386
Views
3
CrossRef citations to date
0
Altmetric
REVIEW

Molecular Pathways of Diabetic Kidney Disease Inferred from Proteomics

ORCID Icon, & ORCID Icon
Pages 117-128 | Received 10 Oct 2022, Accepted 06 Dec 2022, Published online: 12 Jan 2023

References

  • Liu S, Gui Y, Wang MS, et al. Serum integrative omics reveals the landscape of human diabetic kidney disease. Mol Metab. 2021;54:101367. doi:10.1016/j.molmet.2021.101367
  • Tofte N, Lindhardt M, Adamova K, et al. Early detection of diabetic kidney disease by urinary proteomics and subsequent intervention with spironolactone to delay progression (PRIORITY): a prospective observational study and embedded randomised placebo-controlled trial. Lancet Diabetes Endocrinol. 2020;8:301–312. doi:10.1016/S2213-8587(20)30026-7
  • Gordin D, Shah H, Shinjo T, et al. Characterization of glycolytic enzymes and pyruvate kinase M2 in type 1 and 2 diabetic nephropathy. Diabetes Care. 2019;42:1263–1273. doi:10.2337/dc18-2585
  • Uyy E, Suica VI, Boteanu RM, et al. Diabetic nephropathy associates with deregulation of enzymes involved in kidney sulphur metabolism. J Cell Mol Med. 2020;24:12131–12140. doi:10.1111/jcmm.15855
  • Shah IM, Mackay SP, McKay GA. Therapeutic strategies in the treatment of diabetic nephropathy - a translational medicine approach. Curr Med Chem. 2009;16:997–1016. doi:10.2174/092986709787581897
  • Nicholas SB. Use of urinary proteomics in diagnosis and monitoring of diabetic kidney disease. Lancet Diabetes Endocrinol. 2020;8:261–262. doi:10.1016/S2213-8587(20)30067-X
  • Klein J, Ramirez-Torres A, Ericsson A, et al. Urinary peptidomics provides a noninvasive humanized readout of diabetic nephropathy in mice. Kidney Int. 2016;90:1045–1055. doi:10.1016/j.kint.2016.06.023
  • Shao C, Wang Y, Gao Y. Applications of urinary proteomics in biomarker discovery. Sci China Life Sci. 2011;54:409–417. doi:10.1007/s11427-011-4162-1
  • Greco V, Piras C, Pieroni L, et al. Direct assessment of plasma/serum sample quality for proteomics biomarker investigation. Methods Mol Biol. 2017;1619:3–21.
  • Overgaard AJ, Thingholm TE, Larsen MR, et al. Quantitative iTRAQ-based proteomic identification of candidate biomarkers for diabetic nephropathy in plasma of type 1 diabetic patients. Clin Proteomics. 2010;6:105–114. doi:10.1007/s12014-010-9053-0
  • Cefalu WT, Bakris G, Blonde L, Boulton A, DAlessio D, Groot M. Standards of medical care in diabetes-2017: summary of Revisions. Diabetes Care. 2017;40:S4–S5. doi:10.2337/dc17-S003
  • Aluksanasuwan S, Plumworasawat S, Malaitad T, et al. High glucose induces phosphorylation and oxidation of mitochondrial proteins in renal tubular cells: a proteomics approach. Sci Rep. 2020;10:5843. doi:10.1038/s41598-020-62665-w
  • Lei L, Bai Y, Fan Y, et al. Comprehensive diagnostics of diabetic nephropathy by transcriptome RNA sequencing. Diabetes Metab Syndr Obes. 2022;15:3069–3080. doi:10.2147/DMSO.S371026
  • Mu X, Yang M, Ling P, et al. Acylcarnitines: can they be biomarkers of diabetic nephropathy? Diabetes Metab Syndr Obes. 2022;15:247–256. doi:10.2147/DMSO.S350233
  • Shen L, Zhao D, Chen Y, et al. Comparative proteomics analysis of serum proteins in gestational diabetes during early and middle stages of pregnancy. Proteomics Clin Appl. 2019;13:e1800060. doi:10.1002/prca.201800060
  • Moulder R, Bhosale SD, Goodlett DR, et al. Analysis of the plasma proteome using iTRAQ and TMT-based isobaric labeling. Mass Spectrom Rev. 2018;37(5):583–606. doi:10.1002/mas.21550
  • Bringans SD, Ito J, Stoll T, et al. Comprehensive mass spectrometry based biomarker discovery and validation platform as applied to diabetic kidney disease. EuPA Open Proteom. 2017;14:1–10. doi:10.1016/j.euprot.2016.12.001
  • Frantzi M, Latosinska A, Fluhe L, et al. Developing proteomic biomarkers for bladder cancer: towards clinical application. Nat Rev Urol. 2015;12:317–330. doi:10.1038/nrurol.2015.100
  • Geyer PE, Holdt LM, Teupser D, et al. Revisiting biomarker discovery by plasma proteomics. Mol Syst Biol. 2017;13:942. doi:10.15252/msb.20156297
  • Siwy J, Zurbig P, Argiles A, et al. Noninvasive diagnosis of chronic kidney diseases using urinary proteome analysis. Nephrol Dial Transplant. 2017;32:2079–2089. doi:10.1093/ndt/gfw337
  • Beasley-Green A. Urine proteomics in the era of mass spectrometry. Int Neurourol J. 2016;20:S70–75. doi:10.5213/inj.1612720.360
  • Li XQ, Chang DY, Chen M, et al. Complement activation in patients with diabetic nephropathy. Diabetes Metab. 2019;45:248–253. doi:10.1016/j.diabet.2018.04.001
  • Yang J, Liu D, Liu Z. Integration of metabolomics and proteomics in exploring the endothelial dysfunction mechanism induced by serum exosomes from diabetic retinopathy and diabetic nephropathy patients. Front Endocrinol. 2022;13:830466. doi:10.3389/fendo.2022.830466
  • Lindhardt M, Persson F, Zurbig P, et al. Urinary proteomics predict onset of microalbuminuria in normoalbuminuric type 2 diabetic patients, a sub-study of the DIRECT-Protect 2 study. Nephrol Dial Transplant. 2017;32(11):1866–1873. doi:10.1093/ndt/gfw292
  • Khan NU, Lin J, Liu X, et al. Insights into predicting diabetic nephropathy using urinary biomarkers. Biochim Biophys Acta Proteins Proteom. 2020;1868:140475. doi:10.1016/j.bbapap.2020.140475
  • Limonte CP, Valo E, Drel V, et al. Urinary proteomics identifies cathepsin D as a biomarker of rapid eGFR decline in type 1 diabetes. Diabetes Care. 2022;45:1416–1427. doi:10.2337/dc21-2204
  • Kobayashi H, Looker HC, Satake E, et al. Results of untargeted analysis using the SOMAscan proteomics platform indicates novel associations of circulating proteins with risk of progression to kidney failure in diabetes. Kidney Int. 2022;102:370–381. doi:10.1016/j.kint.2022.04.022
  • Ahn HS, Kim JH, Jeong H. et al. Differential urinary proteome analysis for predicting prognosis in type 2 diabetes patients with and without renal dysfunction. Int J Mol Sci. 2020:21. doi:10.3390/ijms22010021
  • Chen CJ, Liao WL, Chang CT, et al. Urine proteome analysis by C18 plate-matrix-assisted laser desorption/ionization time-of-flight mass spectrometry allows noninvasive differential diagnosis and prediction of diabetic nephropathy. PLoS One. 2018;13:e0200945. doi:10.1371/journal.pone.0200945
  • Patel DN, Kalia K. Characterization of low molecular weight urinary proteins at varying time intervals in type 2 diabetes mellitus and diabetic nephropathy patients. Diabetol Metab Syndr. 2019;11:39. doi:10.1186/s13098-019-0430-1
  • Chebotareva N, Vinogradov A, McDonnell V, et al. Urinary protein and peptide markers in chronic kidney disease. Int J Mol Sci. 2021;23(1):22. doi:10.3390/ijms23010022
  • Guo Z, Liu X, Li M, et al. Differential urinary glycoproteome analysis of type 2 diabetic nephropathy using 2D-LC-MS/MS and iTRAQ quantification. J Transl Med. 2015;13:371. doi:10.1186/s12967-015-0712-9
  • Liao WL, Chang CT, Chen CC, et al. Urinary proteomics for the early diagnosis of diabetic nephropathy in Taiwanese patients. J Clin Med. 2018;7:483.
  • Chiang CY, Pan CC, Chang HY, et al. SH3BGRL3 protein as a potential prognostic biomarker for urothelial carcinoma: a novel binding partner of epidermal growth factor receptor. Clin Cancer Res. 2015;21:5601–5611. doi:10.1158/1078-0432.CCR-14-3308
  • Araumi A, Osaki T, Ichikawa K, et al. Urinary and plasma proteomics to discover biomarkers for diagnosing between diabetic nephropathy and minimal change nephrotic syndrome or membranous nephropathy. Biochem Biophys Rep. 2021;27:101102. doi:10.1016/j.bbrep.2021.101102
  • Fiseha T, Tamir Z. Urinary markers of tubular injury in early diabetic nephropathy. Int J Nephrol. 2016;2016:4647685. doi:10.1155/2016/4647685
  • Fan G, Gong T, Lin Y, et al. Urine proteomics identifies biomarkers for diabetic kidney disease at different stages. Clin Proteomics. 2021;18:32. doi:10.1186/s12014-021-09338-6
  • Al-Rubeaan K, Siddiqui K, Al-Ghonaim MA, et al. Assessment of the diagnostic value of different biomarkers in relation to various stages of diabetic nephropathy in type 2 diabetic patients. Sci Rep. 2017;7(1):2684. doi:10.1038/s41598-017-02421-9
  • Panduru NM, Forsblom C, Saraheimo M, et al. Urinary liver-type fatty acid-binding protein and progression of diabetic nephropathy in type 1 diabetes. Diabetes Care. 2013;36:2077–2083. doi:10.2337/dc12-1868
  • Garg V, Kumar M, Mahapatra HS, et al. Novel urinary biomarkers in pre-diabetic nephropathy. Clin Exp Nephrol. 2015;19(5):895–900. doi:10.1007/s10157-015-1085-3
  • Zurbig P, Jerums G, Hovind P, et al. Urinary proteomics for early diagnosis in diabetic nephropathy. Diabetes. 2012;61:3304–3313. doi:10.2337/db12-0348
  • Canadas-Garre M, Anderson K, McGoldrick J, et al. Proteomic and metabolomic approaches in the search for biomarkers in chronic kidney disease. J Proteomics. 2019;193:93–122. doi:10.1016/j.jprot.2018.09.020
  • Lu H, Deng S, Zheng M, et al. iTRAQ plasma proteomics analysis for candidate biomarkers of type 2 incipient diabetic nephropathy. Clin Proteomics. 2019;16(1):33. doi:10.1186/s12014-019-9253-1
  • Caseiro A, Ferreira R, Quintaneiro C, et al. Protease profiling of different biofluids in type 1 diabetes mellitus. Clin Biochem. 2012;45:1613–1619. doi:10.1016/j.clinbiochem.2012.08.027
  • Moresco RN, Sangoi MB, De Carvalho JA, et al. Diabetic nephropathy: traditional to proteomic markers. Clin Chim Acta. 2013;421:17–30. doi:10.1016/j.cca.2013.02.019
  • Bacci MR, Cavallari MR, de Rozier-Alves RM, et al. The impact of lipocalin-type-prostaglandin-D-synthase as a predictor of kidney disease in patients with type 2 diabetes. Drug Des Devel Ther. 2015;9:3179–3182. doi:10.2147/DDDT.S82100
  • Piktel E, Levental I, Durnas B, et al. Plasma gelsolin: indicator of inflammation and its potential as a diagnostic tool and therapeutic target. Int J Mol Sci. 2018;20(1):19. doi:10.3390/ijms20010019
  • Cheng Y, Hu X, Liu C, et al. Gelsolin inhibits the inflammatory process induced by LPS. Cell Physiol Biochem. 2017;41:205–212. doi:10.1159/000456043
  • Yang Y, Zhang S, Lu B, et al. Predicting diabetic nephropathy by serum proteomic profiling in patients with type 2 diabetes. Wien Klin Wochenschr. 2015;127:669–674. doi:10.1007/s00508-014-0679-1
  • Yamanouchi M, Skupien J, Niewczas MA, et al. Improved clinical trial enrollment criterion to identify patients with diabetes at risk of end-stage renal disease. Kidney Int. 2017;92:258–266. doi:10.1016/j.kint.2017.02.010
  • Saulnier PJ, Gand E, Velho G, et al. Association of circulating biomarkers (Adrenomedullin, TNFR1, and NT-proBNP) with renal function decline in patients with type 2 diabetes: a French prospective cohort. Diabetes Care. 2017;40:367–374. doi:10.2337/dc16-1571
  • Peters KE, Davis WA, Ito J, et al. Identification of novel circulating biomarkers predicting rapid decline in renal function in type 2 diabetes: the Fremantle diabetes study Phase II. Diabetes Care. 2017;40:1548–1555. doi:10.2337/dc17-0911
  • Peters KE, Xu J, Bringans SD, et al. PromarkerD predicts renal function decline in type 2 diabetes in the Canagliflozin Cardiovascular Assessment Study (CANVAS). J Clin Med. 2020;9(10):3212. doi:10.3390/jcm9103212
  • Beisswenger PJ, Howell SK, Russell GB, et al. Early progression of diabetic nephropathy correlates with methylglyoxal-derived advanced glycation end products. Diabetes Care. 2013;36(10):3234–3239. doi:10.2337/dc12-2689
  • El-Asrar MA, Adly AA, Ismail EA. Soluble CD40L in children and adolescents with type 1 diabetes: relation to microvascular complications and glycemic control. Pediatr Diabetes. 2012;13:616–624. doi:10.1111/j.1399-5448.2012.00881.x
  • Niewczas MA, Pavkov ME, Skupien J, et al. A signature of circulating inflammatory proteins and development of end-stage renal disease in diabetes. Nat Med. 2019;25:805–813. doi:10.1038/s41591-019-0415-5
  • Barutta F, Bellini S, Canepa S, et al. Novel biomarkers of diabetic kidney disease: current status and potential clinical application. Acta Diabetol. 2021;58(7):819–830. doi:10.1007/s00592-020-01656-9
  • Blutke A. Opening a treasure chest: glomerular proteome analyses of formalin-fixed paraffin-embedded kidney tissue in the investigation of diabetic nephropathy. Nephrol Dial Transplant. 2012;27(5):1695–1698. doi:10.1093/ndt/gfs082
  • Hoyer KJR, Dittrich S, Bartram MP, et al. Quantification of molecular heterogeneity in kidney tissue by targeted proteomics. J Proteomics. 2019;193:85–92. doi:10.1016/j.jprot.2018.03.001
  • Vaidya VS, Niewczas MA, Ficociello LH, et al. Regression of microalbuminuria in type 1 diabetes is associated with lower levels of urinary tubular injury biomarkers, kidney injury molecule-1, and N-acetyl-beta-D-glucosaminidase. Kidney Int. 2011;79:464–470. doi:10.1038/ki.2010.404
  • Fu WJ, Xiong SL, Fang YG, et al. Urinary tubular biomarkers in short-term type 2 diabetes mellitus patients: a cross-sectional study. Endocrine. 2012;41:82–88. doi:10.1007/s12020-011-9509-7
  • Zubiri I, Posada-Ayala M, Benito-Martin A, et al. Kidney tissue proteomics reveals regucalcin downregulation in response to diabetic nephropathy with reflection in urinary exosomes. Transl Res. 2015;166:474–484 e474. doi:10.1016/j.trsl.2015.05.007
  • de la Cuesta F, Barderas MG, Calvo E, et al. Secretome analysis of atherosclerotic and non-atherosclerotic arteries reveals dynamic extracellular remodeling during pathogenesis. J Proteomics. 2012;75:2960–2971. doi:10.1016/j.jprot.2011.12.005
  • Mi H, Poudel S, Muruganujan A, et al. PANTHER version 10: expanded protein families and functions, and analysis tools. Nucleic Acids Res. 2016;44(D1):D336–D342. doi:10.1093/nar/gkv1194
  • Rossi C, Marzano V, Consalvo A, et al. Proteomic and metabolomic characterization of streptozotocin-induced diabetic nephropathy in TIMP3-deficient mice. Acta Diabetol. 2018;55:121–129. doi:10.1007/s00592-017-1074-y
  • Satirapoj B, Tassanasorn S, Charoenpitakchai M, et al. Periostin as a tissue and urinary biomarker of renal injury in type 2 diabetes mellitus. PLoS One. 2015;10:e0124055. doi:10.1371/journal.pone.0124055
  • Jung CY, Yoo TH. Pathophysiologic mechanisms and potential biomarkers in diabetic kidney disease. Diabetes Metab J. 2022;46:181–197. doi:10.4093/dmj.2021.0329
  • Nakatani S, Wei M, Ishimura E, et al. Proteome analysis of laser microdissected glomeruli from formalin-fixed paraffin-embedded kidneys of autopsies of diabetic patients: nephronectin is associated with the development of diabetic glomerulosclerosis. Nephrol Dial Transplant. 2012;27:1889–1897. doi:10.1093/ndt/gfr682
  • Fugmann T, Borgia B, Revesz C, et al. Proteomic identification of vanin-1 as a marker of kidney damage in a rat model of type 1 diabetic nephropathy. Kidney Int. 2011;80:272–281. doi:10.1038/ki.2011.116
  • Winiarczyk D, Winiarczyk M, Michalak K, et al. Urinary proteome differences in canine diabetes with and without the presence of microalbuminuria. Animals. 2022;12(6):748. doi:10.3390/ani12060748
  • Jin J, Gong J, Zhao L, et al. iTRAQ-based comparative proteomics analysis reveals specific urinary biomarkers for various kidney diseases. Biomark Med. 2020;14(10):839–854. doi:10.2217/bmm-2019-0556
  • Bellei E, Monari E, Bergamini S, et al. Urinary proteomics in biomarker discovery of kidney-related disorders: diabetic nephropathy and drug-induced nephrotoxicity in chronic headache. EJIFCC. 2018;29:290–297.
  • Guillen-Gomez E, Bardaji-de-quixano B, Ferrer S, et al. Urinary proteome analysis identified neprilysin and VCAM as proteins involved in diabetic nephropathy. J Diabetes Res. 2018;2018:6165303. doi:10.1155/2018/6165303
  • El-Beblawy NM, Andrawes NG, Ismail EA, et al. Serum and urinary orosomucoid in young patients with type 1 diabetes: a link between inflammation, microvascular complications, and subclinical atherosclerosis. Clin Appl Thromb Hemost. 2016;22:718–726. doi:10.1177/1076029616637185
  • Overgaard AJ, Hansen HG, Lajer M, et al. Plasma proteome analysis of patients with type 1 diabetes with diabetic nephropathy. Proteome Sci. 2010;8:4. doi:10.1186/1477-5956-8-4
  • Malagrino PA, Venturini G, Yogi PS, et al. Proteome analysis of acute kidney injury - Discovery of new predominantly renal candidates for biomarker of kidney disease. J Proteomics. 2017;151:66–73. doi:10.1016/j.jprot.2016.07.019
  • Chun N, Wyatt CM, He JC. Identification of a protective proteomic signature and a potential therapeutic target in diabetic nephropathy. Kidney Int. 2017;92:780–781. doi:10.1016/j.kint.2017.08.002
  • Fallon JK, Smith PC, Xia CQ, et al. Quantification of four efflux drug transporters in liver and kidney across species using targeted quantitative proteomics by isotope dilution NanoLC-MS/MS. Pharm Res. 2016;33:2280–2288. doi:10.1007/s11095-016-1966-5
  • Konvalinka A, Zhou J, Dimitromanolakis A, et al. Determination of an angiotensin II-regulated proteome in primary human kidney cells by stable isotope labeling of amino acids in cell culture (SILAC). J Biol Chem. 2013;288:24834–24847. doi:10.1074/jbc.M113.485326