213
Views
8
CrossRef citations to date
0
Altmetric
Original Research

Association Between Single Nucleotide Polymorphisms in CDKAL1 and HHEX and Type 2 Diabetes in Chinese Population

, , , , , , , ORCID Icon & show all
Pages 5113-5123 | Published online: 05 Jan 2021

References

  • Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2019;157:107843. doi:10.1016/j.diabres.2019.107843
  • Wang L, Gao P, Zhang M, et al. Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013. JAMA. 2017;317(24):2515. doi:10.1001/jama.2017.7596
  • Hu C, Jia W. Diabetes in China: epidemiology and genetic risk factors and their clinical utility in personalized medication. Diabetes. 2018;67(1):3–11. doi:10.2337/dbi17-0013
  • Ching Y-P, Pang ASH, Lam W-H, Qi RZ, Wang JH. Identification of a neuronal Cdk5 activator-binding protein as Cdk5 inhibitor. J Biol Chem. 2002;277(18):15237–15240. doi:10.1074/jbc.C200032200
  • Liu KC, Leuckx G, Sakano D, et al. Inhibition of Cdk5 promotes beta-cell differentiation from ductal progenitors. Diabetes. 2018;67:58–70. doi:10.2337/db16-1587
  • Wei F-Y, Nagashima K, Ohshima T, et al. Cdk5-dependent regulation of glucose-stimulated insulin secretion. Nat Med. 2005;11(10):1104–1108. doi:10.1038/nm1299
  • Ubeda M, Rukstalis JM, Habener JF. Inhibition of cyclin-dependent kinase 5 activity protects pancreatic beta cells from glucotoxicity. J Biol Chem. 2006;281(39):28858–28864. doi:10.1074/jbc.M604690200
  • Kommoju UJ, Samy SK, Maruda J, Irgam K, Reddy BM. Association of CDKAL1, CDKN2A/B & HHEX gene polymorphisms with type 2 diabetes mellitus in the population of Hyderabad, India. Indian J Med Res. 2016;143:455. doi:10.4103/0971-5916.184303
  • Bort R, Martinez-Barbera JP, Beddington RS, Zaret KS. Hex homeobox gene-dependent tissue positioning is required for organogenesis of the ventral pancreas. Development. 2004;131:797–806. doi:10.1242/dev.00965
  • Foley AC, Mercola M. Heart induction by Wnt antagonists depends on the homeodomain transcription factor Hex. Genes Dev. 2005;19:387–396. doi:10.1101/gad.1279405
  • Pascoe L, Tura A, Patel SK, et al. Common variants of the novel type 2 diabetes genes CDKAL1 and HHEX/IDE are associated with decreased pancreatic beta-cell function. Diabetes. 2007;56:3101–3104. doi:10.2337/db07-0634
  • Steinthorsdottir V, Thorleifsson G, Reynisdottir I, et al. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat Genet. 2007;39:770–775. doi:10.1038/ng2043
  • Wu Y, Li H, Loos RJF, et al. Common variants in CDKAL1, CDKN2A/B, IGF2BP2, SLC30A8, and HHEX/IDE genes are associated with type 2 diabetes and impaired fasting glucose in a Chinese Han population. Diabetes. 2008;57(10):2834–2842. doi:10.2337/db08-0047
  • American Diabetes, A. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2020. Diabetes Care. 2020;43:S14–S31. doi:10.2337/dc20-S002
  • Li Y, et al. Association of single nucleotide polymorphisms of miRNAs involved in the GLUT4 pathway in T2DM in a Chinese population. 2019;7:e907. doi:10.1002/mgg3.907
  • Li Z, Zhang Z, He Z, et al. A partition-ligation-combination-subdivision EM algorithm for haplotype inference with multiallelic markers: update of the SHEsis. Cell Res. 2009;19(4):519–523. doi:10.1038/cr.2009.33
  • Yong YY, He L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 2005;15(2):97–98. doi:10.1038/sj.cr.7290272
  • Sole X, Guino E, Valls J, Iniesta R, Moreno V. SNPStats: a web tool for the analysis of association studies. Bioinformatics. 2006;22(15):1928–1929. doi:10.1093/bioinformatics/btl268
  • Dupont WD, Plummer WD Jr. Power and sample size calculations for studies involving linear regression. Control Clin Trials. 1998;19(6):589–601. doi:10.1016/S0197-2456(98)00037-3
  • Zeggini E, Weedon MN, Lindgren CM, et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science. 2007;316(5829):1336–1341. doi:10.1126/science.1142364
  • Saxena R, Voight BF, Lyssenko V, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science (New York, N Y). 2007;316(5829):1331–1336. doi:10.1126/science.1142358
  • Lyssenko V, Jonsson A, Almgren P, et al. Clinical risk factors, DNA variants, and the development of type 2 diabetes. N Engl J Med. 2008;359(21):2220–2232. doi:10.1056/NEJMoa0801869
  • Herder C, Rathmann W, Strassburger K, et al. Variants of the PPARG, IGF2BP2, CDKAL1, HHEX, and TCF7L2 Genes Confer Risk of Type 2 Diabetes Independently of BMI in the German KORA Studies. Hormone and Metabolic Research = Hormon- Und Stoffwechselforschung = Hormones Et Metabolisme. 2008;40(10):722–726. doi:10.1055/s-2008-1078730
  • Loganadan NK, Huri HZ, Vethakkan SR, Hussein Z. Genetic markers predicting sulphonylurea treatment outcomes in type 2 diabetes patients: current evidence and challenges for clinical implementation. Pharmacogenomics J. 2016;16(3):209–219. doi:10.1038/tpj.2015.95
  • Ryoo H, Woo J, Kim Y, Lee C. Heterogeneity of genetic associations of CDKAL1 and HHEX with susceptibility of type 2 diabetes mellitus by gender. Eur j Human Genetics. 2011;19(6):672–675. doi:10.1038/ejhg.2011.6
  • Lee Y-H, Kang ES, Kim SH, et al. Association between polymorphisms in SLC30A8, HHEX, CDKN2A/B, IGF2BP2, FTO, WFS1, CDKAL1, KCNQ1 and type 2 diabetes in the Korean population. J Hum Genet. 2008;53(11–12):991–998. doi:10.1007/s10038-008-0341-8
  • Tabara Y, Osawa H, Kawamoto R, et al. Genotype risk score of common susceptible variants for prediction of type 2 diabetes mellitus in Japanese: the Shimanami Health Promoting Program (J-SHIPP study). Development of type 2 diabetes mellitus and genotype risk score. Metabolism. 2011;60(11):1634–1640. doi:10.1016/j.metabol.2011.03.014
  • Tan JT, Ng DPK, Nurbaya S, et al. Polymorphisms identified through genome-wide association studies and their associations with type 2 diabetes in Chinese, Malays, and Asian-Indians in Singapore. J Clin Endocrinol Metab. 2010;95(1):390–397. doi:10.1210/jc.2009-0688
  • Kommoju UJ, Samy S, Maruda J, et al. Association of CDKAL1, CDKN2A/B & HHEX gene polymorphisms with type 2 diabetes mellitus in the population of Hyderabad, India. Indian J Med Res. 2016;143(4):455–463. doi:10.4103/0971-5916.184303
  • Soltani G, Hatefi Z, Salehi A, et al. Pharmacogenomics of Sulfonylureas response in relation to rs7754840 Polymorphisms in Cyclin-Dependent Kinase 5 regulatory subunit-associated protein 1-like (CDKAL1) Gene in Iranian Type 2 diabetes patients. Adv Biomed Res. 2018;7(1):96. doi:10.4103/abr.abr_144_17
  • Vatankhah Yazdi K, Kalantar SM, Houshmand M, et al. SLC30A8, CDKAL1, TCF7L2, KCNQ1 and IGF2BP2 are associated with Type 2 diabetes mellitus in Iranian patients. Diabetes Metabol Syndr Obesity. 2020;13:897–906. doi:10.2147/dmso.s225968
  • Mansoori Y, Daraei A, Naghizadeh MM, Salehi R. Significance of a common variant in the CDKAL1 gene with susceptibility to type 2 diabetes mellitus in Iranian population. Adv Biomed Res. 2015;4:45. doi:10.4103/2277-9175.151256
  • Nemr R, Almawi AW, Echtay A, et al. Replication study of common variants in CDKAL1 and CDKN2A/2B genes associated with type 2 diabetes in Lebanese Arab population. Diabetes Res Clin Pract. 2012;95:e37–40. doi:10.1016/j.diabres.2011.11.002
  • Nikitin AG, Potapov VY, Brovkina OI, et al. Association of polymorphic markers of genes FTO, KCNJ11, CDKAL1, SLC30A8, and CDKN2B with type 2 diabetes mellitus in the Russian population. PeerJ. 2017;5:e3414. doi:10.7717/peerj.3414
  • Park SE, et al. Impact of common type 2 diabetes risk gene variants on future type 2 diabetes in the non-diabetic population in Korea. J Hum Genet. 2012;57:265–268. doi:10.1038/jhg.2012.16
  • Kanthimathi S, Chidambaram M, Liju S, et al. Identification of genetic variants of gestational diabetes in South Indians. Diabetes Technol Ther. 2015;17:462–467. doi:10.1089/dia.2014.0349
  • Song M, Zhao F, Ran L, et al. The Uyghur population and genetic susceptibility to Type 2 diabetes: potential role for variants in CDKAL1, JAZF1, and IGF1 genes. Omics. 2015;19(4):230–237. doi:10.1089/omi.2014.0162
  • Han X, Luo Y, Ren Q, et al. Implication of genetic variants near SLC30A8, HHEX, CDKAL1, CDKN2A/B, IGF2BP2, FTO, TCF2, KCNQ1, and WFS1 in type 2 diabetes in a Chinese population. BMC Med Genet. 2010;11(1):81. doi:10.1186/1471-2350-11-81
  • Bao XY, Peng B, Yang MS. Replication study of novel risk variants in six genes with type 2 diabetes and related quantitative traits in the Han Chinese lean individuals. Mol Biol Rep. 2012;39(3):2447–2454. doi:10.1007/s11033-011-0995-8
  • Klimentidis YC, Lemas DJ, Wiener HH, et al. CDKAL1 and HHEX are associated with type 2 diabetes-related traits among Yup’ik people. J Diabetes. 2014;6:251–259. doi:10.1111/1753-0407.12093
  • Chistiakov DA, Potapov VA, Smetanina SA, et al. The carriage of risk variants of CDKAL1 impairs beta-cell function in both diabetic and non-diabetic patients and reduces response to non-sulfonylurea and sulfonylurea agonists of the pancreatic KATP channel. Acta Diabetol. 2011;48:227–235. doi:10.1007/s00592-011-0299-4
  • Xu M, Bi Y, Xu Y, et al. Combined effects of 19 common variations on type 2 diabetes in Chinese: results from two community-based studies. PLoS One. 2010;5:e14022. doi:10.1371/journal.pone.0014022
  • Dou H-Y, Wang -Y-Y, Yang N, et al. Association between genetic variants and characteristic symptoms of type 2 diabetes: a matched case-control study. Chin J Integr Med. 2017;23(6):415–424. doi:10.1007/s11655-015-2290-3
  • El-Lebedy D, Ashmawy I. Common variants in TCF7L2 and CDKAL1 genes and risk of type 2 diabetes mellitus in Egyptians. J Genetic Eng Biotechnol. 2016;14:247–251. doi:10.1016/j.jgeb.2016.10.004
  • Chen G, Xu Y, Lin Y, et al. Association study of genetic variants of 17 diabetes-related genes/loci and cardiovascular risk and diabetic nephropathy in the Chinese She population. J Diabetes. 2013;5:136–145. doi:10.1111/1753-0407.12025
  • Locke JM, Wei FY, Tomizawa K, Weedon MN, Harries LW. A cautionary tale: the non-causal association between type 2 diabetes risk SNP, rs7756992, and levels of non-coding RNA, CDKAL1-v1. Diabetologia. 2015;58:745–748. doi:10.1007/s00125-015-3508-9
  • McKenna, et al. The diabetes gene Hhex maintains δ-cell differentiation and islet function. Genes Develop. 2014.
  • Zhou D-Z, Liu Y, Zhang D, et al. Variations in/nearby genes coding for JAZF1, TSPAN8/LGR5 and HHEX-IDE and risk of type 2 diabetes in Han Chinese. J Hum Genet. 2010;55(12):810–815. doi:10.1038/jhg.2010.117
  • Saxena R, Voight BF, Lyssenko V, et al.; Diabetes Genetics Initiative of Broad Institute of, H. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007;316(5829):1331–1336. doi:10.1126/science.1142358.
  • Sladek R, Rocheleau G, Rung J, et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature. 2007;445(7130):881–885. doi:10.1038/nature05616