273
Views
1
CrossRef citations to date
0
Altmetric
REVIEW

Precision Medicine in Type 2 Diabetes Mellitus: Utility and Limitations

, ORCID Icon, , , , , , & ORCID Icon show all
Pages 3669-3689 | Received 14 Apr 2023, Accepted 27 Oct 2023, Published online: 15 Nov 2023

References

  • Umamaheswaran G, Praveen RG, Damodaran SE, Das AK, Adithan C. Influence of SLC22A1 rs622342 genetic polymorphism on metformin response in South Indian type 2 diabetes mellitus patients. Clin Exp Med. 2015;15(4):511–517. doi:10.1007/s10238-014-0322-5
  • Xiao D, Guo Y, Li X, et al. The Impacts of SLC22A1 rs594709 and SLC47A1 rs2289669 Polymorphisms on Metformin Therapeutic Efficacy in Chinese Type 2 Diabetes Patients. Int J Endocrinol. 2016;2016:4350712. doi:10.1155/2016/4350712
  • Moeez S, Khalid Z, Jalil F, et al. Effects of SLC22A2 (rs201919874) and SLC47A2 (rs138244461) genetic variants on metformin pharmacokinetics in Pakistani T2DM patients. J Pak Med Assoc. 2019;69:155–163.
  • Song IS, Shin HJ, Shim EJ, et al. Genetic variants of the organic cation transporter 2 influence the disposition of metformin. Clin Pharmacol Ther. 2008;84(5):559–562. doi:10.1038/clpt.2008.61
  • Resendiz-Abarca CA, Flores-Alfaro E, Suarez-Sanchez F, et al. Altered glycemic control associated with polymorphisms in the SLC22A1 (OCT1) gene in a Mexican population with type 2 diabetes mellitus treated with metformin: a cohort study. J Clin Pharmacol. 2019;59:1384–1390. doi:10.1002/jcph.1425
  • Phani NM, Vohra M, Kakar A, et al. Implication of critical pharmacokinetic gene variants on therapeutic response to metformin in type 2 diabetes. Pharmacogenomics. 2018;19:905–911. doi:10.2217/pgs-2018-0041
  • He R, Zhang D, Lu W, et al. SLC47A1 gene rs2289669 G>A variants enhance the glucose-lowering effect of metformin via delaying its excretion in Chinese type 2 diabetes patients. Diabetes Res Clin Pract. 2015;109(1):57–63. doi:10.1016/j.diabres.2015.05.003
  • Choi JH, Yee SW, Ramirez AH, et al. A common 5’-UTR variant in MATE2-K is associated with poor response to metformin. Clin Pharmacol Ther. 2011;90(5):674–684. doi:10.1038/clpt.2011.165
  • Fatehi M, Raja M, Carter C, Soliman D, Holt A, Light PE. The ATP-sensitive K(+) channel ABCC8 S1369A type 2 diabetes risk variant increases MgATPase activity. Diabetes. 2012;61(1):241–249. PMID: 22187380; PMCID: PMC3237651. doi:10.2337/db11-0371
  • Hansen T, Ambye L, Grarup N, et al. Genetic variability of the SUR1 promoter in relation to beta-cell function and Type II diabetes mellitus. Diabetologia. 2001;44:1330–1334. doi:10.1007/s001250100651
  • Pearson ER, Donnelly LA, Kimber C, et al. Variation in TCF7L2 influences therapeutic response to sulfonylureas: a GoDARTs study. Diabetes. 2007;56:2178–2182. doi:10.2337/db07-0440
  • Dawed AY, Donnelly L, Tavendale R, et al.CYP2C8 and SLCO1B1 Variants and Therapeutic Response to Thiazolidinediones in Patients With Type 2 Diabetes. Diabetes Care. 2016;39(11):1902–1908. PMID: 27271184. doi:10.2337/dc15-2464
  • Pei Q, Huang Q, Yang GP, et al. PPAR-γ2 and PTPRD gene polymorphisms influence type 2 diabetes patients’ response to pioglitazone in China. Acta Pharmacol Sin. 2013;34(2):255–261. doi:10.1038/aps.2012.144
  • Hart LM, Fritsche A, Nijpels G, et al.The CTRB1/2 locus affects diabetes susceptibility and treatment via the incretin pathway. Diabetes. 2013;62(9):3275–3281. PMID: 23674605; PMCID: PMC3749354. doi:10.2337/db13-0227
  • Zimdahl H, Ittrich C, Graefe-Mody U, et al. Influence of TCF7L2 gene variants on the therapeutic response to the dipeptidylpeptidase-4 inhibitor linagliptin. Diabetologia. 2014;57(9):1869–1875. PMID: 24906949; PMCID: PMC4119242. doi:10.1007/s00125-014-3276-y
  • de Luis DA, Diaz Soto G, Izaola O, et al. Evaluation of weight loss and metabolic changes in diabetic patients treated with liraglutide, effect of RS 6923761 gene variant of glucagon-like peptide 1 receptor. J Diabetes Complicat. 2015;29(4):595–598. doi:10.1016/j.jdiacomp.2015.02.010
  • Ferreira MC, da Silva MER, Fukui RT, et al. Effect of TCF7L2 polymorphism on pancreatic hormones after exenatide in type 2 diabetes. Diabetol Metab Syndr. 2019;11:10. PMID: 30700996; PMCID: PMC6347826. doi:10.1186/s13098-019-0401-6
  • hou LM, Xu W, Yan XM, Li MXY, Liang H, Weng JP. Association between SORCS1 rs1416406 and therapeutic effect of exenatide. Zhonghua Yi Xue Za Zhi. 2017;97(18):1415–1419. doi:10.3760/cma.j.issn.0376-2491.2017.18.0131
  • Zimdahl H, Haupt A, Brendel M, et al. Influence of common polymorphisms in the SLC5A2 gene on metabolic traits in subjects at increased risk of diabetes and on response to empagliflozin treatment in patients with diabetes. Pharmacogenet Genomics. 2017;27(4):135–142. PMID: 28134748. doi:10.1097/FPC.0000000000000268
  • Hoeben E, De Winter W, Neyens M, et al. Population Pharmacokinetic Modeling of Canagliflozin in Healthy Volunteers and Patients with Type 2 Diabetes Mellitus. Clin Pharmacokinet. 2016;55(2):209–223. PMID: 26293616. doi:10.1007/s40262-015-0307-x
  • Bonnefond A, Unnikrishnan R, Doria A, et al. Monogenic diabetes. Nat Rev Dis Primers. 2023;9(1):12. doi:10.1038/s41572-023-00421-w
  • Shepherd M, Shields B, Hammersley S, et al. Systematic population screening, using biomarkers and genetic testing, identifies 2·5% of the UK pediatric diabetes population with monogenic diabetes. Diabetes Care. 2016;39:1879–1888. doi:10.2337/dc16-0645
  • Pearson ER, Flechtner I, Njølstad PR, et al.; Neonatal Diabetes International Collaborative Group. Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations. N Engl J Med. 2006; 355(5):467–477. doi:10.1056/NEJMoa061759
  • Gloyn AL, Pearson ER, Antcliff JF, et al. Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N Engl J Med. 2004;350(18):1838–1849. doi:10.1056/NEJMoa032922
  • Rafiq M, Flanagan SE, Patch AM, et al. Effective treatment with oral sulfonylureas in patients with diabetes due to sulfonylurea receptor 1 (SUR1) mutations. Diabetes Care. 2008;31(2):204–209. doi:10.2337/dc07-1785
  • Dennis JM. Precision Medicine in Type 2 Diabetes: using Individualized Prediction Models to Optimize Selection of Treatment. Diabetes. 2020;69(10):2075–2085. PMID: 32843566; PMCID: PMC7506836. doi:10.2337/dbi20-0002
  • Gloyn AL, Drucker DJ. Precision medicine in the management of type 2 diabetes. Lancet Diabetes Endocrinol. 2018;6(11):891–900. PMID: 29699867. doi:10.1016/S2213-8587(18)30052-4
  • Morris AP, Voight BF, Teslovich TM, et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet. 2012;44(9):981–990. doi:10.1038/ng.2383
  • Sladek R, Rocheleau G, Rung J, et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature. 2007;445(7130):881–885. doi:10.1038/nature05616
  • Saxena R, Voight BF, et al.; Diabetes Genetics Initiative of Broad Institute of Harvard and MIT, Lund University, and Novartis Institutes of BioMedical Research. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007;316(5829):1331–1336. doi:10.1126/science.1142358
  • Scott LJ, Mohlke KL, Bonnycastle LL, et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science. 2007;316(5829):1341–1345. doi:10.1126/science.1142382
  • Steinthorsdottir V, Thorleifsson G, Reynisdottir I, et al. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat Genet. 2007;39(6):770–775. doi:10.1038/ng2043
  • Zeggini E, Weedon MN, Lindgren CM, et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science. 2007;316(5829):1336–1341. doi:10.1126/science.1142364
  • Chen J, Spracklen CN, Marenne G, et al. The trans-ancestral genomic architecture of glycemic traits. Nat Genet. 2021;53(6):840–860. doi:10.1038/s41588-021-00852-9
  • Scott RA, Scott LJ, Mägi R, et al. An Expanded Genome-Wide Association Study of Type 2 Diabetes in Europeans. Diabetes. 2017;66(11):2888–2902. doi:10.2337/db16-1253
  • Laakso M, Fernandes Silva L. Genetics of Type 2 Diabetes: past, Present, and Future. Nutrients. 2022;14(15):3201. doi:10.3390/nu14153201
  • Baca P, Barajas-Olmos F, Mirzaeicheshmeh E, et al. DNA methylation and gene expression analysis in adipose tissue to identify new loci associated with T2D development in obesity. Nutr Diabetes. 2022;12(1):50. PMID: 36535927; PMCID: PMC9763387. doi:10.1038/s41387-022-00228-w
  • Domingo-Relloso A, Gribble MO, Riffo-Campos AL, et al. Epigenetics of type 2 diabetes and diabetes-related outcomes in the Strong Heart Study. Clin Epigenetics. 2022;14(1):177. PMID: 36529747; PMCID: PMC9759920. doi:10.1186/s13148-022-01392-7
  • Eftekharian MM, Sayad A, Omrani MD, et al. Single nucleotide polymorphisms in the FOXP3 gene are associated with increased risk of relapsing-remitting multiple sclerosis. Hum Antibodies. 2016;24(3–4):85–90. doi:10.3233/HAB-160299
  • Khalifa O, Pers YM, Ferreira R, et al. X-Linked miRNAs Associated with Gender Differences in Rheumatoid Arthritis. Int J Mol Sci. 2016;17(11):1852. doi:10.3390/ijms17111852
  • Wang X, Liu Z, Zhang S, et al. Forkhead box P3 gene polymorphisms predispose to type 2 diabetes and diabetic nephropathy in the Han Chinese populations: a genetic-association and gender-based evaluation study. Hereditas. 2023;160(1):1–2. doi:10.1186/s41065-023-00264-1
  • Liu J, Li L, Li WJ, et al. The role of uncoupling proteins in diabetes mellitus. J Diabetes Res. 2013;2013:1–7.
  • Udler MS, Kim J, von Grotthuss M, et al. Type 2 diabetes genetic loci informed by multi-trait associations point to disease mechanisms and subtypes: a soft clustering analysis. PLoS Med. 2018;15(9):e1002654. doi:10.1371/journal.pmed.1002654
  • Brand MD, Parker N, Afourtit C, et al. Mitochondrial uncoupling protein 2 in pancreatic beta-cells. Diabetes Obes Metab. 2010;12:134–140. doi:10.1111/j.1463-1326.2010.01264.x
  • Brand MD, Esteves TC. Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3. Cell Metab. 2005;2:85–93. doi:10.1016/j.cmet.2005.06.002
  • Sasahara M, Nishi M, Kawashima H, et al. Uncoupling protein 2 promoter polymorphism −866G/A affects its expression in beta-cells and modulates clinical profiles of Japanese type 2 diabetes patients. Diabetes. 2004;53(2):482–485. doi:10.2337/diabetes.53.2.482
  • Gluckman PD, Hanson MA, Buklijas T, Low FM, Beedle AS. Epigenetic mechanisms that underpin metabolic and cardiovascular diseases. Nat Rev Endocrinol. 2009;5(7):401–408. doi:10.1038/nrendo.2009.102
  • Wang S, Se YM, Liu ZQ, et al. Effect of genetic polymorphism of UCP2- 866 G/A on repaglinide response in Chinese patients with type 2 diabetes. Pharmazie. 2012;67(1):74–79.
  • Din I, Majid S, Rashid F, et al. Mitochondrial uncoupling protein 2 (UCP2) gene polymorphism - 866 G/A in the promoter region is associated with type 2 diabetes mellitus among Kashmiri population of Northern India. Mol Biol Rep. 2023;50(1):475–483. doi:10.1007/s11033-022-08055-z
  • Chen YT, Lin WD, Liao WL, Tsai YC, Liao JW, Tsai FJ. NT5C2 methylation regulatory interplay between DNMT1 and insulin receptor in type 2 diabetes [published correction appears in Sci Rep. 2021 Mar 22;11(1):6961]. Sci Rep. 2020;10(1):16087. doi:10.1038/s41598-020-71336-9
  • Lawlor N, George J, Bolisetty M, et al. Single-cell transcriptomes identify human islet cell signatures and reveal cell-type-specific expression changes in type 2 diabetes. Genome Res. 2017;27(2):208–222. doi:10.1101/gr.212720.116
  • Liu J, Liu S, Yu Z, et al. Uncovering the gene regulatory network of type 2 diabetes through multi-omic data integration. J Transl Med. 2022;20(1):604. doi:10.1186/s12967-022-03826-5
  • Clish CB. Metabolomics: an emerging but powerful tool for precision medicine. Cold Spring Harb Mol Case Stud. 2015;1(1)::a000588. doi:10.1101/mcs.a000588
  • Wang TJ, Larson MG, Vasan RS, et al. Metabolite profiles and the risk of developing diabetes. Nat Med. 2011;17(4):448–453. PMID: 21423183; PMCID: PMC3126616. doi:10.1038/nm.2307
  • Wang TJ, Ngo D, Psychogios N, et al. 2-Aminoadipic acid is a biomarker for diabetes risk. J Clin Invest. 2013;123(10):4309–4317. doi:10.1172/JCI64801
  • Meng J, Huang F, Shi J, et al. Integrated biomarker profiling of the metabolome associated with type 2 diabetes mellitus among Tibetan in China. Diabetol Metab Syndr. 2023;15(1):146. doi:10.1186/s13098-023-01124-8
  • Ben Othman M, Sakamoto K. Effect of inactivated Bifidobacterium longum intake on obese diabetes model mice (TSOD). Food Res Int. 2020;129:108792. PMID: 32036897. doi:10.1016/j.foodres.2019.108792
  • Kwek E, Yan C, Ding H, et al. Effects of hawthorn seed oil on plasma cholesterol and gut microbiota. Nutr Metab (Lond). 2022;19(1):55. PMID: 35962418; PMCID: PMC9373405. doi:10.1186/s12986-022-00690-4
  • Wang H, Shen Q, Fu Y, et al. Effects on Diabetic Mice of Consuming Lipid Extracted from Foxtail Millet (Setaria italica): gut Microbiota Analysis and Serum Metabolomics. J Agric Food Chem. 2023;71(26):10075–10086. doi:10.1021/acs.jafc.3c02179
  • Jin Z, Hu W, Yang Y. Serum metabolomic analysis revealed potential metabolite biomarkers for diabetes mellitus with coronary heart disease. Anal Methods. 2023;15(28):3432–3438. PMID: 37434552. doi:10.1039/d3ay00778b
  • Shi C, Wan Y, He A, et al. Urinary metabolites associate with the presence of diabetic kidney disease in type 2 diabetes and mediate the effect of inflammation on kidney complication. Acta Diabetol. 2023;60(9):1199–1207. PMID: 37184672; PMCID: PMC10359369. doi:10.1007/s00592-023-02094-z
  • Fang J, Wang H, Niu T, et al. Integration of Vitreous Lipidomics and Metabolomics for Comprehensive Understanding of the Pathogenesis of Proliferative Diabetic Retinopathy. J Proteome Res. 2023;22(7):2293–2306. PMID: 37329324. doi:10.1021/acs.jproteome.3c00007
  • Gary-Webb TL, Suglia SF, Tehranifar P. Social epidemiology of diabetes and associated conditions. Curr Diab Rep. 2013;13(6):850–859. doi:10.1007/s11892-013-0427-3
  • Agardh E, Allebeck P, Hallqvist J, et al. Type 2 diabetes incidence and socio-economic position: a systematic review and meta-analysis. Int J Epidemiol. 2011;40(3):804–818. doi:10.1093/ije/dyr029
  • NDC Risk Factor Collaboration. Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet. 2016;387:1513–1530. doi:10.1016/S0140-6736(16)00618-8
  • Chatterjee S, Khunti K, Davies MJ. Type 2 diabetes. Lancet. 2017;389(10085):2239–2251. doi:10.1016/S0140-6736(17)30058-2
  • Ng M, Fleming T, Robinson M, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014;384:766–781. doi:10.1016/S0140-6736(14)60460-8
  • Ma RC, Chan JC. Type 2 diabetes in East Asians: similarities and differences with populations in Europe and the United States. Ann N Y Acad Sci. 2013;1281::64–91. doi:10.1111/nyas.12098
  • Unnikrishnan R, Anjana RM, Mohan V. Diabetes in South Asians: is the phenotype different? Diabetes. 2014;63:53–55. doi:10.2337/db13-1592
  • Ding C, Chan Z, Magkos F. Lean, but not healthy: the ‘metabolically obese, normal-weight’ phenotype. Curr Opin Clin Nutr Metab Care. 2016;19:408–417. doi:10.1097/MCO.0000000000000317
  • Wang DD, Hu FB. Precision nutrition for prevention and management of type 2 diabetes. Lancet Diabetes Endocrinol. 2018;6(5):416–426. doi:10.1016/S2213-8587(18)30037-8
  • Visseren FLJ, Mach F, Smulders YM, et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur J Prev Cardiol. 2022;29(1):5–115. doi:10.1093/eurjpc/zwab154
  • Willett W, Rockström J, Loken B, et al. Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems [published correction appears in Lancet. 2019 Feb 9;393(10171):530] [published correction appears in Lancet. 2019 Jun 29;393(10191):2590] [published correction appears in Lancet. 2020 Feb 1;395(10221):338] [published correction appears in Lancet. 2020 Oct 3;396(10256):e56]. Lancet. 2019;393(10170):447–492. doi:10.1016/S0140-6736(18)31788-4
  • Ma Y, He FJ, Yin Y, et al. Gradual reduction of sugar in soft drinks without substitution as a strategy to reduce overweight, obesity, and type 2 diabetes: a modelling study. Lancet Diabetes Endocrinol. 2016;4(2):105–114. doi:10.1016/S2213-8587(15)00477-5
  • Kolb H, Martin S. Environmental/lifestyle factors in the pathogenesis and prevention of type 2 diabetes. BMC Med. 2017;15(1):131. doi:10.1186/s12916-017-0901-x
  • Dendup T, Feng X, Clingan S, Astell-Burt T. Environmental Risk Factors for Developing Type 2 Diabetes Mellitus: a Systematic Review. Int. J Environ Res Public Health. 2018;15(1):78. doi:10.3390/ijerph15010078
  • Jannasch F, Kröger J, Schulze MB. Dietary Patterns and Type 2 Diabetes: a Systematic Literature Review and Meta-Analysis of Prospective Studies. J Nutr. 2017;147(6):1174–1182. doi:10.3945/jn.116.242552
  • Yanai H, Hamasaki H, Katsuyama H, Adachi H, Moriyama S, Sako A. Effects of intake of fish or fish oils on the development of diabetes. J Clin Med Res. 2015;7(1):8–12. PMID: 25368695; PMCID: PMC4217746. doi:10.14740/jocmr1964w
  • Shin JY, Xun P, Nakamura Y, He K. Egg consumption in relation to risk of cardiovascular disease and diabetes: a systematic review and meta-analysis. Am. J Clin Nutr. 2013;98(1):146–159. doi:10.3945/ajcn.112.051318
  • Satija A, Bhupathiraju SN, Rimm EB, et al. Plant-Based Dietary Patterns and Incidence of Type 2 Diabetes in US Men and Women: results from Three Prospective Cohort Studies. PLoS Med. 2016;13(6):e1002039. doi:10.1371/journal.pmed.1002039
  • Gardner CD, Landry MJ, Perelman D, et al. Effect of a ketogenic diet versus Mediterranean diet on glycated hemoglobin in individuals with prediabetes and type 2 diabetes mellitus: the interventional Keto-Med randomized crossover trial [published correction appears in Am J Clin Nutr. 2022 Dec 19; 116(6):1904]. Am J Clin Nutr. 2022;116(3):640–652. doi:10.1093/ajcn/nqac154
  • Vitale M, Masulli M, Calabrese I, et al. Impact of a Mediterranean Dietary Pattern and Its Components on Cardiovascular Risk Factors, Glucose Control, and Body Weight in People with Type 2 Diabetes: a Real-Life Study. Nutrients. 2018;10(8):1067. doi:10.3390/nu10081067
  • Alonso-Domínguez R, García-Ortiz L, Patino-Alonso MC, Sánchez-Aguadero N, Gómez-Marcos MA, Recio-Rodríguez JI. Effectiveness of A Multifactorial Intervention in Increasing Adherence to the Mediterranean Diet among Patients with Diabetes Mellitus Type 2: a Controlled and Randomized Study (EMID Study). Nutrients. 2019;11(1):162. doi:10.3390/nu11010162
  • Wilder RMA. The effects of ketonemia on the course of epilepsy. Mayo Clin Bull. 1921;2:307.
  • Wilson J, Lowery R. The Ketogenic Bible. Las Vegas, NV, USA: Victory Belt Publishing Inc.; 2017. ISBN 13:978-1-628601-04-6.
  • Rafiullah M, Musambil M, David SK. Effect of a very low-carbohydrate ketogenic diet vs recommended diets in patients with type 2 diabetes: a meta-analysis. Nutr Rev. 2022;80:488–502. doi:10.1093/nutrit/nuab040
  • Li S, Lin G, Chen J, et al. The effect of periodic ketogenic diet on newly diagnosed overweight or obese patients with type 2 diabetes. BMC Endocr Disord. 2022;22:34. CrossRef. doi:10.1186/s12902-022-00947-2
  • Gardner CD, Landry MJ, Perelman D, et al. Effect of a ketogenic diet versus Mediterranean diet on glycated hemoglobin in individuals with prediabetes and type 2 diabetes mellitus: the interventional Keto-Med randomized crossover trial. Am J Clin Nutr. 2022;116:640–652. Erratum in Am. J. Clin. Nutr. 2022 Nov. 09. [CrossRef]. doi:10.1093/ajcn/nqac154
  • Saslow LR, Kim S, Daubenmier JJ, et al. A randomized pilot trial of a moderate carbohydrate diet compared to a very low carbohydrate diet in overweight or obese individuals with type 2 diabetes mellitus or prediabetes. PLoS One. 2014;9:e91027. doi:10.1371/journal.pone.0091027
  • Saslow LR, Daubenmier JJ, Moskowitz JT, et al. Twelve-month outcomes of a randomized trial of a moderate-carbohydrate versus very low-carbohydrate diet in overweight adults with type 2 diabetes mellitus or prediabetes. Nutr Diabetes. 2017;7:304. doi:10.1038/s41387-017-0006-9
  • Landry MJ, Crimarco A, Perelman D, et al. Adherence to Ketogenic and Mediterranean Study Diets in a Crossover Trial: the Keto-Med Randomized Trial. Nutrients.2021;13:967. doi:10.3390/nu13030967
  • Dyńka D, Kowalcze K, Ambrozkiewicz F, Paziewska A. Effect of the Ketogenic Diet on the Prophylaxis and Treatment of Diabetes Mellitus: a Review of the Meta-Analyses and Clinical Trials. Nutrients. 2023;15(3):500. PMID: 36771207; PMCID: PMC9919384. doi:10.3390/nu15030500
  • Sharma SK, Mudgal SK, Kalra S, Gaur R, Thakur K, Agarwal R. Effect of Intermittent Fasting on Glycaemic Control in Patients With Type 2 Diabetes Mellitus: a Systematic Review and Meta-analysis of Randomized Controlled Trials. REV Endocrinol. 2023;19(1):25–32. PMID: 37313231; PMCID: PMC10258621. doi:10.17925/EE.2023.19.1.25
  • Yang X, Zhou J, Shao H, et al. Effect of an Intermittent Calorie-restricted Diet on Type 2 Diabetes Remission: a Randomized Controlled Trial. J Clin Endocrinol Metab. 2023;108(6):1415–1424. PMID: 36515429. doi:10.1210/clinem/dgac661
  • Cienfuegos S, Gabel K, Kalam F, et al. Effects of 4- and 6-h time-restricted feeding on weight and cardiometabolic health: a randomized controlled trial in adults with obesity. Cell Metab. 2020;32:366–78.e3. doi:10.1016/j.cmet.2020.06.018
  • Carter S, Clifton PM, Keogh JB. Effect of intermittent compared with continuous energy restricted diet on glycemic control in patients with type 2 diabetes: a randomized noninferiority trial. JAMA Netw Open. 2018;1:e180756.
  • Carter S, Clifton PM, Keogh JB. The effects of intermittent compared to continuous energy restriction on glycaemic control in type 2 diabetes; a pragmatic pilot trial. Diabetes Res Clin Pract. 2016;122:106–112. doi:10.1016/j.diabres.2016.10.010
  • Khalfallah M, Elnagar B, Soliman SS, Eissa A, Allaithy A. The Value of Intermittent Fasting and Low Carbohydrate Diet in Prediabetic Patients for the Prevention of Cardiovascular Diseases. Arq Bras Cardiol. 2023. 120(4):e20220606. English, Portuguese. PMID: 37042857. doi:10.36660/abc.20220606
  • Ibrahim M, Barker MM, Ahmad E, et al. Optimizing Ramadan fasting: a randomised controlled trial for people with type 2 diabetes during Ramadan applying the principles of the ADA/EASD consensus. Diabetes Metab Res Rev. 2023;39(3):e3604. PMID: 36547366. doi:10.1002/dmrr.3604
  • Elmajnoun HK, Faris ME, Abdelrahim DN, Haris PI, Abu-Median AB. Effects of Ramadan Fasting on Glycaemic Control Among Patients with Type 2 Diabetes: systematic Review and Meta-analysis of Observational Studies. Diabetes Ther. 2023;14(3):479–496. PMID: 36725794; PMCID: PMC9981835. doi:10.1007/s13300-022-01363-4
  • Franzago M, Santurbano D, Vitacolonna E, Stuppia L. Genes and Diet in the Prevention of Chronic Diseases in Future Generations. Int. J Mol Sci. 2020;21(7):2633. doi:10.3390/ijms21072633
  • Ortega-Azorín C, Sorlí JV, Asensio EM, et al. Associations of the FTO rs9939609 and the MC4R rs17782313 polymorphisms with type 2 diabetes are modulated by diet, being higher when adherence to the Mediterranean diet pattern is low. Cardiovasc Diabetol. 2012;11(137). doi:10.1186/1475-2840-11-137
  • Fisher E, Boeing H, Fritsche A, Doering F, Joost HG, Schulze MB. Whole-grain consumption and transcription factor-7-like 2 (TCF7L2) rs7903146: gene-diet interaction in modulating type 2 diabetes risk. Br. J Nutr. 2009;101(4):478–481. doi:10.1017/S0007114508020369
  • Bordoni L, Gabbianelli R. Primers on nutrigenetics and nutri(epi)genomics: origins and development of precision nutrition. Biochimie. 2019;160:156–171. doi:10.1016/j.biochi.2019.03.006
  • Kanaley JA, Colberg SR, Corcoran MH, et al. Exercise/Physical Activity in Individuals with Type 2 Diabetes: a Consensus Statement from the American College of Sports Medicine. Med Sci Sports Exerc. 2022;54(2):353–368. PMID: 35029593; PMCID: PMC8802999. doi:10.1249/MSS.0000000000002800
  • Seyedizadeh SH, Cheragh-Birjandi S, Hamedi Nia MR. The Effects of Combined Exercise Training (Resistance-Aerobic) on Serum Kinesin and Physical Function in Type 2 Diabetes Patients with Diabetic Peripheral Neuropathy (Randomized Controlled Trials). J Diabetes Res. 2020;2020(6978128):1–7. doi:10.1155/2020/6978128
  • Kriska AM, Rockette-Wagner B, Edelstein SL, et al.; DPP Research Group. The Impact of Physical Activity on the Prevention of Type 2 Diabetes: evidence and Lessons Learned From the Diabetes Prevention Program, a Long-Standing Clinical Trial Incorporating Subjective and Objective Activity Measures. Diabetes Care. 2021;44(1):43–49. PMID: 33444158; PMCID: PMC7783946. doi:10.2337/dc20-1129
  • Balducci S, Haxhi J, Sacchetti M, et al. Italian Diabetes and Exercise Study 2 (IDES_2) Investigators. Relationships of Changes in Physical Activity and Sedentary Behavior With Changes in Physical Fitness and Cardiometabolic Risk Profile in Individuals With Type 2 Diabetes: the Italian Diabetes and Exercise Study 2 (IDES_2). Diabetes Care. 2022;45(1):213–221. PMID: 34728529. doi:10.2337/dc21-1505
  • Sattelmair J, Pertman J, Ding EL, et al. Dose response between physical activity and risk of coronary heart disease: a meta-analysis. Circulation. 2011;124(7):789–795. PMID: 21810663; PMCID: PMC3158733. doi:10.1161/CIRCULATIONAHA.110.010710
  • Barakat R, Refoyo I, Coteron J, et al. Exercise during pregnancy has a preventative effect on excessive maternal weight gain and gestational diabetes. A randomized controlled trial. Braz J Phys Ther. 2019;23(2):148–155. PMID: 30470666; PMCID: PMC6428908. doi:10.1016/j.bjpt.2018.11.005
  • Kluding PM, Pasnoor M, Singh R, et al. The effect of exercise on neuropathic symptoms, nerve function, and cutaneous innervation in people with diabetic peripheral neuropathy. J Diabetes Complications. 2012;26(5):424–429. PMID: 22717465; PMCID: PMC3436981. doi:10.1016/j.jdiacomp.2012.05.007
  • Nataraj M, Maiya AG, Nagaraju SP, Shastry BA, Shivashankara KN. Effect of exercise on renal function in diabetic nephropathy-A systematic review and meta-analysis. J Taibah Univ Med Sci. 2022;18(3):526–537. PMID: 36818178; PMCID: PMC9906014. doi:10.1016/j.jtumed.2022.11.002
  • Soleimani A, Soltani P, Karimi H, et al. The effect of moderate-intensity aerobic exercise on non-proliferative diabetic retinopathy in type II diabetes mellitus patients: a clinical trial. Microvasc Res. 2023;149:104556. PMID: 37269942. doi:10.1016/j.mvr.2023.104556
  • Merino J, Guasch-Ferré M, Li J, et al. Polygenic scores, diet quality, and type 2 diabetes risk: an observational study among 35,759 adults from 3 US cohorts. PLoS Med. 2022;19(4):e1003972. doi:10.1371/journal.pmed.1003972
  • Trief PM, Kalichman S, Uschner D, et al. Association of psychosocial factors with medication adherence in emerging adults with youth-onset type 2 diabetes: the iCount study. Pediatr Diabetes. 2022;23(8):1695–1706. doi:10.1111/pedi.13431
  • Roy T, Lloyd CE. Epidemiology of depression and diabetes: a systematic review. J Affect Disord. 2012;142 Suppl:S8–S21. doi:10.1016/S0165-0327(12)70004-6
  • Trief PM, Uschner D, Kalichman S, et al. Psychosocial factors predict medication adherence in young adults with youth-onset type 2 diabetes: longitudinal results from the TODAY2 I Count study. Diabet Med. 2023;40:e15062. PMID: 36751994. doi:10.1111/dme.15062
  • Castañeda SF, Gallo LC, Garcia ML, et al. Effectiveness of an integrated primary care intervention in improving psychosocial outcomes among Latino adults with diabetes: the LUNA-D study. Transl Behav Med. 2022;12(8):825–833. doi:10.1093/tbm/ibac042
  • Marmot M, Allen JJ. Social determinants of health equity. Am J Public Health. 2014;104:Suppl 4(Suppl 4):S517–9. PMID: 25100411; PMCID: PMC4151898. doi:10.2105/AJPH.2014.302200
  • Mezuk B, Eaton WW, Albrecht S, et al. Depression and type 2 diabetes over the lifespan: a meta-analysis. Diabetes Care. 2008;31(12):2383–2390. doi:10.2337/dc08-0985
  • Lin EH, Von Korff M, Alonso J, et al. Mental disorders among persons with diabetes--results from the World Mental Health Surveys. J Psychosom Res. 2008;65(6):571–580. doi:10.1016/j.jpsychores.2008.06.007
  • Gudala K, Bansal D, Schifano F, et al. Diabetes mellitus and risk of dementia: a meta-analysis of prospective observational studies. J Diabetes Investig. 2013;4(6):640–650. doi:10.1111/jdi.12087
  • Cukierman T, Gerstein HC, Williamson JD. Cognitive decline and dementia in diabetes--systematic overview of prospective observational studies. Diabetologia. 2005;48(12):2460–2469. GBD 2019 Diseases and Injuries Collaborators. doi:10.1007/s00125-005-0023-4
  • Vos T, Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396(10258):1204–1222. doi:10.1016/S0140-6736(20)30925-9
  • Mallorquí-Bagué N, Lozano-Madrid M, Toledo E, et al. Type 2 diabetes and cognitive impairment in an older population with overweight or obesity and metabolic syndrome: baseline cross-sectional analysis of the PREDIMED-plus study. Sci Rep. 2018;8(1):16128. doi:10.1038/s41598-018-33843-8
  • Pelle MC, Zaffina I, Giofrè F, Pujia R, Arturi F. Potential Role of Glucagon-like Peptide-1 Receptor Agonists in the Treatment of Cognitive Decline and Dementia in Diabetes Mellitus. Int. J Mol Sci. 2023;24(14):11301. doi:10.3390/ijms241411301
  • Salvatore T, Pafundi PC, Morgillo F, et al. Metformin: an old drug against old age and associated morbidities. Diabetes Res Clin Pract. 2020;160:108025. doi:10.1016/j.diabres.2020.108025
  • Cukierman-Yaffe T, Gerstein HC, Colhoun HM, et al. Effect of dulaglutide on cognitive impairment in type 2 diabetes: an exploratory analysis of the REWIND trial [published correction appears in Lancet Neurol. 2020 Oct;19(10):e9]. Lancet Neurol. 2020;19(7):582–590. doi:10.1016/S1474-4422(20)30173-3
  • Lee CH, Jeon SJ, Cho KS, et al. Activation of Glucagon-Like Peptide-1 Receptor Promotes Neuroprotection in Experimental Autoimmune Encephalomyelitis by Reducing Neuroinflammatory Responses. Mol Neurobiol. 2018;55(4):3007–3020. doi:10.1007/s12035-017-0550-2
  • Kremers SHM, Wild SH, Elders PJM, et al. The role of mental disorders in precision medicine for diabetes: a narrative review. Diabetologia. 2022;65(11):1895–1906. doi:10.1007/s00125-022-05738-x
  • Galiero R, Pafundi PC, Nevola R, et al. The Importance of Telemedicine during COVID-19 Pandemic: a Focus on Diabetic Retinopathy. J Diabetes Res. 2020;2020:1–8. doi:10.1155/2020/9036847
  • Sasso FC, Pafundi PC, Gelso A, et al.; NO BLIND Study Group. Telemedicine for screening diabetic retinopathy: the NO BLIND Italian multicenter study. Diabetes Metab Res Rev. 2019;35(3):e3113. PMID: 30548967. doi:10.1002/dmrr.3113
  • Gómez AM, Henao D, Parra D, et al. Early and sustained increase in time in range 1 year after initiation of hybrid close loop therapy via telemedicine in type 1 diabetes patients. Acta Diabetol. 2023;60(7):943–949. PMID: 37010594; PMCID: PMC10068726. doi:10.1007/s00592-023-02051-w
  • Díaz-Soto G, Ibáñez MS, Del Amo Simón S, et al. Metabolic control and satisfaction in a diabetes education programme in flash glucose monitoring through telemedicine in type 1 diabetes. Endocrinol Diabetes Nutr. 2023;70(6):408–414. PMID: 36456461. doi:10.1016/j.endien.2022.01.009
  • Longwitz A, Palokas M. Diabetes self-management education for adults with type 2 diabetes via telehealth in conjunction with remote patient monitoring: a best practice implementation project. JBI Evid Implement. 2023;21(2):156–166. PMID: 36458653. doi:10.1097/XEB.0000000000000360
  • Zamanillo-Campos R, Fiol-deRoque MA, Serrano-Ripoll MJ, Mira-Martínez S, Ricci-Cabello I. Development and evaluation of DiabeText, a personalized mHealth intervention to support medication adherence and lifestyle change behaviour in patients with type 2 diabetes in Spain: a mixed-methods Phase II pragmatic randomized controlled clinical trial. Int J Med Inform. 2023;176:105103. PMID: 37267809. doi:10.1016/j.ijmedinf.2023.105103
  • van Bastelaar KM, Pouwer F, Cuijpers P, Riper H, Snoek FJ. Web-based depression treatment for type 1 and type 2 diabetic patients: a randomized, controlled trial. Diabetes Care. 2011;34(2):320–325. doi:10.2337/dc10-1248
  • Hill-Briggs F, Adler NE, Berkowitz SA, et al. Social Determinants of Health and Diabetes: a Scientific Review. Diabetes Care. 2020;44(1):258–279. doi:10.2337/dci20-0053
  • Lenzi FR, Filardi T. Social determinants of vulnerabilities in type 2 diabetes: a call to action. J Endocrinol Invest. 2023;46(4):841–844. PMID: 36318450. doi:10.1007/s40618-022-01952-x
  • Bijlsma-Rutte A, Rutters F, Elders PJM, et al. Socio-economic status and HbA1c in type 2 diabetes: a systematic review and meta-analysis. Diabetes Metab Res Rev. 2018;34(6):e3008. PMID: 29633475. doi:10.1002/dmrr.3008
  • Xu X, Yang W, Deng Y, et al. Association of socioeconomic status with glycated haemoglobin level and risk factors for diabetic retinopathy: a cross-sectional study in Sichuan, western China. BMJ Open. 2023;13(2):e067475. PMID: 36797020; PMCID: PMC9936295. doi:10.1136/bmjopen-2022-067475
  • Egnew TR. Suffering, meaning, and healing: challenges of contemporary medicine. Ann Fam Med. 2009;7(2):170–175. PMID: 19273873; PMCID: PMC2653974. doi:10.1370/afm.943
  • ElSayed NA, Aleppo G, Aroda VR, et al. Pharmacologic Approaches to Glycemic Treatment: standards of Care in Diabetes-2023. Diabetes Care. 2023;46(Suppl 1):S140–S157. PMID: 36507650; PMCID: PMC9810476. doi:10.2337/dc23-S009
  • Choi JG, Winn AN, Skandari MR, et al. First-Line Therapy for Type 2 Diabetes With Sodium-Glucose Cotransporter-2 Inhibitors and Glucagon-Like Peptide-1 Receptor Agonists: a Cost-Effectiveness Study. Ann Intern Med. 2022;175(10):1392–1400. PMID: 36191315; PMCID: PMC10155215. doi:10.7326/M21-2941
  • Zhou K, Pedersen HK, Dawed AY, Pearson ER. Pharmacogenomics in diabetes mellitus: insights into drug action and drug discovery. Nat Rev Endocrinol. 2016;12(6):337–346. doi:10.1038/nrendo.2016.51
  • Tsapas A, Karagiannis T, Kakotrichi P, et al. Comparative efficacy of glucose-lowering medications on body weight and blood pressure in patients with type 2 diabetes: a systematic review and network meta-analysis. Diabetes Obes Metab. 2021;23(9):2116–2124. doi:10.1111/dom.14451
  • Caturano A, Galiero R, Pafundi PC. Metformin for Type 2 Diabetes. JAMA. 2019;322(13):1312. PMID: 31573630. doi:10.1001/jama.2019.11489
  • Zhou K, Donnelly L, Yang J, et al.; Wellcome Trust Case Control Consortium 2; Spencer CC, Groop L, Morris AD, Colhoun HM, Sham PC, McCarthy MI, Palmer CN, Pearson ER. Heritability of variation in glycaemic response to metformin: a genome-wide complex trait analysis. Lancet Diabetes Endocrinol. 2014;2(6):481–487. doi:10.1016/S2213-8587(14)70050-6
  • Wang DS, Jonker JW, Kato Y, Kusuhara H, Schinkel AH, Sugiyama Y. Involvement of organic cation transporter 1 in hepatic and intestinal distribution of metformin. J Pharmacol Exp Ther. 2002;302(2):510–515. doi:10.1124/jpet.102.034140
  • Kimura N, Masuda S, Tanihara Y, et al. Metformin is a superior substrate for renal organic cation transporter OCT2 rather than hepatic OCT1. Drug Metab Pharmacokinet. 2005;20(5):379–386. doi:10.2133/dmpk.20.379
  • Singh S, Usman K, Banerjee M. Pharmacogenetic studies update in type 2 diabetes mellitus. World J Diabetes. 2016;7(15):5. doi:10.4239/wjd.v7.i15.302
  • Hou W, Zhang D, Lu W, et al. Polymorphism of organic cation transporter 2 improves glucose-lowering effect of metformin via influencing its pharmacokinetics in Chinese type 2 diabetic patients. Mol Diagn Ther. 2015;19(1):25–33. doi:10.1007/s40291-014-0126-z
  • Tkáč I, Klimčáková L, Javorský M, et al. Pharmacogenomic association between a variant in SLC47A1 gene and therapeutic response to metformin in type 2 diabetes. Diabetes Obes Metab. 2013;15:189–191. doi:10.1111/j.1463-1326.2012.01691.x
  • Florez JC. Pharmacogenetics in type 2 diabetes: precision medicine or discovery tool? Diabetologia. 2017;60(5):800–807. PMID: 28283684. doi:10.1007/s00125-017-4227-1
  • Dennis JM, Henley WE, Weedon MN, et al. MASTERMIND Consortium. Sex and BMI Alter the Benefits and Risks of Sulfonylureas and Thiazolidinediones in Type 2 Diabetes: a Framework for Evaluating Stratification Using Routine Clinical and Individual Trial Data. Diabetes Care. 2018;41(9):1844–1853. PMID: 30072404; PMCID: PMC6591127. doi:10.2337/dc18-0344
  • Vetrano E, Rinaldi L, Mormone A, et al. Non-alcoholic Fatty Liver Disease (NAFLD), Type 2 Diabetes, and Non-viral Hepatocarcinoma: pathophysiological Mechanisms and New Therapeutic Strategies. Biomedicines. 2023;11(2):468. PMID: 36831004; PMCID: PMC9953066. doi:10.3390/biomedicines11020468
  • Lyssenko V, Bianchi C, Del Prato S. Personalized therapy by phenotype and genotype. Diabetes Care. 2016;39(suppl 2):s127–36. doi:10.2337/dcS15-3002
  • Hamming KS, Soliman D, Matemisz LC, et al. Coexpression of the type 2 diabetes susceptibility gene variants KCNJ11 E23K and ABCC8 S1369A alter the ATP and sulfonylurea sensitivities of the ATP-sensitive K(+) channel. Diabetes. 2009;58(10):2419–2424. PMID: 19587354; PMCID: PMC2750221. doi:10.2337/db09-0143
  • Hanefeld M, Cagatay M, Petrowitsch T, et al. Acarbose reduces the risk for myocardial infarction in Type 2 diabetic patients: meta-analysis of seven long-term studies. Eur Heart J. 2004;25(1):10–16. doi:10.1016/S0195-668X(03)00468-8
  • Wei Y, Xu W. Effect of acarbose on cardiovascular events and new-onset diabetes in patients with coronary heart disease and impaired glucose tolerance. Future Cardiol. 2019;15(2):127–133. PMID: 30793928. doi:10.2217/fca-2018-0062
  • Holman RR, Coleman RL, Chan JCN, et al. Effects of acarbose on cardiovascular and diabetes outcomes in patients with coronary heart disease and impaired glucose tolerance (ACE): a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2017;5(11):877–886. doi:10.1016/S2213-8587(17)30309-1
  • Maruthur NM, Gribble MO, Bennett WL, et al. The pharmacogenetics of type 2 diabetes: a systematic review. Diabetes Care. 2014;37:876–886. doi:10.2337/dc13-1276
  • Dennis JM, Shields BM, Hill AV, et al. MASTERMIND Consortium. Precision Medicine in Type 2 Diabetes: clinical Markers of Insulin Resistance Are Associated With Altered Short- and Long-term Glycemic Response to DPP-4 Inhibitor Therapy. Diabetes Care. 2018;41(4):705–712. PMID: 29386249; PMCID: PMC6591121. doi:10.2337/dc17-1827
  • Jones AG, McDonald TJ, Shields BM, et al. Markers of β-Cell Failure Predict Poor Glycemic Response to GLP-1 Receptor Agonist Therapy in Type 2 Diabetes. Diabetes Care. 2016;39(2):250–257. PMID: 26242184; PMCID: PMC4894547. doi:10.2337/dc15-0258
  • Bihan H, Ng WL, Magliano DJ, Shaw JE. Predictors of efficacy of GLP-1 agonists and DPP-4 inhibitors: a systematic review. Diabetes Res Clin Pract. 2016;121:27–34. PMID: 27622682. doi:10.1016/j.diabres.2016.08.011
  • Davis TME, Mulder H, Lokhnygina Y, et al. Effect of race on the glycaemic response to sitagliptin: insights from the Trial Evaluating Cardiovascular Outcomes with Sitagliptin (TECOS). Diabetes Obes Metab. 2018;20(6):1427–1434. PMID: 29405540. doi:10.1111/dom.13242
  • Palmer SC, Tendal B, Mustafa RA, et al. Sodium-glucose cotransporter protein-2 (SGLT-2) inhibitors and glucagon-like peptide-1 (GLP-1) receptor agonists for type 2 diabetes: systematic review and network meta-analysis of randomised controlled trials. BMJ. 2021;372:m 4573. doi:10.1136/bmj.m4573
  • Rathmann W, Bongaerts B. Pharmacogenetics of novel glucose-lowering drugs. Diabetologia. 2021;64(6):1201–1212. PMID: 33594477; PMCID: PMC8099830. doi:10.1007/s00125-021-05402-w
  • Yu M, Wang K, Liu H, et al. GLP1R variant is associated with response to exenatide in overweight Chinese Type 2 diabetes patients. Pharmacogenomics. 2019;20(4):273–277. doi:10.2217/pgs-2018-0159
  • de Luis DA, Ovalle HF, Soto GD, et al. Role of genetic variation in the cannabinoid receptor gene (CNR1) (G1359A polymorphism) on weight loss and cardiovascular risk factors after liraglutide treatment in obese patients with diabetes mellitus type 2. J Investig Med. 2014;62(2):324–327. PMID: 24322329. doi:10.2310/JIM.0000000000000032
  • DeFronzo RA, Ferrannini E, Schernthaner G, et al. Slope of change in HbA1c from baseline with empagliflozin compared with sitagliptin or glimepiride in patients with type 2 diabetes. Endocrinol Diabetes Metab. 2018;1(2):e00016. PMID: 30815552; PMCID: PMC6354821. doi:10.1002/edm2.16
  • Rosenstock J, Hansen L, Zee P, et al. Dual add-on therapy in type 2 diabetes poorly controlled with metformin monotherapy: a randomized double-blind trial of saxagliptin plus dapagliflozin addition versus single addition of saxagliptin or dapagliflozin to metformin. Diabetes Care. 2015;38(3):376–383. PMID: 25352655. doi:10.2337/dc14-1142
  • Dennis JM, Young KG, McGovern AP, et al. Development of a treatment selection algorithm for SGLT2 and DPP-4 inhibitor therapies in people with type 2 diabetes: a retrospective cohort study. Lancet Digit Health. 2022;4(12):e873–e883. PMID: 36427949. doi:10.1016/S2589-7500(22)00174-1
  • Macha S, Mattheus M, Halabi A, et al. Pharmacokinetics, pharmacodynamics and safety of empagliflozin, a sodium glucose cotransporter 2 (SGLT2) inhibitor, in subjects with renal impairment. Diabetes Obes Metab. 2014;16(3):215–222. PMID: 23859488. doi:10.1111/dom.12182
  • Cherney DZI, Cooper ME, Tikkanen I, et al. Pooled analysis of Phase III trials indicate contrasting influences of renal function on blood pressure, body weight, and HbA1c reductions with empagliflozin. Kidney Int. 2018;93(1):231–244. PMID: 28860019. doi:10.1016/j.kint.2017.06.017
  • Shields BM, Dennis JM, Angwin CD, et al. TriMaster Study group. Patient stratification for determining optimal second-line and third-line therapy for type 2 diabetes: the TriMaster study. Nat Med. 2023;29(2):376–383. PMID: 36477733; PMCID: PMC7614216. doi:10.1038/s41591-022-02120-7
  • Salvatore T, Galiero R, Caturano A, et al. An Overview of the Cardiorenal Protective Mechanisms of SGLT2 Inhibitors. Int J Mol Sci. 2022;23(7):3651. PMID: 35409011; PMCID: PMC8998569. doi:10.3390/ijms23073651
  • Coelho FDS, Borges-Canha M, von Hafe M, et al. Effects of sodium-glucose co-transporter 2 inhibitors on liver parameters and steatosis: a meta-analysis of randomized clinical trials. Diabetes Metab Res Rev. 2021;37(6):e3413. PMID: 33010191. doi:10.1002/dmrr.3413
  • Caturano A, Galiero R, Loffredo G, et al. Effects of a Combination of Empagliflozin Plus Metformin vs. Metformin Monotherapy on NAFLD Progression in Type 2 Diabetes: the IMAGIN Pilot Study. Biomedicines. 2023;11(2):322. PMID: 36830859; PMCID: PMC9952909. doi:10.3390/biomedicines11020322
  • Francke S, Mamidi RN, Solanki B, et al. In vitro metabolism of canagliflozin in human liver, kidney, intestine microsomes, and recombinant uridine diphosphate glucuronosyltransferases (UGT) and the effect of genetic variability of UGT enzymes on the pharmacokinetics of canagliflozin in humans. J Clin Pharmacol. 2015;55(9):1061–1072. doi:10.1002/jcph.506
  • Gentile S, Turco S, Guarino G, et al. Comparative efficacy study of atorvastatin vs simvastatin, pravastatin, lovastatin and placebo in type 2 diabetic patients with hypercholesterolaemia. Diabetes Obes Metab. 2000;2(6):355–362. doi:10.1046/j.1463-1326.2000.00106.x
  • Rinaldi L, Nevola R, Franci G, et al. Risk of Hepatocellular Carcinoma after HCV Clearance by Direct-Acting Antivirals Treatment Predictive Factors and Role of Epigenetics. Cancers. 2020;12(6):1351. doi:10.3390/cancers12061351
  • Cozzolino D, Sessa G, Salvatore T, et al. The involvement of the opioid system in human obesity: a study in normal weight relatives of obese people. J Clin Endocrinol Metab. 1996;81(2):713–718. doi:10.1210/jcem.81.2.8636293
  • Ahlqvist E, Storm P, Käräjämäki A, et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 2018;6(5):361–369. PMID: 29503172. doi:10.1016/S2213-8587(18)30051-2
  • Zaharia OP, Strassburger K, Strom A, et al.; German Diabetes Study Group. Risk of diabetes-associated diseases in subgroups of patients with recent-onset diabetes: a 5-year follow-up study. Lancet Diabetes Endocrinol. 2019;7(9):684–694. PMID: 31345776. doi:10.1016/S2213-8587(19)30187-1
  • Xiong XF, Yang Y, Wei L, et al. Identification of two novel subgroups in patients with diabetes mellitus and their association with clinical outcomes: a two-step cluster analysis. J Diabetes Investig. 2021;12(8):1346–1358. PMID: 33411406; PMCID: PMC8354513. doi:10.1111/jdi.13494
  • Pafundi PC, Garofalo C, Galiero R, et al. Role of Albuminuria in Detecting Cardio-Renal Risk and Outcome in Diabetic Subjects. Diagnostics (Basel). 2021;11(2):290. PMID: 33673215; PMCID: PMC7918197. doi:10.3390/diagnostics11020290
  • Salvatore T, Galiero R, Caturano A, et al. Dysregulated Epicardial Adipose Tissue as a Risk Factor and Potential Therapeutic Target of Heart Failure with Preserved Ejection Fraction in Diabetes. Biomolecules. 2022;12(2):176. PMID: 35204677; PMCID: PMC8961672. doi:10.3390/biom12020176
  • Preechasuk L, Khaedon N, Lapinee V, et al. Cluster analysis of Thai patients with newly diagnosed type 2 diabetes mellitus to predict disease progression and treatment outcomes: a prospective cohort study. BMJ Open Diabetes Res Care. 2022;10(6):e003145. PMID: 36581330; PMCID: PMC9806077. doi:10.1136/bmjdrc-2022-003145
  • Naithani N, Atal AT, Tvsvgk T, Vasudevan B, Misra P, Sinha S. Precision medicine: uses and challenges. Med J Armed Forces India. 2021;77(3)::258–265. PMID: 34305277; PMCID: PMC8282516. doi:10.1016/j.mjafi.2021.06.020
  • Griffin S. Diabetes precision medicine: plenty of potential, pitfalls and perils but not yet ready for prime time. Diabetologia. 2022;65(11):1913–1921. PMID: 35999379; PMCID: PMC9522689. doi:10.1007/s00125-022-05782-7
  • Gaede P, Lund-Andersen H, Parving HH, Pedersen O. Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med. 2008;358(6):580–591. PMID: 18256393. doi:10.1056/NEJMoa0706245
  • Gaede P, Vedel P, Larsen N, et al. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med. 2003;348(5):383–393. PMID: 12556541. doi:10.1056/NEJMoa021778
  • Sasso FC, Pafundi PC, Simeon V, et al.; NID-2 Study Group Investigators. Efficacy and durability of multifactorial intervention on mortality and MACEs: a randomized clinical trial in type-2 diabetic kidney disease. Cardiovasc Diabetol. 2021;20(1):145. PMID: 34271948; PMCID: PMC8285851. doi:10.1186/s12933-021-01343-1
  • Sasso FC, Simeon V, Galiero R, et al. NID-2 study group Investigators. The number of risk factors not at target is associated with cardiovascular risk in a type 2 diabetic population with albuminuria in primary cardiovascular prevention. Post-hoc analysis of the NID-2 trial. Cardiovasc Diabetol. 2022;21(1):235. PMID: 36344978; PMCID: PMC9641842. doi:10.1186/s12933-022-01674-7
  • Swen JJ, van der Wouden CH, Manson LE, et al.; Ubiquitous Pharmacogenomics Consortium. A 12-gene pharmacogenetic panel to prevent adverse drug reactions: an open-label, multicentre, controlled, cluster-randomised crossover implementation study. Lancet. 2023;401(10374):347–356. PMID: 36739136. doi:10.1016/S0140-6736(22)01841-4
  • Shah HS, Morieri ML, Marcovina SM, et al. Modulation of GLP-1 Levels by a Genetic Variant That Regulates the Cardiovascular Effects of Intensive Glycemic Control in ACCORD. Diabetes Care. 2018;41(2):348–355. PMID: 29183908; PMCID: PMC5780047. doi:10.2337/dc17-1638
  • Morieri ML, Shah HS, Sjaarda J, et al. PPARA Polymorphism Influences the Cardiovascular Benefit of Fenofibrate in Type 2 Diabetes: findings From ACCORD-Lipid. Diabetes. 2020;69(4):771–783. PMID: 31974142; PMCID: PMC7085251. doi:10.2337/db19-0973
  • Siminerio L, Krall J, Johnson P, et al. Examining a Diabetes Self-Management Education and Support Telemedicine Model With High-Risk Patients in a Rural Community. J Diabetes Sci Technol. 2023;20:19322968231180884. PMID: 37338130. doi:10.1177/19322968231180884