265
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

YQBS Improves Cognitive Dysfunction in Diabetic Rats: Possible Association with Tyrosine and Tryptophan Metabolism

ORCID Icon, , , , &
Pages 901-912 | Received 17 Dec 2022, Accepted 18 Mar 2023, Published online: 30 Mar 2023

References

  • IDF Diabetes Atlas. IDF diabetes atlas, 10th edn [EB/OL]; 2021. Available from: https://www.diabetesatlas.org. Accessed March 24, 2023.
  • Moheet A, Mangia S, Seaquist ER. Impact of diabetes on cognitive function and brain structure. Ann NY Acad Sci. 2015;1353:60–71. doi:10.1111/nyas.12807
  • Shalimova A, Graff B, Gąsecki D, et al. Cognitive dysfunction in type 1 diabetes mellitus. J Clin Endocrinol Metab. 2019;104(6):2239–2249. doi:10.1210/jc.2018-01315
  • Srikanth V, Sinclair AJ, Hill-Briggs F, Moran C, Biessels GJ. Type 2 diabetes and cognitive dysfunction-towards effective management of both comorbidities. Lancet Diabetes Endocrinol. 2020;8(6):535–545. doi:10.1016/S2213-8587(20)30118-2
  • Thomassen JQ, Tolstrup JS, Benn M, Frikke-Schmidt R. Type-2 diabetes and risk of dementia: observational and Mendelian randomisation studies in 1 million individuals. Epidemiol Psychiatr Sci. 2020;29:e118. doi:10.1017/S2045796020000347
  • Reinke C, Buchmann N, Fink A, et al. Diabetes duration and the risk of dementia: a cohort study based on German health claims data. Age Ageing. 2022;51(1). doi:10.1093/ageing/afab231
  • Biessels GJ, Despa F. Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications. Nat Rev Endocrinol. 2018;14(10):591–604. doi:10.1038/s41574-018-0048-7
  • Liu DS, Gao W, Lin -W-W, et al. Effects of the Chinese Yi-Qi-Bu-Shen Recipe extract on brainstem auditory evoked potential in rats with diabetes. J Ethnopharmacol. 2011;137(1):414–420. doi:10.1016/j.jep.2011.05.033
  • Liu DS, Zhou YH, Liang ES, et al. Neuroprotective effects of the Chinese Yi-Qi-Bu-Shen recipe extract on injury of rat hippocampal neurons induced by hypoxia/reoxygenation. J Ethnopharmacol. 2013;145(1):168–174. doi:10.1016/j.jep.2012.10.046
  • Goyal SN, Reddy NM, Patil KR, et al. Challenges and issues with streptozotocin-induced diabetes - A clinically relevant animal model to understand the diabetes pathogenesis and evaluate therapeutics. Chem Biol Interact. 2016;244:49–63. doi:10.1016/j.cbi.2015.11.032
  • Tanbek K, Ozerol E, Yilmaz U, et al. Alpha lipoic acid decreases neuronal damage on brain tissue of STZ-induced diabetic rats. Physiol Behav. 2022;248:113727. doi:10.1016/j.physbeh.2022.113727
  • Vorhees CV, Williams MT. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc. 2006;1(2):848–858. doi:10.1038/nprot.2006.116
  • Ghasemi R, Zarifkar A, Rastegar K, et al. Insulin protects against Abeta-induced spatial memory impairment, hippocampal apoptosis and MAPKs signaling disruption. Neuropharmacology. 2014;85:113–120. doi:10.1016/j.neuropharm.2014.01.036
  • Tian H, Ding N, Guo M, et al. Analysis of learning and memory ability in an alzheimer’s disease mouse model using the Morris water maze. J Vis Exp. 2019;152. doi:10.3791/60055
  • Ward R, Li W, Abdul Y, et al. NLRP3 inflammasome inhibition with MCC950 improves diabetes-mediated cognitive impairment and vasoneuronal remodeling after ischemia. Pharmacol Res. 2019;142:237–250. doi:10.1016/j.phrs.2019.01.035
  • Zhang JH, Zhang J-F, Song J, et al. Effects of berberine on diabetes and cognitive impairment in an animal model: the mechanisms of action. Am J Chin Med. 2021;49(6):1399–1415. doi:10.1142/S0192415X21500658
  • Chandrasekaran K, Choi J, Arvas MI, et al. Nicotinamide mononucleotide administration prevents experimental diabetes-induced cognitive impairment and loss of hippocampal neurons. Int J Mol Sci. 2020;21(11):3756. doi:10.3390/ijms21113756
  • Ramos-Rodriguez JJ, Infante-Garcia C, Galindo-Gonzalez L, et al. Increased spontaneous central bleeding and cognition impairment in APP/PS1 mice with poorly controlled diabetes mellitus. Mol Neurobiol. 2016;53(4):2685–2697. doi:10.1007/s12035-015-9311-2
  • Datusalia AK, Sharma SS. Amelioration of diabetes-induced cognitive deficits by GSK-3beta inhibition is attributed to modulation of neurotransmitters and neuroinflammation. Mol Neurobiol. 2014;50(2):390–405. doi:10.1007/s12035-014-8632-x
  • Han X, Min M, Wang J, et al. Quantitative profiling of neurotransmitter abnormalities in brain, cerebrospinal fluid, and serum of experimental diabetic encephalopathy male rat. J Neurosci Res. 2018;96(1):138–150. doi:10.1002/jnr.24098
  • Chu X, Zhou S, Sun R, et al. Chrysophanol relieves cognition deficits and neuronal loss through inhibition of inflammation in diabetic mice. Neurochem Res. 2018;43(4):972–983. doi:10.1007/s11064-018-2503-1
  • Jing GC, Liu D, Liu Y-Q, et al. Nao-Fu-Cong ameliorates diabetic cognitive dysfunction by inhibition of JNK/CHOP/Bcl2-mediated apoptosis in vivo and in vitro. Chin J Nat Med. 2020;18(9):704–713. doi:10.1016/S1875-5364(20)60009-7
  • Sun X, Li S, Xu L, et al. Paeoniflorin ameliorates cognitive dysfunction via regulating SOCS2/IRS-1 pathway in diabetic rats. Physiol Behav. 2017;174:162–169. doi:10.1016/j.physbeh.2017.03.020
  • Bi T, Feng R, Zhan L, et al. ZiBuPiYin Recipe prevented and treated cognitive decline in ZDF rats with diabetes-associated cognitive decline via microbiota-gut-brain axis dialogue. Front Cell Dev Biol. 2021;9:651517. doi:10.3389/fcell.2021.651517
  • Wang K, Chen Q, Wu N, et al. Berberine ameliorates spatial learning memory impairment and modulates cholinergic anti-inflammatory pathway in diabetic rats. Front Pharmacol. 2019;10:1003. doi:10.3389/fphar.2019.01003
  • Wei Y, Luo Q-L, Sun J, et al. Bu-Shen-Yi-Qi formulae suppress chronic airway inflammation and regulate Th17/Treg imbalance in the murine ovalbumin asthma model. J Ethnopharmacol. 2015;164:368–377. doi:10.1016/j.jep.2015.01.016
  • Zhang SG, Xiong GL, Yang X. 益气补肾颗粒治疗慢性肾功能不全的初步实验及临床研究 [Preliminary experimental and clinical study of the treatment of chronic renal insufficiency by granule of yi-qi bu-shen]. Zhongguo Zhong Xi Yi Jie He Za Zhi. 1992;12(6):335–7, 323. Chinese.
  • Luo Y, Qin Z, Hong Z, et al. Astragaloside IV protects against ischemic brain injury in a murine model of transient focal ischemia. Neurosci Lett. 2004;363(3):218–223. doi:10.1016/j.neulet.2004.03.036
  • Mao XQ, Wu Y, Wu K, et al. Astragalus polysaccharide reduces hepatic endoplasmic reticulum stress and restores glucose homeostasis in a diabetic KKAy mouse model. Acta Pharmacol Sin. 2007;28(12):1947–1956. doi:10.1111/j.1745-7254.2007.00674.x
  • Wu Y, Ou-yang J-P, Wu K, et al. Hypoglycemic effect of Astragalus polysaccharide and its effect on PTP1B. Acta Pharmacol Sin. 2005;26(3):345–352. doi:10.1111/j.1745-7254.2005.00062.x
  • Yu J, Zhang Y, Sun S, et al. Inhibitory effects of astragaloside IV on diabetic peripheral neuropathy in rats. Can J Physiol Pharmacol. 2006;84(6):579–587. doi:10.1139/y06-015
  • Liu M, Wu K, Mao X, et al. Astragalus polysaccharide improves insulin sensitivity in KKAy mice: regulation of PKB/GLUT4 signaling in skeletal muscle. J Ethnopharmacol. 2010;127(1):32–37. doi:10.1016/j.jep.2009.09.055
  • Zou F, Mao XQ, Wang N, Liu J, Ou-Yang JP. Astragalus polysaccharides alleviates glucose toxicity and restores glucose homeostasis in diabetic states via activation of AMPK. Acta Pharmacol Sin. 2009;30(12):1607–1615.
  • Tang LQ, Wei W, Chen L-M, et al. Effects of berberine on diabetes induced by alloxan and a high-fat/high-cholesterol diet in rats. J Ethnopharmacol. 2006;108(1):109–115. doi:10.1016/j.jep.2006.04.019
  • Bebrevska L, Foubert K, Hermans N, et al. In vivo antioxidative activity of a quantified Pueraria lobata root extract. J Ethnopharmacol. 2010;127(1):112–117. doi:10.1016/j.jep.2009.09.039
  • Herrmann N, Lanctot KL, Khan LR. The role of norepinephrine in the behavioral and psychological symptoms of dementia. J Neuropsychiatry Clin Neurosci. 2004;16(3):261–276. doi:10.1176/jnp.16.3.261
  • Raskind MA, Peskind ER. Neurobiologic bases of noncognitive behavioral problems in Alzheimer disease. Alzheimer Dis Assoc Disord. 1994;8(Suppl 3):54–60. doi:10.1097/00002093-199404000-00005
  • Sontag TA, Hauser J, Kaunzinger I, Gerlach M, Tucha O, Lange KW. Effects of the noradrenergic neurotoxin DSP4 on spatial memory in the rat. J Neural Transm. 2008;115(2):299–303. doi:10.1007/s00702-007-0830-5
  • Weinshenker D. Long road to ruin: noradrenergic dysfunction in neurodegenerative disease. Trends Neurosci. 2018;41(4):211–223. doi:10.1016/j.tins.2018.01.010
  • Pillet LE, Taccola C, Cotoni J, et al. Correlation between cognition and plasma noradrenaline level in Alzheimer’s disease: a potential new blood marker of disease evolution. Transl Psychiatry. 2020;10(1):213. doi:10.1038/s41398-020-0841-7
  • Braak H, Del Tredici K. Where, when, and in what form does sporadic Alzheimer’s disease begin? Curr Opin Neurol. 2012;25(6):708–714. doi:10.1097/WCO.0b013e32835a3432
  • Matthews KL, Chen CPL-H, Esiri MM, et al. Noradrenergic changes, aggressive behavior, and cognition in patients with dementia. Biol Psychiatry. 2002;51(5):407–416. doi:10.1016/S0006-3223(01)01235-5
  • Martignoni E, Blandini F, Petraglia F, et al. Cerebrospinal fluid norepinephrine, 3-methoxy-4-hydroxyphenylglycol and neuropeptide Y levels in Parkinson’s disease, multiple system atrophy and dementia of the Alzheimer type. J Neural Transm Park Dis Dement Sect. 1992;4(3):191–205. doi:10.1007/BF02260903
  • Tohgi H, Ueno M, Abe T, et al. Concentrations of monoamines and their metabolites in the cerebrospinal fluid from patients with senile dementia of the Alzheimer type and vascular dementia of the Binswanger type. J Neural Transm Park Dis Dement Sect. 1992;4(1):69–77. doi:10.1007/BF02257623
  • Elrod R, Peskind ER, DiGiacomo L, Brodkin KI, Veith RC, Raskind MA. Effects of Alzheimer’s disease severity on cerebrospinal fluid norepinephrine concentration. Am J Psychiatry. 1997;154(1):25–30.
  • Gannon M, Che P, Chen Y, et al. Noradrenergic dysfunction in Alzheimer’s disease. Front Neurosci. 2015;9:220. doi:10.3389/fnins.2015.00220
  • Knecht S, Breitenstein C, Bushuven S, et al. Levodopa: faster and better word learning in normal humans. Ann Neurol. 2004;56(1):20–26. doi:10.1002/ana.20125
  • Shellshear L, MacDonald AD, Mahoney J, et al. Levodopa enhances explicit new-word learning in healthy adults: a preliminary study. Hum Psychopharmacol. 2015;30(5):341–349. doi:10.1002/hup.2480
  • Breitenstein C, Flöel A, Korsukewitz C, Wailke S, Bushuven S, Knecht S. A shift of paradigm: from noradrenergic to dopaminergic modulation of learning? J Neurol Sci. 2006;248(1–2):42–47. doi:10.1016/j.jns.2006.05.012
  • van der Velpen V, Teav T, Gallart-Ayala H, et al. Systemic and central nervous system metabolic alterations in Alzheimer’s disease. Alzheimers Res Ther. 2019;11(1):93. doi:10.1186/s13195-019-0551-7
  • Comai S, Bertazzo A, Brughera M, Crotti S. Tryptophan in health and disease. Adv Clin Chem. 2020;95:165–218.