326
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Salidroside Affects Gut Microbiota Structure in db/db Mice by Affecting Insulin, Blood Glucose and Body Weight

, , , , , & ORCID Icon show all
Pages 2619-2631 | Published online: 29 Aug 2022

References

  • Yan Z, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14(2):88–98. doi:10.1038/nrendo.2017.151
  • Association DBo CM. Guideline for the prevention and treatment of type 2 diabetes mellitus in China (2020 edition). Chin J Diabetes. 2021;13(4):95.
  • Stepanova A, Malunova M, Salamaikina S, Selimov R, Solov’Eva A. Establishment of rhodiola quadrifida hairy roots and callus culture to produce bioactive compounds. Phyton-Int J Exp Bot. 2021;90(2):10.
  • Xie H, Shen CY, Jiang JG. The sources of salidroside and its targeting for multiple chronic diseases. J Funct Foods. 2019;64:103648. doi:10.1016/j.jff.2019.103648
  • Li H, Huang D, Hang S. Salidroside inhibits the growth, migration and invasion of Wilms’ tumor cells through down-regulation of miR-891b. Life Sci. 2019;222:60–68. doi:10.1016/j.lfs.2019.02.052
  • Li Y, Wei X, Liu SL, et al. Salidroside protects cardiac function in mice with diabetic cardiomyopathy via activation of mitochondrial biogenesis and SIRT3. Phytother Res. 2021;35(8):4579–4591. doi:10.1002/ptr.7175
  • Zheng T, Wang Q, Bian F, et al. Salidroside alleviates diabetic neuropathic pain through regulation of the AMPK-NLRP3 inflammasome axis. Toxicol Appl Pharmacol. 2021;416:115468. doi:10.1016/j.taap.2021.115468
  • Ni J, Li Y, Xu Y, Guo R. Salidroside protects against cardiomyocyte apoptosis and ventricular remodeling by AKT/HO-1 signaling pathways in a diabetic cardiomyopathy mouse model. Phytomedicine. 2021;82:153406. doi:10.1016/j.phymed.2020.153406
  • Yang L, Zhou L, Wang X, Wang W, Wang J. Inhibition of HMGB1 involved in the protective of salidroside on liver injury in diabetes mice. Int Immunopharmacol. 2020;89(Pt A):106987. doi:10.1016/j.intimp.2020.106987
  • Feng J, Zhang Q, Mo W, et al. Salidroside pretreatment attenuates apoptosis and autophagy during hepatic ischemia-reperfusion injury by inhibiting the mitogen-activated protein kinase pathway in mice. Drug Des Devel Ther. 2017;11:1989–2006. doi:10.2147/DDDT.S136792
  • Shati AA. Salidroside ameliorates diabetic nephropathy in rats by activating renal AMPK/SIRT1 signaling pathway. J Food Biochem. 2020;44(4):e13158. doi:10.1111/jfbc.13158
  • Dabke K, Hendrick G, Devkota S. The gut microbiome and metabolic syndrome. J Clin Invest. 2019;129(10):4050–4057. doi:10.1172/JCI129194
  • Gomes AC, Hoffmann C, Mota JF. The human gut microbiota: metabolism and perspective in obesity. Gut Microbes. 2018;9(4):308–325. doi:10.1080/19490976.2018.1465157
  • Aron-Wisnewsky J, Warmbrunn MV, Nieuwdorp M, Clément K. Metabolism and metabolic disorders and the microbiome: the intestinal microbiota associated with obesity, lipid metabolism, and metabolic health-pathophysiology and therapeutic strategies. Gastroenterology. 2021;160(2):573–599. doi:10.1053/j.gastro.2020.10.057
  • Scheithauer TPM, Rampanelli E, Nieuwdorp M, et al. Gut microbiota as a trigger for metabolic inflammation in obesity and type 2 diabetes. Front Immunol. 2020;11:571731. doi:10.3389/fimmu.2020.571731
  • Thaiss CA, Levy M, Grosheva I, et al. Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection. Science. 2018;359(6382):1376–1383. doi:10.1126/science.aar3318
  • Junjie Q, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55–60. doi:10.1038/nature11450
  • Li H, Xi Y, Xin X, Tian H, Hu Y. Salidroside improves high-fat diet-induced non-alcoholic steatohepatitis by regulating the gut microbiota–bile acid–farnesoid X receptor axis. Biomed Pharmacother. 2020;124:109915. doi:10.1016/j.biopha.2020.109915
  • Arora A, Behl T, Sehgal A, et al. Unravelling the involvement of gut microbiota in type 2 diabetes mellitus. Life Sci. 2021;273:119311. doi:10.1016/j.lfs.2021.119311
  • Claesson MJ, Cusack S, O’Sullivan O, et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci USA. 2011;108(S1):4586–4591. doi:10.1073/pnas.1000097107
  • Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480–484. doi:10.1038/nature07540
  • Zhang Z, Zhu L, Ma Y, et al. Study on the characteristics of intestinal flora composition in gastric cancer patients and healthy people in the Qinghai-Tibet plateau. Appl Biochem Biotechnol. 2022;194(4):1510–1526. doi:10.1007/s12010-021-03732-4
  • Vijay-Kumar M, Aitken JD, Carvalho FA, et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science. 2010;328(5975):228–231. doi:10.1126/science.1179721
  • Liu W, Luo Z, Zhou J, Sun B. Gut microbiota and antidiabetic drugs: perspectives of personalized treatment in type 2 diabetes mellitus. Front Cell Infect Microbiol. 2022;12:853771. doi:10.3389/fcimb.2022.853771
  • Pascale A, Marchesi N, Govoni S, Coppola A, Gazzaruso C. The role of gut microbiota in obesity, diabetes mellitus, and effect of metformin: new insights into old diseases. Curr Opin Pharmacol. 2019;49:1–5. doi:10.1016/j.coph.2019.03.011
  • Arnoriaga-Rodríguez M, Mayneris-Perxachs J, Contreras-Rodríguez O, et al. Obesity-associated deficits in inhibitory control are phenocopied to mice through gut microbiota changes in one-carbon and aromatic amino acids metabolic pathways. Gut. 2021;70(12):2283–2296. doi:10.1136/gutjnl-2020-323371
  • Megur A, Daliri EB, Baltriukienė D, Burokas A. Prebiotics as a tool for the prevention and treatment of obesity and diabetes: classification and ability to modulate the gut microbiota. Int J Mol Sci. 2022;23(11):6097. doi:10.3390/ijms23116097
  • Yuan Y, Wu X, Zhang X, Hong Y, Yan H. Ameliorative effect of salidroside from Rhodiola Rosea L. on the gut microbiota subject to furan-induced liver injury in a mouse model. Food Chem Toxicol. 2019;125:333–340. doi:10.1016/j.fct.2019.01.007
  • Hung WW, Peng P, Tsai YC, Jhou PS, Hung WC. Gut microbiota compositions and metabolic functions in type 2 diabetes differ with glycemic durability to metformin monotherapy. Diabetes Res Clin Pract. 2021;174:108731. doi:10.1016/j.diabres.2021.108731
  • Miao Z, Lin JS, Mao Y, Chen GD, Zheng JS. Erythrocyte n-6 polyunsaturated fatty acids, gut microbiota, and incident type 2 diabetes: a prospective cohort study. Diabetes Care. 2020;43(10):dc200631. doi:10.2337/dc20-0631
  • Wen SY, Chen YY, Lu JX, et al. Modulation of hepatic lipidome by rhodioloside in high-fat diet fed apolipoprotein E knockout mice. Phytomedicine. 2020;69:152690. doi:10.1016/j.phymed.2018.09.225
  • Haiyan X, Li P, Luo Y, et al. Salidroside stimulates the Sirt1/PGC-1α axis and ameliorates diabetic nephropathy in mice. Phytomedicine. 2019;54:240–247. doi:10.1016/j.phymed.2018.10.031
  • Fu C, Wang W, Zhang B. Research on the intestinal flora of the 239 patients in the elderly non-intestinal diseases. Chongqing Med. 2012;41(23):2400–2401+2404.
  • Wilmanski T, Rappaport N, Earls JC, et al. Blood metabolome predicts gut microbiome α-diversity in humans. Nat Biotechnol. 2019;37(10):1217–1228. doi:10.1038/s41587-019-0233-9
  • Wu Y, Bible PW, Long S, Ming WK, Wang Z. Metagenomic analysis reveals gestational diabetes mellitus-related microbial regulators of glucose tolerance. Acta Diabetol. 2019;57(4):569–581. doi:10.1007/s00592-019-01434-2
  • Hoel H, Hove-Skovsgaard M, Hov JR, et al. Impact of HIV and type 2 diabetes on gut microbiota diversity, tryptophan catabolism and endothelial dysfunction. Sci Rep. 2018;8(1). doi:10.1038/s41598-018-25168-3
  • Liu D, Zhong J, Ruan Y, et al. The association between fat-to-muscle ratio and metabolic disorders in type 2 diabetes. Diabetol Metab Syndr. 2021;13(1):129. doi:10.1186/s13098-021-00748-y
  • Garg SS, Gupta J. Polyol pathway and redox balance in diabetes. Pharmacol Res. 2022;182:106326. doi:10.1016/j.phrs.2022.106326
  • Xu C, Zhong J, Zhu H, et al. Independent and interactive associations of heart rate and body mass index or blood pressure with type 2 diabetes mellitus incidence: a prospective cohort study. J Diabetes Investig. 2019;10(4):1068–1074. doi:10.1111/jdi.12999
  • Guo J, Lei S, Zhou Y, Pan C. The ratio of estimated average glucose to fasting plasma glucose level as an indicator of insulin resistance in young adult diabetes: an observational study. Medicine. 2020;99(40):e22337. doi:10.1097/MD.0000000000022337
  • Chen Y, He D, Yang T, et al. Relationship between body composition indicators and risk of type 2 diabetes mellitus in Chinese adults. BMC Public Health. 2020;20(1):452. doi:10.1186/s12889-020-08552-5
  • Jiao S, Huang J, Chen Y, et al. Impacts of glycemic control on intracranial plaque in patients with type 2 diabetes mellitus: a Vessel Wall MRI Study. AJNR Am J Neuroradiol. 2021;42(1):75–81. doi:10.3174/ajnr.A6878
  • Masarone M, Rosato V, Aglitti A, et al. Liver biopsy in type 2 diabetes mellitus: steatohepatitis represents the sole feature of liver damage. PLoS One. 2017;12(6):e0178473. doi:10.1371/journal.pone.0178473
  • Wang A, Gong Y, Pei Z, et al. Paeoniflorin ameliorates diabetic liver injury by targeting the TXNIP-mediated NLRP3 inflammasome in db/db mice. Int Immunopharmacol. 2022;109:108792. doi:10.1016/j.intimp.2022.108792
  • Lerma EV, Wilson DJ. Finerenone: a mineralocorticoid receptor antagonist for the treatment of chronic kidney disease associated with type 2 diabetes. Expert Rev Clin Pharmacol. 2022;3:1–13.
  • Feng X, Wang S, Sun Z, et al. Ferroptosis enhanced diabetic renal tubular injury via HIF-1α/HO-1 pathway in db/db mice. Front Endocrinol. 2021;12:626390. doi:10.3389/fendo.2021.626390
  • Hu X, Zhang H, Zhuang L, et al. Ubiquitin-fold modifier-1 participates in the diabetic inflammatory response by regulating NF-κB p65 nuclear translocation and the ubiquitination and degradation of IκBα. Drug Des Devel Ther. 2020;14:795–810. doi:10.2147/DDDT.S238695
  • Li N, Wang X, Sun C, et al. Change of intestinal microbiota in cerebral ischemic stroke patients. BMC Microbiol. 2019;19(1):191. doi:10.1186/s12866-019-1552-1
  • Luo P, Lednovich K, Xu K, et al. Central and peripheral regulations mediated by short-chain fatty acids on energy homeostasis. Transl Res. 2022;S1931–5244(22):00135–00139.
  • Cheng W, Lu J, Lin W, et al. Effects of a galacto-oligosaccharide-rich diet on fecal microbiota and metabolite profiles in mice. Food Funct. 2018;9(3):1612–1620. doi:10.1039/C7FO01720K
  • Cox LM, Yamanishi S, Sohn J, et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell. 2014;158(4):705–721. doi:10.1016/j.cell.2014.05.052
  • Yu M, Jia HM, Qin LL, Zou ZM. Gut microbiota and gut tissue metabolites involved in development and prevention of depression. J Affect Disord. 2022;297:8–17. doi:10.1016/j.jad.2021.10.016
  • Zhou Y, Li YY, Liu Y. 粪菌移植对非肥胖糖尿病小鼠发生1型糖尿病的影响及其机制探讨. [Effect of fecal microbiota transplantation on type 1 diabetes mellitus in non-obese diabetic mice and its underlying mechanism]. Zhonghua Yi Xue Za Zhi. 2022;102(16):1224–1231. Chinese. doi:10.3760/cma.j.cn112137-20210907-02043