209
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Serum Pentosidine is Associated with Cardiac Dysfunction and Atherosclerosis in T2DM

, ORCID Icon, , &
Pages 237-244 | Received 18 Nov 2022, Accepted 17 Jan 2023, Published online: 26 Jan 2023

References

  • Sun H, Saeedi P, Karuranga S, et al. IDF Diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:109119. doi:10.1016/j.diabres.2021.109119
  • Chinese Diabetes Society. 中国老年2型糖尿病防治临床指南(2022年版) [Clinical guidelines for prevention and treatment of type 2 diabetes mellitus in the elderly in China (2022 edition)]. Zhonghua nei ke za zhi. 2022;61(1):12–50. Chinese. doi:10.3760/cma.j.cn112138-20211027-00751
  • Roth GA, Johnson C, Abajobir A, et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol. 2017;70(1):1–25. doi:10.1016/j.jacc.2017.04.052
  • Semba RD, Nicklett EJ, Ferrucci L. Does accumulation of advanced glycation end products contribute to the aging phenotype? J Gerontol. 2010;65(9):963–975. doi:10.1093/gerona/glq074
  • Bierhaus A, Hofmann MA, Ziegler R, et al. AGEs and their interaction with AGE-receptors in vascular disease and diabetes mellitus. I. The AGE concept. Cardiovasc Res. 1998;37(3):586–600. doi:10.1016/S0008-6363(97)00233-2
  • Nin JW, Jorsal A, Ferreira I, et al. Higher plasma levels of advanced glycation end products are associated with incident cardiovascular disease and all-cause mortality in type 1 diabetes: a 12-year follow-up study. Diabetes Care. 2011;34(2):442–447. doi:10.2337/dc10-1087
  • Kida Y, Saito M, Shinohara A, et al. Non-invasive skin autofluorescence, blood and urine assays of the advanced glycation end product (AGE) pentosidine as an indirect indicator of AGE content in human bone. BMC Musculoskelet Disord. 2019;20(1):627. doi:10.1186/s12891-019-3011-4
  • Alizargar J, Bai CH, Hsieh NC, et al. Use of the triglyceride-glucose index (TyG) in cardiovascular disease patients. Cardiovasc Diabetol. 2020;19(1):8. doi:10.1186/s12933-019-0982-2
  • Fernández-Macías JC, Ochoa-Martínez AC, Varela-Silva JA, et al. Atherogenic index of plasma: novel predictive biomarker for cardiovascular illnesses. Arch Med Res. 2019;50(5):285–294. doi:10.1016/j.arcmed.2019.08.009
  • Seferović PM, Petrie MC, Filippatos GS, et al. Type 2 diabetes mellitus and heart failure: a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2018;20(5):853–872. doi:10.1002/ejhf.1170
  • Klajda DM, Scott CG, Rodeheffer RJ, et al. Diabetes mellitus is an independent predictor for the development of heart failure. Mayo Clinic Proc. 2020;95(1):124–133. doi:10.1016/j.mayocp.2019.07.008
  • Hayes AJ, Leal J, Gray AM, et al. UKPDS outcomes model 2: a new version of a model to simulate lifetime health outcomes of patients with type 2 diabetes mellitus using data from the 30 year United Kingdom Prospective Diabetes Study: UKPDS 82. Diabetologia. 2013;56(9):1925–1933. doi:10.1007/s00125-013-2940-y
  • Bozkurt B, Coats AJ, Tsutsui H, et al. Universal definition and classification of heart failure: a report of the heart failure society of America, heart failure association of the European Society of Cardiology, Japanese heart failure society and writing committee of the universal definition of heart failure. J Card Fail. 2021;27:387–413. doi:10.1016/j.cardfail.2021.01.022
  • Vistoli G, De Maddis D, Cipak A, et al. Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation. Free Radic Res. 2013;47:3–27. doi:10.3109/10715762.2013.815348
  • Shen CY, Lu CH, Wu CH, et al. The development of Maillard reaction, and Advanced Glycation End Product (AGE)-Receptor for AGE (RAGE) signaling inhibitors as novel therapeutic strategies for patients with AGE-related diseases. Molecules. 2020;25(23). doi:10.3390/molecules25235591
  • Garay-Sevilla ME, Rojas A, Portero-Otin M, et al. Dietary AGEs as exogenous boosters of inflammation. Nutrients. 2021;13(8):2802. doi:10.3390/nu13082802
  • Sibbersen C, Johannsen M. Dicarbonyl derived post-translational modifications: chemistry bridging biology and aging-related disease. Essays Biochem. 2020;64(1):97–110. doi:10.1042/EBC20190057
  • Khalid M, Petroianu G, Adem A. Advanced glycation end products and diabetes mellitus: mechanisms and perspectives. Biomolecules. 2022;12(4):542. doi:10.3390/biom12040542
  • Menini S, Iacobini C, Ricci C, et al. The galectin-3/RAGE dyad modulates vascular osteogenesis in atherosclerosis. Cardiovasc Res. 2013;100(3):472–480. doi:10.1093/cvr/cvt206
  • Hu R, Wang MQ, Ni SH, et al. Salidroside ameliorates endothelial inflammation and oxidative stress by regulating the AMPK/NF-κB/NLRP3 signaling pathway in AGEs-induced HUVECs. Eur J Pharmacol. 2020;867:172797. doi:10.1016/j.ejphar.2019.172797
  • Chilelli NC, Faggian A, Favaretto F, et al. In vitro chronic glycation induces AGEs accumulation reducing insulin-stimulated glucose uptake and increasing GLP1R in adipocytes. American journal of physiology. Endocrinol Metab. 2021;320(5):E976–E988. doi:10.1152/ajpendo.00156.2020
  • Hirai T, Fujiyoshi K, Yamada S, et al. Advanced glycation end products are associated with diabetes status and physical functions in patients with cardiovascular disease. Nutrients. 2022;14(15):3032. doi:10.3390/nu14153032
  • Liu Z, Zhu H, Ma Y, et al. AGEs exacerbates coronary microvascular dysfunction in NoCAD by activating endoplasmic reticulum stress-mediated PERK signaling pathway. Metabolism. 2021;117:154710. doi:10.1016/j.metabol.2021.154710
  • Liang B, Zhou Z, Yang Z, et al. AGEs-RAGE axis mediates myocardial fibrosis via activation of cardiac fibroblasts induced by autophagy in heart failure. Exp Physiol. 2022;107(8):879–891. doi:10.1113/EP090042
  • Kremers S, Remmelzwaal S, Schalkwijk CG, et al. The role of serum and dietary advanced glycation endproducts in relation to cardiac function and structure: the Hoorn Study. NMCD. 2021;31(11):3167–3175. doi:10.1016/j.numecd.2021.07.020
  • Paradela-Dobarro B, Fernández-Trasancos Á, Bou-Teen D, et al. Evolution and bad prognostic value of advanced glycation end products after acute heart failure: relation with body composition. Cardiovasc Diabetol. 2017;16(1):115. doi:10.1186/s12933-017-0598-3
  • Bogdanović J, Ašanin M, Krljanac G, et al. Impact of acute hyperglycemia on layer-specific left ventricular strain in asymptomatic diabetic patients: an analysis based on two-dimensional speckle tracking echocardiography. Cardiovasc Diabetol. 2019;18(1):68. doi:10.1186/s12933-019-0876-3
  • Hu T, Gall SL, Widome R, et al. Childhood/adolescent smoking and adult smoking and cessation: the international childhood cardiovascular cohort (i3C) consortium. J Am Heart Assoc. 2020;9(7):e14381. doi:10.1161/JAHA.119.014381
  • Wang L, Chen F, Xiaoqi C, et al. Atherogenic index of plasma is an independent risk factor for coronary artery disease and a higher SYNTAX score. Angiology. 2021;72(2):181–186. doi:10.1177/0003319720949804
  • Won KB, Heo R, Park HB, et al. Atherogenic index of plasma and the risk of rapid progression of coronary atherosclerosis beyond traditional risk factors. Atherosclerosis. 2021;324:46–51. doi:10.1016/j.atherosclerosis.2021.03.009
  • Sadeghi M, Heshmat-Ghahdarijani K, Talaei M, et al. The predictive value of atherogenic index of plasma in the prediction of cardiovascular events; a fifteen-year cohort study. Adv Med Sci. 2021;66(2):418–423. doi:10.1016/j.advms.2021.09.003
  • Zheng M, Zhang X, Chen S, et al. Arterial stiffness preceding diabetes: a longitudinal study. Circ Res. 2020;127(12):1491–1498. doi:10.1161/CIRCRESAHA.120.317950
  • Wang H, Wu X, Gu Y, et al. Relationship of noninvasive assessment of arterial stiffness with 10-year Atherosclerotic Cardiovascular Disease (ASCVD) risk in a general middle-age and elderly population. Int J Gen Med. 2021;14:6379–6387. doi:10.2147/IJGM.S330142