290
Views
2
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Association of Bone Turnover Markers with Type 2 Diabetes Mellitus and Microvascular Complications: A Matched Case-Control Study

, , ORCID Icon, , , , & show all
Pages 1177-1192 | Received 06 Dec 2022, Accepted 12 Apr 2023, Published online: 26 Apr 2023

References

  • Sun H, Saeedi P, Karuranga S, et al. IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:109119. doi:10.1016/j.diabres.2021.109119
  • Tang X, Yan X, Zhou H, et al. Prevalence and identification of type 1 diabetes in Chinese adults with newly diagnosed diabetes. Diabetes Metab Syndr Obes. 2019;12:1527–1541. doi:10.2147/DMSO.S202193
  • World Health Organization. Diagnosis and management of type 2 diabetes (HEARTS-D); 2020. Available from: https://www.who.int/publications/i/item/who-ucn-ncd-20.1. Accessed April 17, 2023.
  • Yap J, Anbalakan K, Tay WT, et al. Impact of type 2 diabetes and microvascular complications on mortality and cardiovascular outcomes in a multiethnic Asian population. BMJ Open Diabetes Res Care. 2021;9(1):e001413. doi:10.1136/bmjdrc-2020-001413
  • Kosiborod M, Gomes MB, Nicolucci A, et al. Vascular complications in patients with type 2 diabetes: prevalence and associated factors in 38 countries (the DISCOVER study program). Cardiovasc Diabetol. 2018;17(1):150. doi:10.1186/s12933-018-0787-8
  • Arnold SV, Khunti K, Tang F, et al. Incidence rates and predictors of microvascular and macrovascular complications in patients with type 2 diabetes: results from the longitudinal global discover study. Am Heart J. 2022;243:232–239. doi:10.1016/j.ahj.2021.10.181
  • Park S, Kang HJ, Jeon JH, Kim MJ, Lee IK. Recent advances in the pathogenesis of microvascular complications in diabetes. Arch Pharm Res. 2019;42(3):252–262. doi:10.1007/s12272-019-01130-3
  • Mitchell A, Fall T, Melhus H, et al. Type 2 diabetes and change in total hip bone area and bone mineral density in Swedish men and women older than 55 years. J Clin Endocrinol Metab. 2021;106(10):2840–2854. doi:10.1210/clinem/dgab490
  • Schousboe JT, Morin SN, Kline GA, Lix LM, Leslie WD. Differential risk of fracture attributable to type 2 diabetes mellitus according to skeletal site. Bone. 2022;154:116220. doi:10.1016/j.bone.2021.116220
  • Lee EJ, Jain M, Alimperti S. Bone microvasculature: stimulus for tissue function and regeneration. Tissue Eng Part B Rev. 2021;27(4):313–329. doi:10.1089/ten.TEB.2020.0154
  • Shanbhogue VV, Hansen S, Frost M, Brixen K, Hermann AP. Bone disease in diabetes: another manifestation of microvascular disease? Lancet Diabetes Endocrinol. 2017;5(10):827–838. doi:10.1016/S2213-8587(17)30134-1
  • Glendenning P, Chubb SAP, Vasikaran S. Clinical utility of bone turnover markers in the management of common metabolic bone diseases in adults. Clin Chim Acta. 2018;481:161–170. doi:10.1016/j.cca.2018.03.009
  • Han Y, You X, Xing W, Zhang Z, Zou W. Paracrine and endocrine actions of bone-the functions of secretory proteins from osteoblasts, osteocytes, and osteoclasts. Bone Res. 2018;6:16. doi:10.1038/s41413-018-0019-6
  • Shanbhogue VV, Hansen S, Frost M, et al. Compromised cortical bone compartment in type 2 diabetes mellitus patients with microvascular disease. Eur J Endocrinol. 2016;174(2):115–124. doi:10.1530/EJE-15-0860
  • Zwakenberg SR, van der Schouw YT, Schalkwijk CG, Spijkerman AMW, Beulens JWJ. Bone markers and cardiovascular risk in type 2 diabetes patients. Cardiovasc Diabetol. 2018;17(1):45. doi:10.1186/s12933-018-0691-2
  • Holvik K, van Schoor NM, Eekhoff EM, et al. Plasma osteocalcin levels as a predictor of cardiovascular disease in older men and women: a population-based cohort study. Eur J Endocrinol. 2014;171(2):161–170. doi:10.1530/EJE-13-1044
  • Robertson CL, Ghosh G, Fitzgerald P, et al. Bone turnover markers including undercarboxylated osteocalcin are associated with mortality risk in older men. J Bone Miner Res. 2022;37(8):1464–1472. doi:10.1002/jbmr.4631
  • Wang J, Yan DD, Hou XH, et al. Association of bone turnover markers with glucose metabolism in Chinese population. Acta Pharmacol Sin. 2017;38(12):1611–1617. doi:10.1038/aps.2017.23
  • Li W, Liu X, Liu L, et al. Relationships of serum bone turnover markers with metabolic syndrome components and carotid atherosclerosis in patients with type 2 diabetes mellitus. Front Cardiovasc Med. 2022;9:824561. doi:10.3389/fcvm.2022.824561
  • Chinese Diabetes Society.中国2型糖尿病防治指南(2020年版) [Guideline for the prevention and treatment of type 2 diabetes mellitus in China (2020 edition)]. Chin J Diabetes Mellitus. 2021;13(4):315–409. Chinese. doi:10.3760/cma.j.cn115791-20210221-00095
  • Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–612. doi:10.7326/0003-4819-150-9-200905050-00006
  • Hanley AJ, Williams K, Stern MP, Haffner SM. Homeostasis model assessment of insulin resistance in relation to the incidence of cardiovascular disease: the San Antonio heart study. Diabetes Care. 2002;25(7):1177–1184. doi:10.2337/diacare.25.7.1177
  • Wang H, Zheng X, Zhang Y, et al. The endocrine role of bone: novel functions of bone-derived cytokines. Biochem Pharmacol. 2021;183:114308. doi:10.1016/j.bcp.2020.114308
  • Jung KY, Kim KM, Ku EJ, et al. Age- and sex-specific association of circulating osteocalcin with dynamic measures of glucose homeostasis. Osteoporos Int. 2016;27(3):1021–1029. doi:10.1007/s00198-015-3315-7
  • Hunt HB, Miller NA, Hemmerling KJ, et al. Bone tissue composition in postmenopausal women varies with glycemic control from normal glucose tolerance to type 2 diabetes mellitus. J Bone Miner Res. 2021;36(2):334–346. doi:10.1002/jbmr.4186
  • Mitchell A, Fall T, Melhus H, et al. Type 2 diabetes in relation to hip bone density, area, and bone turnover in Swedish men and women: a cross-sectional study. Calcif Tissue Int. 2018;103(5):501–511. doi:10.1007/s00223-018-0446-9
  • Dalgård C, Hansen MS, Möller S, Kyvik KO, Frost M. Disentangling the relationship between bone turnover and glucose homeostasis: a prospective, population-based twin study. Bone Rep. 2021;14:100752. doi:10.1016/j.bonr.2021.100752
  • Salvatore T, Galiero R, Caturano A, et al. An overview of the cardiorenal protective mechanisms of SGLT2 inhibitors. Int J Mol Sci. 2022;23(7):3651. doi:10.3390/ijms23073651
  • Ballato E, Deepika FNU, Russo V, et al. One-year mean A1c of > 7% is associated with poor bone microarchitecture and strength in men with type 2 diabetes mellitus. Calcif Tissue Int. 2022;111(3):267–278. doi:10.1007/s00223-022-00993-x
  • Zhao H, Zhang M, Zhen Y, Tang Y. The relationships between glycated hemoglobin and bone turnover markers in patients with type 2 diabetes but no diabetic nephropathy. Int J Gen Med. 2022;15:5591–5598. doi:10.2147/ijgm.S366725
  • de la Cruz-Ares S, Cardelo MP, Gutierrez-Mariscal FM, et al. Endothelial dysfunction and advanced glycation end products in patients with newly diagnosed versus established diabetes: from the CORDIOPREV study. Nutrients. 2020;12(1):238. doi:10.3390/nu12010238
  • Piccoli A, Cannata F, Strollo R, et al. Sclerostin regulation, microarchitecture, and advanced glycation end-products in the bone of elderly women with type 2 diabetes. J Bone Miner Res. 2020;35(12):2415–2422. doi:10.1002/jbmr.4153
  • Wu Y, Xu SY, Liu SY, et al. Upregulated serum sclerostin level in the T2DM patients with femur fracture inhibits the expression of bone formation/remodeling-associated biomarkers via antagonizing Wnt signaling. Eur Rev Med Pharmacol Sci. 2017;21(3):470–478.
  • Sassi F, Buondonno I, Luppi C, et al. Type 2 diabetes affects bone cells precursors and bone turnover. BMC Endocr Disord. 2018;18(1):55. doi:10.1186/s12902-018-0283-x
  • Eckhardt BA, Rowsey JL, Thicke BS, et al. Accelerated osteocyte senescence and skeletal fragility in mice with type 2 diabetes. JCI Insight. 2020;5(9). doi:10.1172/jci.insight.135236
  • Peng J, Hui K, Hao C, et al. Low bone turnover and reduced angiogenesis in streptozotocin-induced osteoporotic mice. Connect Tissue Res. 2016;57(4):277–289. doi:10.3109/03008207.2016.1171858
  • Weng J, Chen Z, Li J, et al. Advanced glycation end products induce endothelial hyperpermeability via beta-catenin phosphorylation and subsequent up-regulation of ADAM10. J Cell Mol Med. 2021;25(16):7746–7759. doi:10.1111/jcmm.16659
  • Lan KC, Chiu CY, Kao CW, et al. Advanced glycation end-products induce apoptosis in pancreatic islet endothelial cells via NF-kappaB-activated cyclooxygenase-2/prostaglandin E2 up-regulation. PLoS One. 2015;10(4):e0124418. doi:10.1371/journal.pone.0124418
  • Hu K, Olsen BR. The roles of vascular endothelial growth factor in bone repair and regeneration. Bone. 2016;91:30–38. doi:10.1016/j.bone.2016.06.013
  • Lin X, Parker L, McLennan E, et al. Undercarboxylated osteocalcin improves insulin-stimulated glucose uptake in muscles of corticosterone-treated mice. J Bone Miner Res. 2019;34(8):1517–1530. doi:10.1002/jbmr.3731
  • Park D, Gu H, Baek JH, Baek K. Undercarboxylated osteocalcin downregulates pancreatic lipase expression in an ATF4-dependent manner in pancreatic acinar cells. Bone. 2019;127:220–227. doi:10.1016/j.bone.2019.06.009
  • Guo Q, Li H, Xu L, et al. Undercarboxylated osteocalcin reverts insulin resistance induced by endoplasmic reticulum stress in human umbilical vein endothelial cells. Sci Rep. 2017;7(1):46. doi:10.1016/j.bone.2019.06.009
  • Tacey A, Smith C, Woessner MN, et al. Undercarboxylated osteocalcin is associated with vascular function in female older adults but does not influence vascular function in male rabbit carotid artery ex vivo. PLoS One. 2020;15(11):e0242774. doi:10.1371/journal.pone.0242774
  • Dou J, Li H, Ma X, et al. Osteocalcin attenuates high fat diet-induced impairment of endothelium-dependent relaxation through Akt/eNOS-dependent pathway. Cardiovasc Diabetol. 2014;13(1):74. doi:10.1186/1475-2840-13-74
  • Wang C, Zhang T, Wang P, et al. Bone metabolic biomarker-based diagnosis of type 2 diabetes osteoporosis by support vector machine. Ann Transl Med. 2021;9(4):316. doi:10.21037/atm-20-3388
  • Ha J, Lim Y, Kim MK, et al. Comparison of the effects of various antidiabetic medication on bone mineral density in patients with type 2 diabetes mellitus. Endocrinol Metab. 2021;36(4):895–903. doi:10.3803/EnM.2021.1026
  • Adil M, Khan RA, Kalam A, et al. Effect of anti-diabetic drugs on bone metabolism: evidence from preclinical and clinical studies. Pharmacol Rep. 2017;69(6):1328–1340. doi:10.1016/j.pharep.2017.05.008
  • Salvatore T, Galiero R, Caturano A, et al. Effects of metformin in heart failure: from pathophysiological rationale to clinical evidence. Biomolecules. 2021;11(12):1834. doi:10.3390/biom11121834
  • An Y, Liu S, Wang W, et al. Low serum levels of bone turnover markers are associated with the presence and severity of diabetic retinopathy in patients with type 2 diabetes mellitus. J Diabetes. 2021;13(2):111–123. doi:10.1111/1753-0407.13089
  • Vilaca T, Paggiosi M, Walsh JS, Selvarajah D, Eastell R. The effects of type 1 diabetes and diabetic peripheral neuropathy on the musculoskeletal system: a case-control study. J Bone Miner Res. 2021;36(6):1048–1059. doi:10.1002/jbmr.4271
  • Rasul S, Ilhan A, Wagner L, Luger A, Kautzky-Willer A. Diabetic polyneuropathy relates to bone metabolism and markers of bone turnover in elderly patients with type 2 diabetes: greater effects in male patients. Gend Med. 2012;9(3):187–196. doi:10.1016/j.genm.2012.03.004
  • Kara Z, Güneş M, Bolayırlı IM, Oşar Siva Z. The effects of diabetic polyneuropathy and autonomic neuropathy on bone turnover. Metab Syndr Relat Disord. 2022;20(1):11–19. doi:10.1089/met.2021.0028
  • Zhu X, Zhou Y, Hong S, Xue Y, Cui Y, Rizzo R. Correlation between serum bone turnover markers and estimated glomerular filtration rate in Chinese patients with diabetes. Dis Markers. 2021;2021:6731218. doi:10.1155/2021/6731218
  • Maghbooli Z, Shabani P, Gorgani-Firuzjaee S, Hossein-Nezhad A. The association between bone turnover markers and microvascular complications of type 2 diabetes. J Diabetes Metab Disord. 2016;15(1):51. doi:10.1186/s40200-016-0274-2
  • Kocak MZ, Aktas G, Duman TT, Atak BM, Savli H. Is uric acid elevation a random finding or a causative agent of diabetic nephropathy? Rev Assoc Med Bras. 2019;65(9):1155–1160. doi:10.1590/1806-9282.65.9.1156
  • Xing Y, Liu J, Liu H, Ma H. Relationship of bone turnover markers with serum uric acid-to-creatinine ratio in men and postmenopausal women with type 2 diabetes. Diabetes Metab Syndr Obes. 2022;15:3205–3217. doi:10.2147/dmso.S384694
  • Xu L, Niu M, Yu W, et al. Associations between FGF21, osteonectin and bone turnover markers in type 2 diabetic patients with albuminuria. J Diabetes Complications. 2017;31(3):583–588. doi:10.1016/j.jdiacomp.2016.11.012
  • Noble JH Jr. Declaration of Helsinki. Dead. BMJ. 2007;335(7623):736. doi:10.1136/bmj.39360.415833.BE