382
Views
2
CrossRef citations to date
0
Altmetric
REVIEW

Addressing the Continuum of Dysglycaemia and Vascular Complications in Prediabetes and Type 2 Diabetes: Need for Early and Intensive Treatment

, ORCID Icon, ORCID Icon, , , , , , , , ORCID Icon & show all
Pages 105-115 | Received 08 Nov 2022, Accepted 23 Dec 2022, Published online: 11 Jan 2023

References

  • DCCT Research Group. The association between glycemic exposure and long-term diabetes complications in the diabetes control and complications trial. Diabetes. 1995;44:968–983. doi:10.2337/diab.44.8.968
  • UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1988;352:837–853. doi:10.1016/s0140-6736(98)07019-6
  • UK Prospective Diabetes Study Group. Effect of intensive blood glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1988;352:854–865. doi:10.1016/s0140-6736(98)07037-8
  • Davies MJ, Aroda VR, Collins BS, et al. Management of hyperglycaemia in type 2 diabetes, 2022. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia. 2022;65:1925–1966. doi:10.1007/s00125-022-05787-2
  • Draznin B; American Diabetes Association Professional Practice Committee; American Diabetes Association Professional Practice Committee. 6. Glycemic targets: standards of medical care in diabetes-2022. Diabetes Care. 2022;45(Suppl1):S83–S96. doi:10.2337/dc22-S006
  • Stratton IM, Adler AI, Neil HA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ. 2000;321:405–412. doi:10.1136/bmj.321.7258.405
  • Consensus Committee. Consensus statement on the worldwide standardization of the hemoglobin A1C measurement: the American Diabetes Association, European Association for the Study of Diabetes, International Federation of Clinical Chemistry and Laboratory Medicine, and the International Diabetes Federation. Diabetes Care. 2007;30(9):2399–2400. doi:10.2337/dc07-9925
  • Garcia-Moll X, Barrios V, Franch-Nadal J. Moving from the stratification of primary and secondary prevention of cardiovascular risk in diabetes towards a continuum of risk: need for a new paradigm. Drugs Context. 2021;10. doi:10.7573/dic.2021-6-3
  • Wysham C, Shubrook J. Beta-cell failure in type 2 diabetes: mechanisms, markers, and clinical implications. Postgrad Med. 2020;132:676–686. doi:10.1080/00325481.2020.1771047
  • Draznin B; American Diabetes Association Professional Practice Committee; American Diabetes Association Professional Practice Committee. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2022. Diabetes Care. 2022;45(Suppl1):S17–S38. doi:10.2337/dc22-S002
  • World Health Organization, International Diabetes Federation. Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia. Report of a WHO/IDF consultation. Available from: www.who.int/diabetes/publications/Definitionanddiagnosisofdiabetes_new.pdf. Accessed December 30, 2022.
  • Ciarambino T, Crispino P, Leto G, Mastrolorenzo E, Para O, Giordano M. Influence of gender in diabetes mellitus and its complication. Int J Mol Sci. 2022;23:8850. doi:10.3390/ijms23168850
  • Zeighamy Alamdary S, Afifirad R, Asgharzadeh S, et al. The influence of probiotics consumption on management of prediabetic state: a systematic review of clinical trials. Int J Clin Pract. 2022;2022:5963679. doi:10.1155/2022/5963679
  • Naseri K, Saadati S, Ashtary-Larky D, et al. Probiotics and synbiotics supplementation improve glycemic control parameters in subjects with prediabetes and type 2 diabetes mellitus: a GRADE-assessed systematic review, meta-analysis, and meta-regression of randomized clinical trials. Pharmacol Res. 2022;184:106399. doi:10.1016/j.phrs.2022.106399
  • Letchumanan G, Abdullah N, Marlini M, et al. Gut microbiota composition in prediabetes and newly diagnosed type 2 diabetes: a systematic review of observational studies. Front Cell Infect Microbiol. 2022;12:943427. doi:10.3389/fcimb.2022.943427
  • Abdul-Ghani MA, Lyssenko V, Tuomi T, DeFronzo RA, Groop L. Fasting versus postload plasma glucose concentration and the risk for future type 2 diabetes: results from the Botnia Study. Diabetes Care. 2009;32:281–286. doi:10.2337/dc08-1264
  • Lee CMY, Colagiuri S, Woodward M, et al. Comparing different definitions of prediabetes with subsequent risk of diabetes: an individual participant data meta-analysis involving 76 513 individuals and 8208 cases of incident diabetes. BMJ Open Diabetes Res Care. 2019;7:2019. doi:10.1136/bmjdrc-2019-000794
  • U.K. Prospective Diabetes Study Group. U.K. prospective diabetes study 16. Overview of 6 years’ therapy of type II diabetes: a progressive disease. Diabetes. 1995;44:1249–1258. doi:10.2337/diab.44.11.1249
  • Centers for Disease Control. Prediabetes – your chance to prevent type 2 diabetes. Available from: https://www.cdc.gov/diabetes/basics/prediabetes.html. Accessed December 30, 2022.
  • Xia PF, Pan XF, Li Y, et al. Trends in diagnosed and undiagnosed diabetes among adults in the U.S., 2005–2016. Diabetes Care. 2021;44:e175–e177. doi:10.2337/dc21-1156
  • Leahy S, O’ Halloran AM, O’ Leary N, et al. Prevalence and correlates of diagnosed and undiagnosed type 2 diabetes mellitus and pre–diabetes in older adults: findings from the Irish Longitudinal Study on Ageing (TILDA). Diabetes Res Clin Pract. 2015;110:241–249. doi:10.1016/j.diabres.2015.10.015
  • Moody A, Cowley G, Ng Fat L, Mindell JS. Social inequalities in prevalence of diagnosed and undiagnosed diabetes and impaired glucose regulation in participants in the Health Surveys for England series. BMJ Open. 2016;6:e010155. doi:10.1136/bmjopen-2015-010155
  • Bener A, Zirie M, Janahi IM, Al–Hamaq AO, Musallam M, Wareham NJ. Prevalence of diagnosed and undiagnosed diabetes mellitus and its risk factors in a population–based study of Qatar. Diabetes Res Clin Pract. 2009;84:99–106. doi:10.1016/j.diabres.2009.02.003
  • Pearson–Stuttard J, Bennett J, Cheng YJ, et al. Trends in predominant causes of death in individuals with and without diabetes in England from 2001 to 2018: an epidemiological analysis of linked primary care records. Lancet Diabetes Endocrinol. 2021;9:165–173. doi:10.1016/S2213-8587(20)30431-9
  • Barr EL, Zimmet PZ, Welborn TA, et al. Risk of cardiovascular and all–cause mortality in individuals with diabetes mellitus, impaired fasting glucose, and impaired glucose tolerance: the Australian Diabetes, Obesity, and Lifestyle Study (AusDiab). Circulation. 2007;116:151–157. doi:10.1161/CIRCULATIONAHA.106.685628
  • Wen CP, Cheng TY, Tsai SP, Hsu HL, Wang SL. Increased mortality risks of pre–diabetes (impaired fasting glucose) in Taiwan. Diabetes Care. 2005;28:2756–2761. doi:10.2337/diacare.28.11.2756
  • Saydah SH, Loria CM, Eberhardt MS, Brancati FL. Subclinical states of glucose intolerance and risk of death in the U. S. Diabetes Care. 2001;24:447–453. doi:10.2337/diacare.24.3.447
  • Sorkin JD, Muller DC, Fleg JL, Andres R. The relation of fasting and 2–h postchallenge plasma glucose concentrations to mortality: data from the Baltimore Longitudinal Study of Aging with a critical review of the literature. Diabetes Care. 2005;28:2626–2632. doi:10.2337/diacare.28.11.2626
  • Mutie PM, Pomares–Millan H, Atabaki–Pasdar N, et al. An investigation of causal relationships between prediabetes and vascular complications. Nat Commun. 2020;11:4592. doi:10.1038/s41467-020-18386-9
  • Gujral UP, Jagannathan R, He S, et al. Association between varying cut–points of intermediate hyperglycemia and risk of mortality, cardiovascular events and chronic kidney disease: a systematic review and meta–analysis. BMJ Open Diabetes Res Care. 2021;9:e001776. doi:10.1136/bmjdrc-2020-001776
  • Ford ES, Zhao G, Li C. Pre–diabetes the risk for cardiovascular disease: a systematic review of the evidence. J Am Coll Cardiol. 2010;55:1310–1317. doi:10.1016/j.jacc.2009.10.060
  • Deedwania P, Patel K, Fonarow GC, et al. Prediabetes is not an independent risk factor for incident heart failure, other cardiovascular events or mortality in older adults: findings from a population–based cohort study. Int J Cardiol. 2013;168:3616–3622. doi:10.1016/j.ijcard.2013.05.038
  • Grundy SM. Pre-diabetes, metabolic syndrome, and cardiovascular risk. J Am Coll Cardiol. 2012;59:635–643. doi:10.1016/j.jacc.2011.08.080
  • Welsh C, Welsh P, Celis-Morales CA, et al. Glycated hemoglobin, prediabetes, and the links to cardiovascular disease: data from UK Biobank. Diabetes Care. 2020;43:440–445. doi:10.2337/dc19-1683
  • Vistisen D, Witte DR, Brunner EJ, et al. Risk of cardiovascular disease and death in individuals with prediabetes defined by different criteria: the Whitehall II Study. Diabetes Care. 2018;41:899–906. doi:10.2337/dc17-2530
  • De Oliveira CM, Tureck LV, Alvares D, et al. Cardiometabolic risk factors correlated with the incidence of dysglycaemia in a Brazilian normoglycaemic sample: the Baependi Heart Study cohort. Diabetol Metab Syndr. 2020;12:6. doi:10.1186/s13098-019-0512-0
  • Beulens J, Rutters F, Rydén L, et al. Risk and management of pre-diabetes. Eur J Prev Cardiol. 2019;26(2_suppl):47–54. doi:10.1177/2047487319880041
  • Huemer MT, Huth C, Schederecker F, et al. Association of endothelial dysfunction with incident prediabetes, type 2 diabetes and related traits: the KORA F4/FF4 study. BMJ Open Diabetes Res Care. 2020;8:e001321. doi:10.1136/bmjdrc-2020-001321
  • Parrinello CM, Hua S, Carnethon MR, et al. Associations of hyperglycemia and insulin resistance with biomarkers of endothelial dysfunction in Hispanic/Latino youths: results from the Hispanic Community Children’s Health Study/Study of Latino Youth (SOL Youth). J Diabetes Complications. 2017;31:836–842. doi:10.1016/j.jdiacomp.2017.01.019
  • Walther G, Obert P, Dutheil F, et al. Metabolic syndrome individuals with and without type 2 diabetes mellitus present generalized vascular dysfunction: cross-sectional study. Arterioscler Thromb Vasc Biol. 2015;35:1022–1029. doi:10.1161/ATVBAHA.114.304591
  • Malin SK, Gilbertson NM, Eichner NZM, Heiston E, Miller S, Weltman A. Impact of Short-term continuous and interval exercise training on endothelial function and glucose metabolism in prediabetes. J Diabetes Res. 2019;2019:4912174. doi:10.1155/2019/4912174
  • Torres-Peña JD, Garcia-Rios A, Delgado-Casado N, et al. Mediterranean diet improves endothelial function in patients with diabetes and prediabetes: a report from the CORDIOPREV study. Atherosclerosis. 2018;269:50–56. doi:10.1016/j.atherosclerosis.2017.12.012
  • Desch S, Sonnabend M, Niebauer J, et al. Effects of physical exercise versus rosiglitazone on endothelial function in coronary artery disease patients with prediabetes. Diabetes Obes Metab. 2010;12:825–828. doi:10.1111/j.1463-1326.2010.01234.x
  • Sardu C, Paolisso P, Sacra C, et al. Effects of metformin therapy on coronary endothelial dysfunction in patients with prediabetes with stable angina and nonobstructive coronary artery stenosis: the CODYCE Multicenter Prospective Study. Diabetes Care. 2019;42:1946–1955. doi:10.2337/dc18-2356
  • Bulut A, Avci B. Carotid intima–media thickness values are significantly higher in patients with prediabetes compared to normal glucose metabolism. Medicine. 2019;98:e17805. doi:10.1097/MD.0000000000017805
  • Xing FY, Neeland IJ, Gore MO, et al. Association of prediabetes by fasting glucose and/or haemoglobin A1c levels with subclinical atherosclerosis and impaired renal function: observations from the Dallas Heart Study. Diab Vasc Dis Res. 2014;11:11–18. doi:10.1177/1479164113514239
  • Sibal L, Agarwal SC, Home PD. Carotid intima-media thickness as a surrogate marker of cardiovascular disease in diabetes. Diabetes Metab Syndr Obes. 2011;4:23–34. doi:10.2147/DMSO.S8540
  • Willeit P, Tschiderer L, Allara E, et al. Carotid intima-media thickness progression as surrogate marker for cardiovascular risk: meta-analysis of 119 clinical trials involving 100 667 patients. Circulation. 2020;142:621–642. doi:10.1161/CIRCULATIONAHA.120.046361
  • Dunlay SM, Givertz MM, Aguilar D, et al. Type 2 diabetes mellitus and heart failure: a scientific statement from the American Heart Association and the Heart Failure Society of America: this statement does not represent an update of the 2017 ACC/AHA/HFSA heart failure guideline update. Circulation. 2019;140:e294–e324. doi:10.1161/CIR.0000000000000691
  • Ceriello A, Catrinoiu D, Chandramouli C, et al. Heart failure in type 2 diabetes: current perspectives on screening, diagnosis and management. Cardiovasc Diabetol. 2021;20:218. doi:10.1186/s12933-021-01408-1
  • Cai X, Liu X, Sun L, et al. Prediabetes and the risk of heart failure: a meta–analysis. Diabetes Obes Metab. 2021;23:1746–1753. doi:10.1111/dom.14388
  • Sinha A, Ning H, Ahmad FS, et al. Association of fasting glucose with lifetime risk of incident heart failure: the Lifetime Risk Pooling Project. Cardiovasc Diabetol. 2021;20:66. doi:10.1186/s12933-021-01265-y
  • Kristensen SL, Preiss D, Jhund PS, et al. Risk related to pre–diabetes mellitus and diabetes mellitus in heart failure with reduced ejection fraction: insights from prospective comparison of ARNI With ACEI to determine impact on global mortality and morbidity in Heart Failure Trial. Circ Heart Fail. 2016;9:e002560. doi:10.1161/CIRCHEARTFAILURE.115.002560
  • Mai L, Wen W, Qiu M, et al. Association between prediabetes and adverse outcomes in heart failure. Diabetes Obes Metab. 2021;23:2476–2483. doi:10.1111/dom.14490
  • Pavlović A, Polovina M, Ristić A, et al. Long-term mortality is increased in patients with undetected prediabetes and type-2 diabetes hospitalized for worsening heart failure and reduced ejection fraction. Eur J Prev Cardiol. 2019;26:72–82. doi:10.1177/2047487318807767
  • Sörensen BM, Houben AJ, Berendschot TT, et al. Prediabetes and type 2 diabetes are associated with generalized microvascular dysfunction the Maastricht Study. Circulation. 2016;134:1339–1352. doi:10.1161/CIRCULATIONAHA.116.023446
  • Zaleska–żmijewska A, Piątkiewicz P, Śmigielska B, et al. Retinal photoreceptors and microvascular changes in prediabetes measured with adaptive optics (rtx1™): a case–control study. J Diabetes Res. 2017;2017:4174292. doi:10.1155/2017/4174292
  • Li W, Schram MT, Berendschot TTJM, et al. Type 2 diabetes and HbA1c are independently associated with wider retinal arterioles: the Maastricht study. Diabetologia. 2020;63:1408–1417. doi:10.1007/s00125-020-05146-z
  • Lott ME, Slocomb JE, Shivkumar V, et al. Impaired retinal vasodilator responses in prediabetes and type 2 diabetes. Acta Ophthalmol. 2013;91:e462–e469. doi:10.1111/aos.12129
  • De Clerck EEB, Schouten JSAG, Berendschot TTJM, et al. Macular thinning in prediabetes or type 2 diabetes without diabetic retinopathy: the Maastricht Study. Acta Ophthalmol. 2018;96:174–182. doi:10.1111/aos.13570
  • Chande PK, Raman R, John P, Srinivasan S. Contrast–sensitivity function and photo stress–recovery time in prediabetes. Clin Optom. 2020;12:151–155. doi:10.2147/OPTO.S259397
  • Palladino R, Tabak AG, Khunti K, et al. Association between pre–diabetes and microvascular and macrovascular disease in newly diagnosed type 2 diabetes. BMJ Open Diabetes Res Care. 2020;8:e001061. doi:10.1136/bmjdrc-2019-001061
  • Li Rudvan AL, Can ME, Efe FK, Keskin M, Beyan E. Evaluation of retinal microvascular changes in patients with prediabetes. Niger J Clin Pract. 2021;24:911–918. doi:10.4103/njcp.njcp_193_20
  • Plantinga LC, Crews DC, Coresh J, et al. Prevalence of chronic kidney disease in US adults with undiagnosed diabetes or prediabetes. Clin J Am Soc Nephrol. 2010;5:673–682. doi:10.2215/CJN.07891109
  • Kim GS, Oh HH, Kim SH, Kim BO, Byun YS. Association between prediabetes (defined by HbA1C, fasting plasma glucose, and impaired glucose tolerance) and the development of chronic kidney disease: a 9–year prospective cohort study. BMC Nephrol. 2019;20:130. doi:10.1186/s12882-019-1307-0
  • Markus MRP, Ittermann T, Baumeister SE, et al. Prediabetes is associated with microalbuminuria, reduced kidney function and chronic kidney disease in the general population: the KORA (Cooperative Health Research in the Augsburg Region) F4–Study. Nutr Metab Cardiovasc Dis. 2018;28:234–242. doi:10.1016/j.numecd.2017.12.005
  • Neves JS, Correa S, Baeta Baptista R, Bigotte Vieira M, Waikar SS, Mc Causland FR. Association of prediabetes with CKD progression and adverse cardiovascular outcomes. An analysis of the CRIC Study. J Clin Endocrinol Metab. 2020;105:e1772–e1780. doi:10.1210/clinem/dgaa017
  • Echouffo–Tcheugui JB, Narayan KM, Weisman D, Golden SH, Jaar BG. Association between prediabetes and risk of chronic kidney disease. A systematic review and meta–analysis. Diabet Med. 2016;33:1615–1624. doi:10.1111/dme.13113
  • Shilpasree AS, Patil VS, Revanasiddappa M, Patil VP, Ireshnavar D. Renal Dysfunction in Prediabetes: confirmed by Glomerular Hyperfiltration and Albuminuria. J Lab Physicians. 2021;13:257–262. doi:10.1055/s-0041-1731107
  • Rodriguez–Poncelas A, Coll–de–Tuero G, Blanch J, Comas–Cufí M, Saez M, Barceló MA. Prediabetes is associated with glomerular hyperfiltration in a European Mediterranean cohort study. J Nephrol. 2018;31:743–749. doi:10.1007/s40620-018-0524-0
  • Rodríguez–Poncelas A, Franch–Nadal J, Coll–de Tuero G, et al. High levels of fasting glucose and glycosylated hemoglobin values are associated with hyperfiltration in a Spanish prediabetes cohort. The PREDAPS Study. PLoS One. 2019;14:e0222848. doi:10.1371/journal.pone.0222848
  • Okada R, Wakai K, Naito M, et al. Renal hyperfiltration in prediabetes confirmed by fasting plasma glucose and hemoglobin A1c. Ren Fail. 2012;34:1084–1090. doi:10.3109/0886022X.2012.717516
  • Coopmans C, Zhou TL, Henry RMA, et al. Both prediabetes and type 2 diabetes are associated with lower heart rate variability: the Maastricht Study. Diabetes Care. 2020;43:1126–1133. doi:10.2337/dc19-2367
  • Ziegler D, Voss A, Rathmann W, et al. Increased prevalence of cardiac autonomic dysfunction at different degrees of glucose intolerance in the general population: the KORA S4 survey. Diabetologia. 2015;58:1118–1128. doi:10.1007/s00125-015-3534-7
  • Lin YC, Lin CS, Chang TS, et al. Early sensory neurophysiological changes in prediabetes. J Diabetes Investig. 2020;11:458–465. doi:10.1111/jdi.13151
  • Katon JG, Reiber GE, Nelson KM. Peripheral neuropathy defined by monofilament insensitivity and diabetes status: NHANES 1999–2004. Diabetes Care. 2013;36:1604–1606. doi:10.2337/dc12-1102
  • Bongaerts BW, Rathmann W, Kowall B, et al. Postchallenge hyperglycemia is positively associated with diabetic polyneuropathy: the KORA F4 study. Diabetes Care. 2012;35:1891–1893. doi:10.2337/dc11-2028
  • Dyck PJ, Clark VM, Overland CJ, et al. Impaired glycemia and diabetic polyneuropathy: the OC IG Survey. Diabetes Care. 2012;35:584–591. doi:10.2337/dc11-1421
  • Thaisetthawatkul P, Lyden E, Americo Fernandes J, Herrmann DN. Prediabetes, diabetes, metabolic syndrome, and small fiber neuropathy. Muscle Nerve. 2020;61:475–479. doi:10.1002/mus.26825
  • Marseglia A, Fratiglioni L, Kalpouzos G, Wang R, Bäckman L, Xu W. Prediabetes and diabetes accelerate cognitive decline and predict microvascular lesions: a population–based cohort study. Alzheimers Dement. 2019;15:25–33. doi:10.1016/j.jalz.2018.06.3060
  • van Agtmaal MJM, Houben AJHM, de Wit V, et al. Prediabetes is associated with structural brain abnormalities: the Maastricht Study. Diabetes Care. 2018;41:2535–2543. doi:10.2337/dc18-1132
  • Gottwald-Hostalek U, Gwilt M. Vascular complications in prediabetes and type 2 diabetes: a continuous process arising from a common pathology. Curr Med Res Opin. 2022;38:1841–1851. doi:10.1080/03007995.2022.2101805
  • Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346:393–403. doi:10.1056/NEJMoa012512
  • Lindström J, Louheranta A, Mannelin M, et al. The Finnish Diabetes Prevention Study (DPS): lifestyle intervention and 3–year results on diet and physical activity. Diabetes Care. 2003;26:3230–3236. doi:10.2337/diacare.26.12.3230
  • Pan XR, Li GW, Hu YH, et al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care. 1997;20:537–544. doi:10.2337/diacare.20.4.537
  • Diabetes Prevention Program Group and Diabetes Prevention Program Outcome Study Research Group. New data on clinical outcomes from the Diabetes Prevention Program Outcomes Study. Presentation at the 80th Virtual Scientific Sessions of the American Diabetes Association; June 26; 2020.
  • American Diabetes Association. New data from Diabetes Prevention Program Outcomes Study shows persistent reduction of type 2 diabetes development over 22–year average follow–up; 2020. Available from: https://diabetes.org/newsroom/press-releases/2020/new-data-from-diabetes-prevention-program-outcomes-study-shows-persistent-reduction-of-t2d-development-over-22-year-average-follow-up. Accessed December 30, 2022.
  • Busko M. DPPOS at 22 years: “Diabetes prevention is possible” long term. Medscape Diabetes Endocrinol. 2020; Available from: https://www.medscape.com/viewarticle/932876.
  • Lindström J, Peltonen M, Eriksson JG, et al. Improved lifestyle and decreased diabetes risk over 13 years: long–term follow–up of the randomised Finnish Diabetes Prevention Study (DPS). Diabetologia. 2013;56:284–293. doi:10.1007/s00125-012-2752-5
  • Gong Q, Zhang P, Wang J, et al.; Da Qing Diabetes Prevention Study Group. Morbidity and mortality after lifestyle intervention for people with impaired glucose tolerance: 30–year results of the Da Qing Diabetes Prevention Outcome Study. Lancet Diabetes Endocrinol. 7;2019:452–461. doi:10.1016/S2213-8587(19)30093-2
  • Echouffo–Tcheugui JB, Selvin E. Prediabetes and what it means: the epidemiological evidence. Annu Rev Public Health. 2021;42:59–77. doi:10.1146/annurev-publhealth-090419-102644
  • Hostalek U, Gwilt M, Hildemann S. Therapeutic use of metformin in prediabetes and diabetes prevention. Drugs. 2015;75:1071–1094. doi:10.1007/s40265-015-0416-8
  • Hostalek U, Campbell I. Metformin for diabetes prevention: update of the evidence base. Curr Med Res Opin. 2021;37:1705–1717. doi:10.1080/03007995.2021.1955667
  • ElSayed NA, Aleppo G, Aroda VR, et al. 3. Prevention or delay of type 2 diabetes and associated comorbidities: standards of care in diabetes-2023. Diabetes Care. 2023;46(Supplement_1):S41–S48. doi:10.2337/dc23-S003
  • Paulweber B, Valensi P, Lindström J, et al. A European evidence–based guideline for the prevention of type 2 diabetes. Horm Metab Res. 2010;42(Suppl 1):S3–S36. doi:10.1055/s-0029-1240928
  • National Institute for Health and Care Excellence. Group and individual–level interventions to prevent type 2 diabetes among people at high risk. Available from: https://www.nice.org.uk/guidance/PH38/chapter/Recommendations#metformin. Accessed December 30, 2022.
  • Murillo JE, McNeil C, Van Nest K, et al. Abstract 9819: real world data: off–label metformin in patients with prediabetes is associated with improved cardiovascular outcomes. Circulation. 2021;144(Suppl_1):A9819.
  • Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10–year follow–up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359:1577–1589. doi:10.1056/NEJMoa0806470
  • Folz R, Laiteerapong N. The legacy effect in diabetes: are there long–term benefits? Diabetologia. 2021;64:2131–2137. doi:10.1007/s00125-021-05539-8
  • Cosentino F, Grant PJ, Aboyans V, et al. ESC Guidelines on diabetes, pre–diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2019;2020(41):255–323.
  • Petrie JR, Rossing PR, Campbell IW. Metformin and cardiorenal outcomes in diabetes: a reappraisal. Diabetes Obes Metab. 2020;22:904–915. doi:10.1111/dom.13984
  • Schernthaner G, Brand K, Bailey CJ. Metformin and the heart: update on mechanisms of cardiovascular protection with special reference to comorbid type 2 diabetes and heart failure. Metabolism. 2022;130:155160. doi:10.1016/j.metabol.2022.155160
  • Diabetes Prevention Program Research Group. Long–term safety, tolerability, and weight loss associated with metformin in the Diabetes Prevention Program Outcomes Study. Diabetes Care. 2012;35:731–737. doi:10.2337/dc11-1299
  • Feher MD, Al–Mrayat M, Brake J, Leong KS. Tolerability of prolonged–release metformin (Glucophage® SR) in individuals intolerant to standard metformin — results from four UK centres. Br J Diabetes Vasc Dis. 2007;7:225–228. doi:10.1177/14746514070070050501
  • Khunti S, Khunti K, Seidu S. Therapeutic inertia in type 2 diabetes: prevalence, causes, consequences and methods to overcome inertia. Ther Adv Endocrinol Metab. 2019;10:2042018819844694. doi:10.1177/2042018819844694
  • Okemah J, Peng J, Quiñones M. Addressing clinical inertia in type 2 diabetes mellitus: a review. Adv Ther. 2018;35:1735–1745.
  • Andreozzi F, Candido R, Corrao S, et al. Clinical inertia is the enemy of therapeutic success in the management of diabetes and its complications: a narrative literature review. Diabetol Metab Syndr. 2020;12:52. doi:10.1186/s13098-020-00559-7