias P, Jialal I. Knockout of toll-like receptor-4 attenuates the pro-inflammatory state of diabetes. Cytokine. 2011;55(3):441–445. doi:10.1016/j.cyto.2011.03.023
  • Feng Q, Liu D, Lu Y, Liu Z. The interplay of renin-angiotensin system and toll-like receptor 4 in the inflammation of diabetic nephropathy. Hindawi J Immunol Res. 2020;2020:1–11. doi:10.1155/2020/6193407
  • Miao Lin M, Tang SC. Toll-like receptors: sensing and reacting to diabetic injury in the kidney. Nephrol Dial Transplant. 2014;29(4):746–754. doi:10.1093/ndt/gft446
  • Ren Q. MON-025 toll-like receptors in glomerulonephritis. Kidney Int Rep. 2019;4(7):S1 S437. doi:10.1016/j.ekir.2019.05.811
  • Dasu MR, Martin SJ. Toll-like receptor expression and signaling in human diabetic wounds. WJD. 2014;5(2):219–223. doi:10.4239/wjd.v5.i2.219
  • Mohammad MK. Dysregulated toll-like receptor expression and signaling in bone marrow-derived macrophages at the onset of diabetes in the non-obese diabetic mouse. Int Immunol. 2006;18:1101–1113.
  • Creely SJ, McTernan PG, Kusminski CM, et al. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol Endocrinol Metab. 2007;292(3):E740–E747. doi:10.1152/ajpendo.00302.2006
  • Klein BK, Knudtson MD, Tsai MY, Klein R. The relation of markers of inflammation and endothelial dysfunction to the prevalence and progression of diabetic retinopathy: wisconsin epidemiologic study of diabetic retinopathy. Arch Ophthalmol. 2009;127(9):1175–1182. doi:10.1001/archophthalmol.2009.172
  • Tang J, Kern TS. Inflammation in diabetic retinopathy. Prog Retin Eye Res. 2011;30(5):343–358. doi:10.1016/j.preteyeres.2011.05.002
  • Tarr JM, Kaul K, Chopra M, Kohner EM, Chibber R. Pathophysiology of diabetic retinopathy. ISRN Ophthalmol. 2013;2013:1–13. doi:10.1155/2013/343560
  • Rajamani U, Jialal I. Hyperglycemia induces toll-like receptor-2 and −4 expressions and activity in human microvascular retinal endothelial cells: implications for diabetic retinopathy. J Diabetes Res. 2014;2014:1–14. doi:10.1155/2014/790902
  • Xu WQ, Wang YS. The role of toll-like receptors in retinal ischemic diseases. Int J Opthalmol. 2016;9(9):1343–1351.
  • Rivera JC, Dabouz R, Noueihed B, Samy Omri S, Tahiri H, Sylvain S. Ischemic retinopathies: oxidative stress and inflammation. Oxid Med Cell Longev. 2017;1–16.
  • Elzinga S, Murdock BJ, Guo K, et al. Toll-like receptors and inflammation in metabolic neuropathy; a role in early versus late disease? Exp Neurol. 2019;320:1–11. doi:10.1016/j.expneurol.2019.112967
  • Jurga AM, Rojewska E, Anna Piotrowska A, et al. Blockade of toll-like receptors (TLR2, TLR4) attenuates pain and potentiates buprenorphine analgesia in a rat neuropathic pain model. Neural Plast. 2016;2016:1–12. doi:10.1155/2016/5238730
  • Tsalamandris S, Antonopoulos AS, Oikonomou E, Papamikroulis JA, Vogiatzi G, Papaioannou S. The role of inflammation in diabetes: current concepts and future perspectives. Eur Cardiol Rev. 2019;14(1):50–59.
  • Anwar MA, Shah M, Kim J, Choi S. Recent clinical trends in toll‐like receptor targeting therapeutics. Med Res Rev. 2019;39:1053–1090.
  • Singh MV. Toll-like receptors, hypertension, and an antimalarial drug. Am J Hypertens. 2017;30(2):118–119. doi:10.1093/ajh/hpw128
  • Kapelouzou A, Giaglis S, Peroulis M, et al. Overexpression of toll-like receptors 2, 3, 4, and 8 is correlated to the vascular atherosclerotic process in the hyperlipidemic rabbit model: the effect of statin treatment. J Vasc Res. 2017;54(3):156–169. doi:10.1159/000457797
  • Zimmer S, Steinmetz M, Asdonk T, et al. Activation of endothelial toll-like receptor 3 impairs endothelial function. Circ Res. 2011;108(11):1358–1366. doi:10.1161/CIRCRESAHA.111.243246
  • Lundberg AM, Ketelhuth DF, Johansson ME, et al. Toll-like receptor 3 and 4 signalling through the TRIF and TRAM adaptors in haematopoietic cells promotes atherosclerosis. Cardiovasc Res. 2013;99(2):364–373. doi:10.1093/cvr/cvt033
  • Cole JE, Navin TJ, Cross AJ, et al. Unexpected protective role for toll-like receptor 3 in the arterial wall. Proc Natl Acad Sci U S A. 2011;108(6):2372–2377. doi:10.1073/pnas.1018515108
  • Ishibashi M, Sayers S, D’Armiento JM, Tall AR, Welch CL. TLR3 deficiency protects against collagen degradation and medial destruction in murine atherosclerotic plaques. Atherosclerosis. 2013;229(1):52–61. doi:10.1016/j.atherosclerosis.2013.03.035
  • D’Atri LP, Etulain J, Rivadeneyra L, et al. Expression and functionality of toll-like receptor 3 in the megakaryocytic lineage. J Thromb Haemost. 2015;13:839–850.
  • Ellenbroek GH, Van Puijvelde GH, Anas AA, et al. Leukocyte TLR5 deficiency inhibits atherosclerosis by reduced macrophage recruitment and defective T-cell responsiveness. Sci Rep. 2017;7(1):42688. doi:10.1038/srep42688
  • Kim J, Seo M, Kim SK, Bae YS. Flagellininduced NADPH oxidase 4 activation is involved in atherosclerosis. Sci Rep. 2016;6:25437.
  • Kim J, Yoo JY, Suh JM, et al. The flagellin-TLR5-Nox4 axis promotes the migration of smooth muscle cells in atherosclerosis. Exp Mol Med. 2019;51(7):78. doi:10.1038/s12276-019-0275-6
  • Brea D, Sobrino T, Rodriguez-Yanez M, et al. Toll-like receptors 7 and 8 expression is associated with poor outcome and greater inflammatory response in acute ischemic stroke. Clin Immunol. 2011;139(2):193–198. doi:10.1016/j.clim.2011.02.001
  • Koulis C, Chen YC, Hausding C, et al. Protective role for toll-like receptor-9 in the development of atherosclerosis in apolipoprotein E−deficient mice. Arterioscler Thromb Vasc Biol. 2014;34(3):516–525. doi:10.1161/ATVBAHA.113.302407
  • Watkins AA, Yasuda K, Wilson GE, et al. IRF5 deficiency ameliorates lupus but promotes atherosclerosis and metabolic dysfunction in a mouse model of lupus-associated atherosclerosis. J Immunol. 2015;194(4):1467–1479. doi:10.4049/jimmunol.1402807
  • Bouaziz JD, Calbo S, Maho-Vaillant M, et al. IL-10 produced by activated human B cells regulates CD4+ T-cell activation in vitro. Eur J Immunol. 2010;40(10):2686–2691. doi:10.1002/eji.201040673
  • Wagener J, Malireddi RS, Lenardon MD, et al. Fungal chitin dampens inflammation through IL-10 induction mediated by NOD2 and TLR9 activation. PLoS Pathog. 2014;10(4):e1004050. doi:10.1371/journal.ppat.1004050
  • Lee JG, Lim EJ, Park DW, Lee SH, Kim JR, Baek SH. A combination of Lox-1 and Nox1 regulates TLR9-mediated foam cell formation. Cell Signal. 2008;20(12):2266–2275. doi:10.1016/j.cellsig.2008.08.022
  • Fukuda D, Nishimoto S, Aini K, et al. Toll-like receptor 9 plays a pivotal role in angiotensin II−induced atherosclerosis. J Am Heart Assoc. 2019;8(7):e010860. doi:10.1161/JAHA.118.010860
  • Sorrentino R, Morello S, Chen S, Bonavita E, Pinto A. The activation of liver X receptors inhibits toll-like receptor-9-induced foam cell formation. J Cell Physiol. 2009;223:158–167.
  • Niessner A, Sato K, Chaikof EL, Colmegna I, Goronzy JJ, Weyand CM. Pathogen-sensing plasmacytoid dendritic cells stimulate cytotoxic T-cell function in the atherosclerotic plaque through interferon-alpha. Circulation. 2006;114(23):2482–2489. doi:10.1161/CIRCULATIONAHA.106.642801
  • Xu Y, Zhou Y, Lin H, Hu H, Wang Y, Xu G. Toll-like receptor 2 in promoting angiogenesis after acute ischemic injury. Int J Mol Med. 2013;31(3):555–560. doi:10.3892/ijmm.2013.1240
  • Anders H-J. Toll-like receptors and danger signaling in kidney injury. J Am Soc Nephrol. 2010;21(8):1270–1274. doi:10.1681/ASN.2010030233