211
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

STAMP2 Attenuates Cardiac Dysfunction and Insulin Resistance in Diabetic Cardiomyopathy via NMRAL1-Mediated NF-κB Inhibition in Type 2 Diabetic Rats

, , , , , , , , & show all
Pages 3219-3229 | Received 25 May 2022, Accepted 13 Sep 2022, Published online: 20 Oct 2022

References

  • Aronow WS, Ahn C. Incidence of heart failure in 2737 older persons with and without diabetes mellitus. Chest. 1999;115(3):867–868. doi:10.1378/chest.115.3.867
  • Guanghong J, Hill Michael A, Sowers James R. Diabetic cardiomyopathy, an update of mechanisms contributing to this clinical entity. Circ Res. 2018;122(4):624–638. doi:10.1161/CIRCRESAHA.117.311586
  • Ohgami RS, Campagna DR, McDonald A, Fleming MD. The Steap proteins are metalloreductases. Blood. 2006;108(4):1388–1394. doi:10.1182/blood-2006-02-003681
  • Wellen KE, Fucho R, Gregor MF, et al. Coordinated regulation of nutrient and inflammatory responses by STAMP2 is essential for metabolic homeostasis. Cell. 2007;129(3):537–548. doi:10.1016/j.cell.2007.02.049
  • Han L, Tang MX, Ti Y, et al. Overexpressing STAMP2 improves insulin resistance in diabetic ApoE−/−/LDLR−/− mice via macrophage polarization shift in adipose tissues. PLoS One. 2013;8(11):e78903. doi:10.1371/journal.pone.0078903
  • Kim HY, Park SY, Lee MH, et al. Hepatic STAMP2 alleviates high fat diet-induced hepatic steatosis and insulin resistance. J Hepatol. 2015;63(2):477–485. doi:10.1016/j.jhep.2015.01.025
  • Moldes M, Lasnier F, Gauthereau X, et al. Tumor necrosis factor-α-induced adipose-related protein (TIARP), a cell-surface protein that is highly induced by tumor necrosis factor-α and adipose conversion. J Biol Chem. 2001;276(36):33938–33946. doi:10.1074/jbc.M105726200
  • Lian M, Zheng X. HSCARG regulates NF-κB activation by promoting the ubiquitination of RelA or COMMD1. J Biol Chem. 2009;284(27):17998–18006. doi:10.1074/jbc.M809752200
  • Zheng X, Dai X, Zhao Y, et al. Restructuring of the dinucleotide-binding fold in an NADP(H) sensor protein. PNAS. 2007;104(21):8809–8814. doi:10.1073/pnas.0700480104
  • Hernandez R, Zhou C. Recent advances in understanding the role of IKKβ in cardiometabolic diseases. Front Cardiovasc Med. 2021;8:752337. doi:10.3389/fcvm.2021.752337
  • Kenny HC, Abel ED. Heart failure in type 2 diabetes mellitus. Circ Res. 2019;124(1):121–141. doi:10.1161/CIRCRESAHA.118.311371
  • Dinesh Shah A, Langenberg C, Rapsomaniki E, et al. Type 2 diabetes and incidence of a wide range of cardiovascular diseases: a cohort study in 1·9 million people. Lancet. 2015;385(Suppl 1):S86. doi:10.1016/S0140-6736(15)60401-9
  • Gregg EW, Li Y, Wang J, et al. Changes in diabetes-related complications in the United States, 1990–2010. N Engl J Med. 2014;370(16):1514–1523. doi:10.1056/NEJMoa1310799
  • Tate M, Grieve DJ, Ritchie RH. Are targeted therapies for diabetic cardiomyopathy on the horizon? Clin Sci. 2017;131(10):897–915. doi:10.1042/CS20160491
  • American Diabetes Association. Disclosures: standards of medical care in diabetes-2019. Diabetes Care. 2019;42(Suppl 1):S184–6. doi:10.2337/dc19-Sdis01
  • Fang ZY, Prins JB, Marwick TH. Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr Rev. 2004;25(4):543–567. doi:10.1210/er.2003-0012
  • An D, Rodrigues B. Role of changes in cardiac metabolism in development of diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol. 2006;291(4):H1489–1506. doi:10.1152/ajpheart.00278.2006
  • Ferdinando G, Michael B, Marie SA, Schmidt AM. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058–1070. doi:10.1161/CIRCRESAHA.110.223545
  • Wang F, Han L, Qin R, et al. Overexpressing STAMP2 attenuates adipose tissue angiogenesis and insulin resistance in diabetic ApoE−/−/LDLR−/− mouse via a PPARγ/CD36 pathway. J Cell Mol Med. 2017;21(12):3298–3308. doi:10.1111/jcmm.13233
  • Wang J, Han L, Wang ZH, et al. Overexpression of STAMP2 suppresses atherosclerosis and stabilizes plaques in diabetic mice. J Cell Mol Med. 2014;18(4):735–748. doi:10.1111/jcmm.12222
  • Oh YJ, Kim HY, Lee MH, et al. Cilostazol Improves HFD-Induced Hepatic Steatosis by Upregulating Hepatic STAMP2 Expression through AMPK. Mol Pharmacol. 2018;94(6):1401–1411. doi:10.1124/mol.118.113217
  • PI3K/Akt Signaling [Internet]. Cell signaling technology; [ cited August 7, 2022]. Available from: https://www.cellsignal.com/pathways/pathways-akt-signaling. Accessed October 12, 2022.
  • Korkmaz CG, Korkmaz KS, Kurys P, et al. Molecular cloning and characterization of STAMP2, an androgen-regulated six transmembrane protein that is overexpressed in prostate cancer. Oncogene. 2005;24(31):4934–4945. doi:10.1038/sj.onc.1208677
  • Orfanou IM, Argyros O, Papapetropoulos A, Tseleni-Balafouta S, Vougas K, Tamvakopoulos C. Discovery and pharmacological evaluation of STEAP4 as a novel target for HER2 overexpressing breast cancer. Front Oncol. 2021;11:608201. doi:10.3389/fonc.2021.608201
  • Jin Y, Wang L, Qu S, et al. STAMP2 increases oxidative stress and is critical for prostate cancer. EMBO Mol Med. 2015;7(3):315–331. doi:10.15252/emmm.201404181
  • ten Freyhaus H, Calay ES, Yalcin A, et al. Stamp2 controls macrophage inflammation through nicotinamide adenine dinucleotide phosphate homeostasis and protects against atherosclerosis. Cell Metab. 2012;16(1):81–89. doi:10.1016/j.cmet.2012.05.009